
Generalized reflection time for one-dimensional structures

Cheng Yin and Zhuangqi Cao
Department of Physics, The State Key Laboratory on Fiber Optic Local Area Communication Networks

and Advanced Optical Communication Systems, Shanghai Jiao Tong University, Shanghai 200240, China
�Received 28 September 2009; published 9 December 2009�

A generalized reflection time which follows directly from the Schrödinger equation without approximation
is obtained. By the Winger-Eisenbud approach, this reflection time is conceptually well defined and can be
applied to arbitrary continuous potentials including both quantum tunneling and quantum reflection issue. A
simple explanation for the quantum reflection phenomenon is proposed and the explicit expression of the
difference between the quantum reflection time and the classical reflection time is also derived.
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Since numerous theoretical predictions seem to contradict
each other, the tunneling time issue is replete with contro-
versy �1–4�. Among them, two principal frameworks are the
Büttiker-Landauer traversal time and the Wigner-Eisenbud
time �the group delay or phase time�. The recent advance in
experimental techniques has made the direct measurements
of this quantity increasingly accessible to laboratory experi-
ments. There already exist various experiments done with
“single photons,” light pulses, etc.; some of them even show
apparent superluminality �5–9�. However, these experiments
have severed to add fuel to the current debate over tunneling
time. In a very recent experiment, the measured upper limit
on the tunneling delay of an electron in strong field ioniza-
tion of a helium atom is much shorter than the prediction of
the Büttiker-Landauer traversal time �9�. In an effort to re-
solve the Hartman effect, Winful proposed that the Wigner
phase time is well defined but should be reinterpreted as a
lifetime �3,4�. In this Brief Report, we explore the related
issue of the quantum-mechanical reflection time in the gen-
eral case of arbitrary continuous structures and derive a gen-
eralized expression of reflection time directly from the time-
independent Schrödinger equation via the Wigner-Eisenbud
approach. Since it is well established that, for a symmetric
potential, the Wigner phase times for tunneling and for re-
flection are identical quantities �3�, the proposed expression
is also the expression of the tunneling time in these cases.

Moreover, the recent explosive growth of experiments on
cold atoms near surfaces illustrates the importance of this
proposed reflection time. Experiments have already con-
firmed that a particle can be reflected in the classically al-
lowed region �10,11�; such an effect is referred to as quan-
tum reflection. Previous theoretical work formulated by
Friedrich and co-workers was based on the globally accurate
wave functions constructed by matching the exact or highly
accurate wave functions in the quantal regions to the WKB
wave functions in the semiclassical regions and concentrated
mainly on the long-range attractive potential tails. They
pointed out that the quantum reflected wave is always de-
layed when compared to the classical particle accelerated in
the same attractive potential �12,13�. When the reflection
time proposed in this Brief Report is extended to study this
issue, a clear physical picture of the quantum reflection effect
is presented; furthermore, we obtain the explicit expression
of the time gain �delay� that the quantum reflected wave
experiences with respect to the classical particle under the
influence of the same attractive potential.

We start with the time-independent Schrödinger equation
with position-dependent effective mass m�x�,

�−
d

dx

�2

2m�x�
d

dx
+ V�x����x� = E��x� , �1�

and, equivalently, the Riccati equation is given as

1

m�x�
d

dx
q�x� = − �q�x�2 + � ��x�

m�x�
�2� , �2�

where

��x� =
p�x�

�
=

	2m�x��E − V�x��
�

, �3�

q�x� = m�x�−1��x�−1d��x�
dx

. �4�

Here, the relation between the term q�x� and the quantum-
mechanical wave impedance Z�x� takes a simple form Z�x�
=�q�x� / i �14�, and p�x� denotes the momentum. Defining
��x�=−arctan�m�x�q�x� /��x��, it follows that

d��x�
dx

= � +
q���m − m�k�

�2 + m2q2 . �5�

Here, we denote differentiations with respect to x by primes.
Integrating Eq. �5� over the interval a�x�b, one obtains



a

b

d��x� = 

a

b �� +
q���m − m�k�

�2 + m2q2 �dx = n� + ��b� − ��a� ,

�6�

where n is related to the number of nodes of ��x���x� in this
interval. So far, no specific potential profile has been intro-
duced; thus, Eq. �6� is general. In our previous works
�15,16�, the term q���m−m�k� / ��2+m2q2� �−q�� /q� when
m�=0� was referred to as the wave number of the scattered
subwaves. Since this term has the same momentum dimen-
sion as �, we represent it by �� from now on for the sake of
clarity.

For an arbitrary point s in the classically allowed region
where E�V�s�, the potential can always be considered as
constant in a sufficiently small neighborhood of s; thus, it is
always possible to write the wave function in this neighbor-
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hood as a superposition of incoming and outgoing waves,

��x� 	 exp�i��x − s�� + r�s�exp�− i��x − s�� , �7�

where r�s� is the reflection coefficient at the point s. �The
reflection coefficient is defined with respect to plane waves
incident from the left throughout this Brief Report.� Substi-
tuting Eq. �7� in Eq. �4�, we obtain the relation

r�s� =
��s� + im�s�q�s�
��s� − im�s�q�s�

= exp�− i2��s�� . �8�

We next rewrite Eq. �6� in the form

exp�− 2i��a�� = exp�− 2i��b� + 2i

a

b

�� + ���dx� . �9�

From the above two equations, it follows that

r�a� = r�b�exp�2i

a

b

�� + ���dx� . �10�

Since the case of steplike varying potentials has already been
discussed in detail, let us consider an arbitrary continuous
potential that has its support on the interval �0,L� as shown
in Fig. 1 and an electron incident from x=0 with particle
energy E=�2k2 / �2m0�. Without loss of generality, we set
m�x�=m0 for x
L.

Then in view of Eq. �10�, one has

r�0� = r�L�exp�2i

0

L

�� + ���dx� , �11�

where r�L� in Eq. �11� is simply given by

r�L� =
m0��L� − m�L�k
m0��L� + m�L�k

. �12�

Equation �11� is a general expression of the reflection coef-
ficient. Note that the time-independent Schrödinger equation
and the Helmholtz equation are identical in from; therefore,
Eq. �11� can also be applied to electromagnetic waves. It is
well established that, for a wave packet whose momenta are
restricted to a narrow range, the time delay for scattering
processes can be calculated by following the peak of the
wave packet via the method of the stationary phase, i.e., this
time delay depends only on the energy derivative of the
phase shift �r of the reflection coefficient �1–3�. Thus, the
Wigner phase time �r for the reflected wave packet is

�r = �
��r

�E
. �13�

As was pointed out in Ref. �3�—after reviewing the key ex-
periments on optical, microwave, and acoustic tunneling
times—that “the group delay �phase time� indeed describes
the time at which the transmitted pulse peaks at the exit.” It
is from this point of view that the Wigner phase time is well
established. Finally, substituting Eq. �11� into Eq. �13�, we
obtain the generalized expression of reflection time,

�r�0� = �r�L� + 2� Re� �

�E



0

L

�� + ���dx� , �14�

where �r�L� can be obtained via Eqs. �12� and �13�.
Why do we refer to the term �� as the wave number of

the scattered subwaves? In order to make this clearer, let us
consider a simple stepped potential well as shown in Fig. 2
with constant mass m0. The eigenfunction of the bound states
corresponding to the eigenvalues V3
E
V1 can be written
as

��x� = �
A0 exp�
0x� , x � 0

A1 exp�i�1x� + B1 exp�− i�1x� , 0 � x � d1

A2 exp�i�2x� + B2 exp�− i�2x� , d1 � x � d1 + d2

A3 exp�− 
3x� , x 
 d1 + d2,
�

�15�

where ��i=	2m0�E−Vi� �i=1,2� and �
 j =	2m0�Vj −E� �j
=0,3�. Requiring the wave function ��x� and its first deriva-
tive ���x� to be continuous, one obtains

exp�i2��1d1 + �2d2 − �10 − �23�� + r12 exp�i2��1d1 − �10��

+ r21 exp�i2��2d2 − �23�� = 1, �16�

where �10=arctan�
0 /�1� and �23=arctan�
3 /�2� denote the
half-phase shift at the boundaries of the well and r12,r21 are
given by r12=−r21= ��1−�2� / ��1+�2�. It is clear that the first
term on the left-hand side of Eq. �16� �shown in Fig. 2 as
dashed-dotted line� represents the waves only reflected at
turning points x=0 and x=d1+d2, while the second and third
terms �shown in Fig. 2 as dashed lines� represent the waves
reflected at nonturning point x=d1. By purely algebraic
methods, Eq. �16� can be recast into �16�

L0

( )V x
( ) ikxt L e

(0)i xe κ

(0)(0) i xr e κ−

x

FIG. 1. Potential profile of an arbitrary continuous potential
V�x�. The plane-wave components of the electron wave function are
also indicated.
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FIG. 2. The stepped potential well.
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��1d1 + �2d2� + � = n� + �10 + �23. �17�

Comparing Eqs. �6� and �17�, it is obvious that the term �,
which is the simplest form of 
��dx, denotes the phase con-
tribution picked up by the scattered subwaves that result
from the interface between the potentials V1 and V2. From
the above simple example, it is evident that when general-
ized to arbitrary continuous potentials, the wave number ��
represents the wave number of the scattered subwaves that
originate inherently from the inhomogeneity of the fields.

For the quantum reflection issue, i.e., the particle travels
in a classically allowed region where there is no classical
turning point; as a result the momentum p=�� is always
positive, so does the integral of ��x�. This gives

�exp�i2

0

L

�dx�� � 1, �18�

which means that this integral has no effect on the reflection
probability R=rr�; the waves with wave number � can only
affect the phase of reflection coefficient. In view of Eq. �11�,
the modulus of the reflection coefficient �r� can be written as

�r�0�� = �r�L�exp�i2

0

L

��dx�� . �19�

The above simple expression indicates that quantum reflec-
tion is resulted from the reflection of the scattered subwaves.
It is convenient to rewrite the expression of reflection time
�14� as

�r�0� − �r�L� = �cl�0
L + ���0

L, �20�

where we have introduced the notations

�cl�0
L = 2 Re�


0

L �p�x�
�E

dx� , �21�

���0
L = 2� Re� �

�E



0

L

��dx� . �22�

In classical allowed regions, one has �p�x� /�E=m�x� / p�x�
=1 /��x�. Here, the term ��x� denotes the exact velocity of a
classical particle with the same effective mass m�x� and mo-
mentum p�x�; then Eq. �21� reduces to

�cl�0
L = 2


0

L 1

��x�
dx . �23�

Therefore �cl �0
L corresponds to the time that a classical par-

ticle takes to travel in the same potential and to be reflected
at the boundary, i.e., �cl is rather similar to the classical con-
cept of reflection time. Furthermore, the term �� given by
Eq. �22� is completely determined by ��; it is a property of
the entire wave function made up of transmitted and reflected
components. As mentioned before, �� represents the wave
number of the scattered subwaves that can be reflected at
nonturning points; in contrast, classical particles can only be
reflected at turning points. In a word, this term �� is in fact
displaying the wavelike behavior of the reflected electron,

while the term �cl manifests the particlelike behavior of the
reflected electron.

Simply put, quantum reflection is the reflection of the
scattered subwaves and Eq. �22� is exactly the expression of
the time delay or the time advance of the quantum reflected
wave when compared to a classical particle traveling in the
same potential and reflected at the boundary. It should be
note that, in a null potential with constant mass, where the
wave function is of the simple form ��x�	A exp�ikx�, �� is
nonzero. Instead, in this case �� is equal to −�cl; this could
be easily understood for the fact that since the null potential
is a reflectionless potential, the total reflection time given by
Eq. �20� will be equal to zero automatically. For arbitrary
continuous structures, the key point in the calculation of the
reflection time via Eq. �14� is q�x�. Analytical wave functions
are already known for all the shape invariant potentials and
other solved potentials, so one can obtain their q�x� analyti-
cally. Otherwise, one needs to solve the Riccati equation �2�
numerically or apply the ATM method. An arbitrary continu-
ous potential can always be approximated as a succession of
steplike varying regions, and each region is represented by a
transfer matrix

Mi = � cos��ih� − �mi/�i�sin��ih�
�i/mi sin��ih� cos��ih� � , �24�

where ��i=	2mi�E−Vi� and Vi ,mi stands for the potential
energy and the effective mass in the ith region. Using the
condition that the wave function and its first derivative are
continuous at the boundary between two neighboring re-
gions, the matrix equation is given as

� ��0�
���0�/m0

� = � Mi� ��L�
���L�/mL

� . �25�

From Eq. �25�, one can easily obtain q�x�.
For the first example, we consider a simple superlattice

structure given by
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FIG. 3. The electron reflection time �solid line� follows the reso-
nant behavior of transmission probability 10T �dashed line� as a
function of incident electron energy for the superlattice structure
given by Eq. �26�.
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V�x� = 1
2 − 1

2cos�2�x�, − 4 � x � 4. �26�

Atomic units are used for all the illustrated examples, i.e., we
set �=2m=1. The transmission probability and the reflection
time for this structure are calculated and shown in Fig. 3.

It is worth pointing out that the reflection time given by
Eq. �14� for this superlattice is rather similar to the tunneling
time calculated in Ref. �17� for a similar structure �see Fig. 2
in Ref. �17��. This example demonstrates that Eq. �14� can be
applied to calculate the tunneling time for all the symmetric
structures.

For a second illustration, it is interesting to compare the
generalized reflection time �r and the classical reflection time
�cl given by Eq. �23� for a quantum reflection problem. Let
us consider a simple attractive potential

V�x� = − 1
2 + 1

2cos�2�x�, − 5 � x � 5. �27�

Figure 4 shows the calculated results. It is clear that the
quantum reflected wave is faster when compared to the cor-
respondent classical particle, which indicates that the term
�� is negative in this case.

In conclusion, we derived directly from the Schrödinger
equation a simple formula �Eq. �14�� of the generalized re-
flection time. In a conceptually well-defined manner, this re-
flection time can be applied to arbitrary one-dimensional
continuous structures.
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FIG. 4. Reflection time �r �solid line�, classical reflection time
�cl �dotted line�, and transmission probability 10T �dashed line� as
functions of incident electron energy.
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