
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 81, 010301(R) (2010)

Computation on spin chains with limited access
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We show how to implement quantum computation on a system with an intrinsic Hamiltonian by controlling a
limited subset of spins. Our primary result is an efficient control sequence on a nearest-neighbor XY spin chain
through control of a single site and its interaction with its neighbor. Control of an array of sites yields sufficient
parallelism for the implementation of fault-tolerant circuits. The framework exposes contradictions between the
control theoretic concept of controllability with the ability of a system to perform quantum computation.
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Introduction: What does it take to implement a quantum
computation in a given physical system? This would seem
to be a fundamental question for which a sufficient set of
conditions is well known [1]; implementation of single qubit
rotations on each qubit and a nearest-neighbor two-qubit
gate. However, since that degree of control seems to be
extremely demanding, it is vital to understand how little
control is required. In fact, there are some systems whose
internal dynamics are sufficient to implement computations
[2,3]. However, these have to be carefully designed and still
require the ability to prepare the initial (product) state. On
the other hand, reintroducing control over a single spin in
principle gives sufficient control for almost all Hamiltonians
[4]. This architecture is an attractive proposition for some
experimental implementations. For instance, while it has been
shown that full control over a pair of superconducting qubits
can be achieved, the physical layout of such devices is highly
asymmetric [5] and is not easily scaled up. Thus, we might be
able to consider manufacturing a uniform system with some
fixed interaction and can concentrate all our design efforts
in generating controllability at the end of a chain, which is
allowed to be nonsymmetric.

The proofs of controllability of these interface schemes
[4] make no claims regarding efficiency. Some examples
of Hamiltonians have been specifically constructed to allow
efficient control sequences [3,6]. While much less complicated
than those of Refs. [2,3] that function without any control, they
are still unrealistic. In this Rapid Communication, we develop
efficient analytic control sequences for a much more natural
class of Hamiltonians; spin chains. The main ingredients
are an encoding of information in the diagonal basis of
the Hamiltonian and the use of Rabi oscillations to induce
transitions between these states.

Generic controllability: Consider an N -qubit Hamiltonian
H , with control field h1. Each arbitrarily entangled eigenvector
|λx〉 can be identified with a logical basis state |xL〉, x ∈
{0, 1}N . Generically, the eigenvalues |λx | and differences
|λx − λy | are unique, and 〈λx | h1

∣∣λy

〉 �= 0. Under these as-
sumptions, the field

hn
X = B

∑

x∈{0,1}N
xn=0

1

〈λx⊕n| h1 |λx〉 cos [(λx − λx⊕n)t] h1

applies the logical X rotation on qubit n (up to some phases,
which we consider later). x ⊕ n is used to denote the flipping
of bit n in the string x. Naturally, hn

X only makes sense if
〈λx⊕n| h1 |λx〉 �= 0. Due to the assumed uniqueness of gaps,
each term in the sum is on resonance with a single transition
so that, by applying the rotating-wave approximation (RWA,
which requires that the detunings of different energy gaps
is much greater than B), the effective Hamiltonian in the
interaction picture is

Heff = B
∑

x∈{0,1}N
xn=0

|λx〉 〈λx⊕n| + |λx⊕n〉 〈λx |,

which evidently provides the logical X rotation that we
desire, by any angle BtX. The effect of returning to the
Schrödinger picture is that this rotation is followed up by∑

x e−iλx tX |λx〉 〈λx |. A controlled-NOT (CNOT) gate (up to an
identical phase condition) is implemented in a similar fashion,

h
n,m

CNOT = B
∑

x∈{0,1}N
xm=1,xn=0

1

〈λx⊕n| h1 |λx〉 cos [(λx − λx⊕n)t] h1

with control qubit m and target n. In order to have full
controllability, we just need to demonstrate how to implement
arbitrary Z rotations on any spin, n. This can also be used to
cancel the phases that accrue due to the interaction picture.
The first step is to negate the effect of the phases when
implementing an identity operation, using the standard NMR
technique of refocusing—by applying the cyclic permutation∑

x |λx+1 mod 2N 〉〈λx | 2N times, waiting the same time tZ be-
tween each application, and then all eigenvectors accumulate
the same phase, tZTr(H ). Independently varying the waiting
times in different intermediate states allows different phases to
be applied to different eigenvectors, which is precisely what we
need, thereby proving controllability of a generic Hamiltonian.

This technique is, in the majority of cases, wildly inefficient,
for several reasons. Primarily, since there is an exponential
number of eigenvectors, B must be exponentially small if the
control field is to be bounded, so gates take exponentially
long. Equally, to cycle through all the eigenvectors for the
phase gate is an exponential process. While these techniques
are not necessarily unique, the on-resonant control would seem
to be an essential component of any such scheme. How can any
scheme be efficient? Introducing degeneracies into the system
reduces the number of terms that we sum over. However, care
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is required since, if we have that λx − λx⊕n is independent of
x (such that hn

X is only a single term), then there is too much
degeneracy for hCNOT, and the existing proof of controllability
breaks down. Bizarrely, to get efficient computation, we have
to make it harder to prove controllability! Worthy of emphasis
is that controllability typically applies to the control of the
entire Hilbert space, whereas efficient quantum computation
only requires control over a subsystem.

Computation on spin chains: While it may be interesting
to understand generic systems, the Hamiltonians that are
accessible in the laboratory are far from generic, so the
preceding arguments need not apply. We shall now show how
to use the basic ideas introduced to efficiently compute on a
spin chain of the form

H = 1

2

N∑

n=1

Jn[(1 + γ )XX + (1 − γ )YY ]n,n+1

− 1

2

N∑

n=1

BnZn. (1)

This Hamiltonian is exactly solvable [7], the first step
being to perform the Jordan-Wigner transformation a

†
n =

σ+
n

∏n−1
m=1 Zm. These can then be transformed into a set of

noninteracting fermions,

Hf =
N∑

n=1

λnb
†
nbn.

via a Bogoliubov transformation and diagonalization of an
N × N tridiagonal matrix. We shall assume that the coupling
strengths Jn are known, although they can be identified
experimentally [8] after preparing the system in some initial
state [9]. For pedagogical reasons, we introduce three control
fields, which act only on the first two spins,1

h1 = X1

h2 = 1
2 ((1 + γ )XX + (1 − γ )YY )1,2

h3 = Z1Z2.

These can be transformed into the {an} or {bn} basis. We can
assume J1 = B1 = 0, which means that b1 = a1 and λ1 = 0.
In cases such as γ = 0, it is already guaranteed that the {λn}
are unique and that αn := 〈0| b1h2b

†
n |0〉 �= 0 [10], where |0〉

denotes the vacuum (i.e., ground) state of the system. The
uniqueness of the {λn} is sufficient to give the condition of
uniqueness of the {|λn|} since we could tune the field B1 which,
working in an offset system where we keep λ1 = 0, rescales
all other eigenvalues by B1, sufficient to move them off any
degeneracies due to the existence of ±λn eigenvalue pairs. It
is also sufficient to ensure that none of the eigenvalues are
exponentially small. Henceforth, we assume these conditions
hold.

Instead of proving universal computation on the full Hilbert
space, we shall just consider a subspace where the logical
qubits are described by pairs of fermions. The initial state is

1A single field, such as h1 + h2 + h3, is typically sufficient.

of the form

|0L〉⊗�(N−1)/2� =
�(N−1)/2�∏

m=1

b
†
2m |0〉 ,

and the raising operator for the nth logical qubit is σ+
n =

b
†
2n+1b2n. The primary reason for this choice is that if we

were to encode in single fermion states, then when moving
states around the lattice, they generate exchange phases,
which correspond to controlled-phase gates. Encoding in a
|01〉L , |10〉L subspace negates these effects [11]. Note that
b1 is not used to encode a qubit and is instead kept free as
workspace.

All protocols in the computation require the field

Bn(t) = B cos(λnt)h2,

which implements the effective Hamiltonian

1

2
αnB(b†1bn + b†nb1)

n−1∏

m=2

(2b†mbm − 1).

The sequence of
∏n−1

m=2(2b
†
mbm − 1) is precisely the c-phase

gates mentioned previously, whose effects are negated by the
encoding—this term calculates the parity of the number of
fermions in modes 2 to n − 1 if there is only 1 fermion in modes
1 or n, and this number is fixed due to our encoding. Thus, up
to a diagonal gate, Bn(t) can be used to implement a swap of a
fermion in mode n onto spin 1. When implementing this swap,
one of the two states will always be empty, so the diagonal gate
is only a local phase gate, which we will later see how to correct
(either we swap a fermion onto the empty state on site 1, or we
undo that swap). Once we have implemented B2n[π/(Bα2n)]
to swap fermion 2n to the first site, we can implement
B2n+1[2θ/(Bα2n+1)] before applying B2n[π/(Bα2n)]. This
returns the fermions to their original positions but the logical
qubit n has undergone an X rotation of angle θ , up to the phase
gates due to the transformation between the interaction and
Schrödinger pictures. This protocol also allows the preparation
of any eigenstate of Hf and measurement of any logical qubit;
swapping n to 1, measuring and then swapping back projects
the system into a Fock state of bn, and h1 allows the bit to be
flipped after measurement. Figure 1 demonstrates the simple
swapping protocol for a chain of 101 spins in the single fermion
subspace.

A refocusing technique can now be used to perform
arbitrary Z rotations. If an X rotation is performed on each
logical qubit every tZ , then they each acquire a global phase
of the form (λ2n + λ2n+1)mtZ at times 2mtZ . By performing
the gate Xn at times t ′Z (instead of tZ) and 2tZ , we get a phase
rotation of 2(λ2n+1 − λ2n)(tZ − t ′Z).

To entangle logical qubits m and n, we apply
B2m[π/(Bα2m)], swapping the fermionic mode 2m onto spin
1, followed by a field B ′

n(t) = 2B ′ cos[(λ2n − λ2n+1)t]h3 for
time θ/(2B ′), which gives an effective interaction between
modes 2n and 2n + 1 (in the interaction picture), dependent
on the presence or absence of a fermion on the first spin,

Heff = B ′α2nα2n+1(2b
†
1b1 − 1)(b†2nb2n+1 + b

†
2n+1b2n).
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FIG. 1. The effectiveness of the SWAP gate between the b1 mode
and the bn with minimum eigenvalue for N = 101 and the coupling
scheme of Eq. (2), offset by using B1 = √

2. The inset shows how
decreasing B increases the accuracy. The fidelity is calculated as
the overlap between the evolution of an initial state |0〉 |λ100〉 and
the target state |1〉 |0〉⊗100. All quantities are dimensionless by taking
h̄ = 1.

By applying B2m[π/(Bα2m)], the sequence is completed. The
ultimate result is a c-X rotation of angle θ , targeting qubit n,
up to local rotations.

This proves the possibility of implementing computational
gates on a sufficiently large subspace. However, it is not
sufficient for efficiency since the timing condition is based
on the requirement that B and B ′ are sufficiently small.
This gives two conditions to satisfy, B <∼ 1 and B max αn �
min |λn − λm|. The first of these arises from the desire to only
use finite field strengths. If any eigenvalues, or their gaps, are
exponentially small, or overlaps of eigenvectors on the second
spin are exponentially small (any of which can happen, albeit
rarely), then the gate time must be exponentially long. This
loss of practical controllability as a theoretically controllable
system closely approaches a symmetric uncontrollable system
has recently been identified in Ref. [12]. In the case of
the uniformly coupled chain (γ = 0, Jn = 1, Bn = 0), the
detunings are of the order of 1/N2, so gate times are O(N2).
Superior schemes can be designed, such as that introduced in
Ref. [10], with γ = Bn = 0,

J 2
n+1 = 3n2[(N − 1)2 − n2]

N (N − 2)(2n − 1)(2n + 1)
. (2)

It has a spectrum with regular spacings of 2/(N − 2) and
αn = 1/

√
N − 1, meaning that it can implement gates in a

time O(N ), which is optimal if J ∼ O(1). Some care has
to be taken with the two-qubit gate, since the gaps between
eigenvalues are highly degenerate. The first step in overcoming
this is to make a suitable association between the numbering
of the fermionic modes and their eigenvalues, λ2n = −1 +
2(n − 1)/(N − 2), λ2n+1 = (2n − 1)/(N − 2), which means
that applying B ′

n(t) uses a frequency greater than half of the
total energy range i.e., each mode can couple only to one other
mode and corresponds to applying the same X rotation on
every logical qubit simultaneously if the b1 mode is occupied.
To localize this effect on a single target qubit, we apply a
logical Z gate at the start, and halfway through the evolution,
on the qubits where we do not want the CNOT applied. Since

Z
√

XZ
√

X = 1, the evolution is canceled, and if the b1 mode
was not occupied, we get only ZZ = 1.

The engineered coupling scheme of Eq. (2) is particularly
amenable to the final step of the analysis—an estimation of
how the gate error scales with N and B. Instead of considering
Bn(t), we will replace it with

Bn(t) = B

4
cos(λnt)[(1 + γ )XX + (1 − γ )YY ]1,2

+ B

4
i sin(λnt)[(1 + γ )XY − (1 − γ )YX]1,2,

reducing our reliance on the RWA,

Heff =
N∑

m=1

λmb†mbm + B

2
√

N − 1

N∑

m=2

eiλnt b†mb1

+ e−iλnt b
†
1bm,

neglecting, for convenience, the string of operators∏m−1
k=2 (2b

†
kbk − 1) that we know to be irrelevant due to our

choice of encoding. A suitable rotating basis can be chosen
to entirely remove the time dependence. As a first step, we
estimate the error in the rotation within the {b1, bn} subspace
by adiabatically eliminating the other levels. This leads to an
error of ε ∼ B2N log2 N , using

∣∣∣∣∣∣∣

N∑

m=2
m�=n

1

λm − λn

∣∣∣∣∣∣∣
�

N−1∑

m=1

N − 2

2m
∼ N log N.

We also need to estimate the leakage out of this subspace,
which can be achieved by assuming the desired evolution
of the subspace, in particular the amplitude of the b

†
1 mode

can be taken to be cos(Bt/
√

N ). Using this, the evolution of
the other modes can be solved exactly, and their maximum
amplitudes can be bounded. Summing all these reveals a
maximum error of ε ∼ B2N log2 N . Therefore, by selecting
B−1 ∼ √

N log(N ), the error is held constant, and the gate
time scales as O(N log N ). In Fig. 1, the error ε is evalu-
ated numerically for fixed N and indicates ε ∼ B1.9. Other
coupling schemes are more strongly affected, but a choice of
B ∼ min(αn) min |λm − λn|/N ensures a constant error with
increasing N .

One might ask how robust this scheme is to fluctuations in
the control fields. Since we are using Rabi oscillations, there is
a lot of built-in tolerance—the pulse sequence can be anything
provided it has the correct Fourier component with the correct
amplitude. Other Fourier components are irrelevant provided
they are sufficiently far from the other energy gaps of our
system. If the (integrated) amplitude of our Fourier component
is slightly wrong, then that means the angle of the implemented
X rotation is incorrect by the same fraction, but this is
exactly the same possibility of error that all nontopological
schemes suffer from. Similarly, if there is a small (compared
to Bαn) frequency discrepancy, this introduces a small Z

component to the X rotation. The Fourier decomposition of
control sequences also indicates a link with Ref. [13] where
control of the single excitation subspace was demonstrated.
Evidently, our fields Bn(t) give efficient controllability of
this subspace for any spin-preserving network, via Givens
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rotations (the exchange phases never manifest in the single
excitation subspace). In Ref. [13], the numerical techniques
that suggested efficiency were based on a simple on/off
switching of h2, which can be directly related to our result
by examining the Fourier modes of the square wave.

Fault tolerance: This interface scheme has many advan-
tages such as not needing to perfectly engineer the system to
within tight constraints. Instead, system tomography can feed
back into the control sequences. Also, at least theoretically, the
majority of the system can be isolated from the environment,
thereby decreasing decoherence. Nevertheless, the possibility
of error correction remains a concern. This introduces a
significant problem to the interface scheme; as the system
size increases, the errors accumulate more rapidly than they
can be corrected. However, the architecture described here
readily generalizes to structures with sufficient parallelism
for fault tolerance [4]. Consider the system of Eq. (1), but
where we control some fixed set of spins {ki}, by which we
mean that we control the spins ki and h2 and h3 couplings
between neighboring pairs (ki − 1, ki) and (ki, ki + 1). By
considering the scenario where all these couplings are switched
off, the basis defines the computational basis. On each site,
if we only ever allow one of the couplings (ki − 1, ki) or
(ki, ki + 1) to be active at a time, gates can be implemented in
time O(1) within a block, or between neighboring blocks.
This is sufficient to design a fault-tolerant scheme [14],
although care is required since errors that occur independently
on each physical qubit correspond to correlated errors in
the encoded basis, constrained within a specific block. The
constant sized blocks can be arranged into any geometry,
allowing improvements in the fault-tolerant threshold. One
would expect a threshold for per spin error rates of the order
of εc/K where εc is any fault-tolerant threshold constrained

by a locality condition, and K is the number of spins in any
given block.

Conclusions: Simple systems of noninteracting fermions,
which can be converted to a wide variety of spin models,
including XX and transverse Ising, can be efficiently con-
trolled through the coupling of a single spin to its neighbor,
enabling implementation of quantum computation. Without
the additional coupling, the structure of the Hilbert space is
entirely described by representations of SU(N ), which can
be simulated in polynomial time on a logarithmic number
of qubits, but introduction of a single controlling interaction
breaks this symmetry and potentially permits a computation.
The remarkable aspect is the ability to present analytic,
efficient, pulse sequences to achieve a computation. We have
further discussed how the result generalizes to an array
of controllers, which are sufficient to allow a fault-tolerant
implementation; a feature absent from previous constructions
[3,6]. Our formalism motivates the expectation that most
systems, while controllable, cannot be efficiently manipulated.
This includes many interesting systems such as Heisenberg
chains.

In parallel to this work, Burgarth et al. have considered the
same problem [15]. In essence, our work proves when good
solutions exist, at which point [15] can be used to numerically
find control sequences with smaller overheads (no proof for
the existence of, or efficient convergence to, solutions is given
in Ref. [15]).
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