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We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium
primary reference transition which defines the second. The shift is found to be a complicated function of
temperature, and has a T2 dependence only in the high-temperature limit. We also calculate the shift of
ground-state p1/2 hyperfine transitions which have been proposed as new atomic clock transitions. In this case
interaction with the p3/2 fine-structure multiplet may be the dominant effect.
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The frequency of the ground-state hyperfine transitions
used in atomic clocks �such as the cesium primary standard�
is known to be temperature dependent �1�. For this reason the
SI second is defined at 0 K, and at any finite temperature the
blackbody shift must be taken into account. Temperature
fluctuation of the laboratory is a major portion of the clock
error budget �2�, therefore the NIST-F2 cesium fountain, cur-
rently under construction, will be cooled to 77 K to reduce
the blackbody shift.

Recently there was some disagreement in the literature
over the size of the electric blackbody radiation shift in ce-
sium. Early measurements and ab initio calculations support
a value about 10% higher than later measurements and semi-
empirical calculations �see �3� for references�. On the theory
side, this seems to have been resolved �3–5� in favor of the
larger values. As the temperature of the experiment is re-
duced in the future the magnetic blackbody shift ��T2� will
become more important relative to the electric shift ��T4�.
Hence this reassessment of the magnetic blackbody shift.

In this Brief Report we present a derivation of the mag-
netic blackbody shift of ground-state hyperfine transitions
that is valid at all temperatures �not just in the high-
temperature limit�. We calculate the effect for s1/2 hyperfine
transitions such as the 6s1/2�F=3→4�133Cs transition which
defines the second �there are many other such clocks, includ-
ing 87Rb, 171Yb+, and 199Hg+�. We find that the simple scal-
ing law of the blackbody shift ��hfs�T2 is only valid at
high temperatures. Additionally we calculate the shift for p1/2
hyperfine transitions which have been proposed as clock ref-
erences �6�. We show that interaction with the p3/2 fine-
structure multiplet must be considered.

The magnitude of the magnetic blackbody field is �atomic
units �=e=me=1�
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An oscillating magnetic field B���cos��t� affects an atomic
energy level via the time dependent perturbation

V��,t� = − � · B���cos��t� , �2�

where � is the magnetic dipole moment of the system. The
energy is affected in the second order of perturbation theory
�see, e.g., �7��,
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where v̂+= v̂−=−� ·B���. Note that the summation over n
includes all levels that may be admixed by the perturbation V
including all magnetic sublevels. For an atom with a single
electron above closed shells �=−�B�L+gsS� with gs=2 and
�B=� /2 in atomic units. A general expression for this case is
presented in the Appendix.

We first examine the case of a single s1/2 orbital split by
the hyperfine interaction with a nuclear spin I. In this case
there are only two levels of interest, with F= I+1 /2 and F
= I−1 /2; the next level will be separated by several orders of
magnitude more than the splitting �in the 133Cs case by a
factor of 105�. Then �=−�BgsS, and one obtains
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where �hfs=EI+1/2−EI−1/2 is the hyperfine splitting of the s
state. The total blackbody shift is obtained by integrating this
shift over the blackbody spectrum �Eq. �1��,
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where a�hfs /kT. Note that the fractional blackbody shift
does not depend on the nuclear spin I.

At high temperatures, a�1, the integral in Eq. �7� is ana-
lytic and one obtains

��hfs

�hfs
= −

2�

9
�5�kT�2, kT 	 �hfs

in agreement with Ref. �1�. By contrast, in the low tempera-
ture limit the blackbody shift has a �kT�4 dependence �and is
of opposite sign�,
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Of course, in general one can simply calculate the shift nu-
merically; this can be done more easily by subtracting the
pole. Defining F�x�=x3 / �ex−1� the integral can be rewritten


�a� = �
0

� F�x� − F�a�
x2 − a2 dx �8�

since the contribution of the second term F�a� / �x2−a2� is
zero. 
�a� is continuous and differentiable everywhere on the
positive real axis. A graph of the integral is presented in Fig.
1. Using Eq. �7� we obtain, at 300 K, ��hfs /�hfs=−1.304
�10−17. This is valid for any s1/2 hyperfine transition such as
the 133Cs or 87Rb clock transitions.

We now turn our attention to other clocks that use the
hyperfine splitting of a ground p1/2-wave state as the refer-
ence frequency, such as those proposed in �6�. In this case
the blackbody radiation will again cause attraction �or repul-
sion� between the two p1/2 levels, in a similar fashion to the
s1/2-wave case. Using the results of the Appendix, one ob-
tains the first term in Eq. �9�.

However in the p1/2 case there will be an additional shift
due to interaction with the p3/2 level. In fact, there is the
possibility of some “enhancement” of the blackbody effect
here as can be seen from Eq. �3�: in the case where �Ea
−En=� fs the shift will be of order �Ea�� fs /�2, which can
be larger than the shift due to mixing of the p1/2 hyperfine
states by a factor � fs /�hfs. However one finds that the shift
for both the F= I+1 /2 and F= I−1 /2 levels due to the p3/2
levels is identical in second order. To go beyond second or-
der we have included the differences in the energy denomi-
nators between different hyperfine components. This affects
the blackbody shifts at the level �hfs /� fs, which cancels the
enhancement mentioned earlier. One obtains for the interac-
tion,
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where ahfs=�hfs /kT and afs=� fs /kT. The second term, pro-
portional to 
�afs�+afs
��afs�, shows the effect of the p3/2

levels on �hfs. The first part of the second term is due to the
energy difference of the p1/2 levels in the energy denomina-
tor, while the second part ��A /�hfs� is due to splitting of the
p3/2 levels. Here A is the magnetic-dipole hyperfine constant
of the p3/2 levels. Note that the electric-quadrupole terms B
cancel.

The function 
��a� in Eq. �9� arises from the expansion of
the energy denominators and is defined by


��afs� =

�afs + ahfs� − 
�afs�

ahfs
�10�

in the limit ahfs /afs=�hfs /� fs→0. We present a graph of

�a�+a
��a� in Fig. 2.

In the high-temperature limit kT	� fs, 
�a→0�=�2 /6
and 
��a→0�=0 so from Eq. �9� we obtain
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Equations �9� and �11� show that the p3/2 levels must be
included when calculating the magnetic blackbody shift un-
less kT�� fs: depending on the system considered �i.e., the
value of I and A /�hfs� it may be the dominant effect. In the
case of Al, A /�hfs=0.063 �8,9� and I=5 /2, therefore the last
term in Eq. �11� is approximately 0.19. However in Al, � fs
=112 cm−1=162 K, therefore at 300 K, afs=0.54 and 
�a�
+a
��a��0.96�0.59�2 /6, so clearly the high-temperature
limit is not appropriate. At 300 K one obtains ��hfs /�hfs
=−2.32�10−18.

Our treatment of the interaction with the p3/2 levels takes
into account only the largest terms in third-order of pertur-
bation theory �second order in V and first order in the hyper-
fine interaction�; numerical calculation of off-diagonal hy-
perfine interaction constants is beyond the scope of this
work. In any case usually the nondiagonal hyperfine matrix
element 	p1/2�Hhfs�p3/2
 is significantly smaller than the diag-
onal one ��hfs for p1/2�, therefore we do not expect the result
to change significantly. However when a clock is produced a
more accurate third-order calculation will be necessary. In
the meantime the last term of Eq. �9� ��A /�hfs� may be
considered an estimate of the error.
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FIG. 1. The integral of Eq. �8�, normalized to the high-
temperature limit: 6

�2 
�a�= 6
�2 � x3dx

�ex−1��x2−a2� . Note that the abscissa is
1 /a: temperature increases to the right.
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FIG. 2. Solid line: 
�a� from Eq. �8�; dashed line 
�a�
+a
��a� �used in Eq. �9��. The high-temperature limit a→0 of both
graphs is �2 /6.
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APPENDIX: MAGNETIC BLACKBODY SHIFT

The total magnetic blackbody shift of a level �ama
 is
given by Eq. �3�. For electrons �=−�B�J+S� if we neglect
the anomalous magnetic moment �i.e., gs=2�. Then

�Ea =
1

4 �
bmb

�	bmb��B�J + S� · B�ama
�2

· � 1
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2B2���
6 �
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�Ea − Eb�2 − �2 . �A1�

Consider the interaction of levels in an atom with nuclear
spin I. If we denote the angular quantum numbers of �a
 with
L, J, and F, and those of �b
 with L�, J�, and F�, then

Cba = �F���F� F 1

J J� I
�2��J,J�

�J�J + 1��2J + 1�

+ �L,L��− 1�P�J,J��1/2� J� J 1

1/2 1/2 L
��3

2
�2

,

�A2�

where P=J+L+1 /2+F+F�+2I+1 and the square brackets
�J�= �2J+1�.
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