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Coherence properties of light beams generated by optical parametric oscillators �OPOs� are discussed in the
region of threshold. Analytic expressions, that are valid throughout the threshold region, for experimentally
measurable quantities such as the mean and variance of photon number fluctuations, squeezing of field quadra-
tures, and photon counting distributions are derived. These expressions describe non-Gaussian fluctuations of
light in the region of threshold and reproduce Gaussian fluctuations below and above threshold, thus providing
a bridge between below and above threshold regimes of operation. They are used to study the transformation
of fluctuation properties of light as the OPOs make a transition from below to above threshold. The results for
the OPOs are compared to those for the single-mode and two-mode lasers and their similarities and differences
are discussed.
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I. INTRODUCTION

Nonclassical properties of light have continued to draw
considerable attention both from conceptual and practical
viewpoints �1�. Perhaps the most important sources of light
where nonclassical features of light have been studied re-
cently are optical parametric oscillators �OPOs� based on fre-
quency down conversion �2–12�. In optical frequency down
conversion, a pump photon at frequency �3 is converted into
two photons of lower frequencies �1 and �2 ��3=�1+�2�.
The oscillator is termed degenerate optical parametric oscil-
lator �DPO� if the down-converted photons have the same
frequency, momentum, and polarization, otherwise it is
called nondegenerate optical parametric oscillator �NDPO�.
In an OPO, frequency down conversion occurs inside an op-
tical cavity whereas in an optical parametric amplifier �OPA�,
it occurs outside a cavity. Nonclassical character of light pro-
duced by parametric oscillators is reflected in field quadra-
ture squeezing, sub-Poissonian statistics, and antibunching of
photons in certain interference �homodyne or heterodyne�
experiments when the relative phase of interfering beams is
varied �2,9,10�. In addition to these familiar signatures,
down-converted photons may also be entangled nonclassi-
cally in polarization, frequency, momentum, and phase. This
means these properties of down-converted photons are
strongly correlated in a way that can only be described quan-
tum mechanically.

Nonclassical signatures of light from OPOs have been
studied experimentally as well. However, with few excep-
tions �3–6�, these experiments have been carried out on
OPAs or OPOs operating below threshold. In this regime, the
state of the light is well approximated by a Gaussian �as
described by Wigner function or the positive-P function� and
this has formed a reasonably good basis for understanding
nonclassical photon statistics and entanglement below
threshold �13–15�.

In crossing the threshold, the system makes a transition
from an amplifier �with or without filter cavity� to an oscil-
lator resulting in profound changes in its behavior. Near
threshold, the state of light from an OPO is non-Gaussian
and photon statistics of the OPOs in this regime have re-
mained largely unexplored. In many ways, the threshold
transition in OPOs is expected to be laserlike �16,17�. How-

ever, because of phase sensitive and multiplicative nature of
quantum noise in OPO, significant differences are also to be
expected. Indeed, we find that while the DPO photon number
distribution above threshold is similar to a laser, it still ex-
hibits squeezing �18�. Similarly, while each mode of a NDPO
individually may behave like a laser, the two modes stay
entangled. Consequently, an interference between the two
beams at a beam splitter �19,20� may create a nonclassical
squeezing of photon number difference and or relative phase
difference in accordance with the number-phase Heisenberg
uncertainty �21�.

Positive-P representation �22� has played important role
in elucidating the quantum nature of light from the OPOs.
The advantage of positive-P distribution is that it has all the
features of a probability density and allows quantum dynam-
ics of the OPOs to be mapped onto a classical stochastic
process �13,14,18,23–25�. Using this approach, the fluctua-
tion properties of light generated by the OPOs below and
above threshold have been studied in terms of Gaussian ran-
dom variables �25–30�. This is possible because the equa-
tions of motion can be linearized around the steady state far
and above threshold. Near threshold, where a linearized
treatment is not valid, the spectrum of squeezing �31� and the
positive-P distribution for the DPO have also been calculated
�13,14,18,23�. The NDPO has also been discussed by using a
generalized P representation of the density matrix �32�.
However, although the generalized P function itself could be
obtained in a closed form, it was not possible to derive ana-
lytic expressions for other quantities of interest in terms of
tabulated functions.

In this paper, we use the positive-P distribution to study
the transformation of fluctuations of light analytically as the
operating point of the OPO crosses threshold. We derive
simple expressions for the positive-P function near threshold
and use it to obtain analytic expressions for many experi-
mentally measurable quantities. These expressions remain
valid throughout the threshold region and provide a unified
description of the transformation of fluctuations of light in
passing the threshold. In Sec. II, we consider the fluctuation
properties of a DPO and compare and contrast them to a
single-mode laser. In Sec. III, we consider a NDPO and com-
pare and contrast its fluctuation properties to two-mode la-
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sers. The paper ends with a summary of the principal con-
clusions of the paper.

II. DEGENERATE PARAMETRIC OSCILLATOR

In a degenerate parametric oscillator, a nonlinear crystal is
placed inside an optical cavity, which is excited by a classi-
cal field of frequency 2� with dimensionless amplitude �
normalized such that ���2 is the number of pump photons
entering the cavity in one cavity lifetime �2�3�−1 at the pump
frequency. Inside the cavity, the nonlinear crystal down-
converts a pump photon into two photons of frequency �.
Hamiltonian for the system can be written as

Ĥ =
1

2
i��â†2â3 − â2â3

†� + i��3��â3
† − â3� + Ĥloss, �1�

where � is the mode coupling constant, which can be ex-
pressed in terms of the second-order nonlinear susceptibility
of the crystal and certain integrals over mode functions, â3
and â3

† are the annihilation and creation operators for the
pump mode, â and â† are annihilation and creation operators

for the subharmonic �down-converted� mode, and Ĥloss de-
scribes mode losses due to scattering, absorption, mirror
transmission, and other mechanisms. If the cavity lifetime
�2�3�−1 at pump frequency is short compared to the cavity
lifetime �2��−1 at subharmonic frequency ��3���, the pump
mode â3 can be adiabatically eliminated. Then the density
matrix �̂ for the subharmonic field can be expressed in terms
of the phase-space density P in the positive-P representation
as �22�

�̂ =� �
D

d2�d2��

�������
������

P��,��� , �2�

where D is a suitably chosen domain in the four-dimensional
phase space spanned by the complex variables � and �� such
that P�� ,��� is real, positive, and normalized to unity. Com-
plex variables � and �� are associated with the operators â
and â† via â���=���� and ����â†=������. In the positive-P
representation, � and �� are not complex conjugates of each
other. The positive-P distribution satisfies the Fokker-Planck
equation �13,14�

�P��,���
�	

=−
�

��
	− � +

1

no
�
 − �2���
P��,���

+
1

2no

�2

��2
�
 − �2P��,��� −

�

���

	− ��

+
1

no
�
 − ��

2��
P��,��� +
1

2no

�2

���
2
�
 − ��

2P��,��� . �3�

Here, 	=�t is dimensionless time �cavity lifetime being
�2��−1�, 
=2�3� /� is scaled pump field amplitude, and no
=2��3 /�2 is a number, which will be seen to be of the order
of the square of the mean number of photons in the cavity at
threshold. Threshold of the DPO is defined by 
 /no��� /�
=1. Note that the ratio �� /� is essentially the ratio of linear
gain to loss at the subharmonic frequency.

The form of the diffusion terms in the Fokker-Planck
equation suggests that if � and �� are real initially, they

remain so for all times. Since the DPO starts out in the
vacuum state initially, which satisfies this criterion, the sys-
tem dynamics is confined to the subspaces �=x1 and ��

=x2, where x1 and x2 are real variables. In this manifold, the
steady-state positive-P distribution function can be written as
�13,14�

P�x1,x2� = const��
 − x1
2��
 − x2

2��no−1exp�2x1x2� �4�

where �x1�, �x2���
. From this positive-P function, we can
calculate the steady-state fluctuation properties of the DPO.
In particular, the normally ordered operator averages can be
computed according to the correspondence

�: â†mân:� →� � dx1dx2x2
mx1

nP�x1,x2� . �5�

The distribution in Eq. �4� can be simplified by noting that
the parameter no is a large number of the order of 
106–108

for most laboratory systems. This means the distribution
P�x1 ,x2� is essentially zero well before the boundary
�x1� , �x2�
�
 is reached. In this case, it is more convenient to
introduce scaled variables

u1 = � no

8
2�1/4
�x1 + x2� and u2 = � no

8
2�1/4
�x1 − x2� . �6�

These variables may be thought of as scaled pseudoquadra-
ture variables. In terms of these variables, the steady-state
distribution can be written to an excellent approximation as

P�u1,u2� 

1

N
exp	a1u1

2 + a2u2
2 −

1

2
�u1

4 + u2
4 + 6u1

2u2
2�
 , �7�

where N is a normalization constant and a1 and a2 are di-
mensionless parameters given by

a1 = �
/no − 1��2no = ���/� − 1��2no, �8�

a2 = − �
/no + 1��2no = − ���/� + 1��2no. �9�

These parameters depend on the ratio of gain to loss �� /�
and are analogous to the pump parameter of the conventional
single-mode laser theory �16�. Using the normalization con-
dition ��−�

� P�u1 ,u2�du1du2=1, we find that the normaliza-
tion constant N is given by

N = ���
0

�

ds s−1/2 exp	a1s −
1

2
s2 +

1

4
�3s + �a2��2


�D−1/2�3s + �a2�� , �10�

where D��z� is parabolic cylinder function of order � and
argument z given by �33�

D��z� =
exp�− z2/4�

��− �� �
0

�

dt t−�−1 exp�− � 1
2 t2 + zt��, � 
 0

�11�

and ��x� is Gamma function of argument x. We will find the
following limiting forms of D��z� for real z useful for the
discussion in the paper:
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D��z� = �e−�1/4�z2
z�	1 −

��� − 1�
2z2 + ¯
 , z � 0, �z� � 1, ���

e�1/4�z2�2�

�z��+1��− ��	1 +
�� + 1��� + 2�

2z2 + ¯
 , z 
 0, �z� � 1, ��� .� �12�

The steady-state distribution �7� is an even function of both
u1 and u2 as it depends only on u1

2 and u2
2. This means only

the averages involving even powers of u1 and u2 will give
nonzero results. The steady-state distribution P�u1 ,u2� is
similar to the distribution for two strongly coupled laser
modes with pump parameters a1 and a2, provided u1

2 and u2
2

are treated as mode intensities �34,35�. This observation
serves as a useful guide to the approximations that can be
used to obtain simple expressions for various physically ob-
servable quantities.

A. Field quadrature squeezing

From the steady-state distribution, we can compute nor-
mally ordered averages of physical quantities once they are
expressed in terms of u1 and u2. Thus normally ordered vari-

ances of field quadratures X̂��â+ â†� /2 and P̂��â− â†� /2i
will be given by

�:��X̂�2:� =� 
2

2no
�u1

2� , �13�

�:��P̂�2:� = −� 
2

2no
�u2

2� , �14�

where the quadrature fluctuations �X̂� X̂− �X̂�, �P̂� P̂

− �X̂� and we have used the fact that the average values of
both quadrature amplitudes vanish in the steady-state since
�u1�=0= �u2�. From these equations, we immediately see that

the normally ordered variance of X̂ is positive whereas that

of P̂ is negative. For classical fields, these variances are al-
ways positive. Negative value of normally ordered variance

of quadrature P̂ implies squeezing of its fluctuations indicat-
ing their nonclassical character. It is clear that u1 corresponds
to unsqueezed field quadrature and u2 corresponds to
squeezed field quadrature.

Averages such as Eqs. �13� and �14� can be calculated
from the joint distribution P�u1 ,u2� directly or from the dis-
tributions P1�u1� and P2�u2�, which are obtained by integrat-
ing the joint distribution P�u1 ,u2� with respect to u2 and u1,
respectively. This leads to the following expressions for
P1�u1� and P2�u2� which are valid throughout the threshold
region:

P1�u1� =
��

N
exp�a1u1

2 − u1
4/2�exp��3u1

2 − a2�2/4�

�D−1/2�3u1
2 − a2� , �15�

P2�u2� =
��

N
exp�a2u2

2 − u2
4/2�exp��3u2

2 − a1�2/4�

�D−1/2�3u2
2 − a1� . �16�

These can be simplified further by noting the following.
From the definition �8� of pump parameter a1, we see that it
changes from negative below threshold to positive above
threshold and vanishes at threshold �� /�=1. Therefore, the
distribution for u1 is centered at zero below threshold and at
u1
 ��a1 above threshold. In contrast, the parameter a2 de-
fined by Eq. �9� is always a large negative number and its
magnitude increases as a1 increases from below to above
threshold. Indeed, near threshold �� /�
1, this parameter
a2
−�8no, which for a typical value no
106 gives �a2�

3�103�1. Thus the argument 3u1

2−a2=3u1
2+ �a2� of para-

bolic cylinder function in Eq. �15� is a large positive number
for all values of u1. In light of these observations, we can use
the asymptotic form �12� of D−1/2 for large positive argu-
ments and write the distribution for u1 as

P1�u1� =
1

��

exp�− 1
4a1

2�
D−1/2�− a1�

exp�a1u1
2 − 1

2u1
4� . �17�

This expression holds in the threshold region from below to
above threshold. Similar considerations for P2�u2� show that,
since a2 is a large negative number, the distribution for u2
remains centered at zero. Its width, however, depends on a1.
This is because the parabolic cylinder function has different
asymptotic limits for large positive and large negative values
of its argument 3u2

2−a1, which can take large positive values
below threshold �a1
0� and large negative values above
threshold �a1�0�. Using the asymptotic form for D� far be-
low and above threshold, we find that P2�u2� can be written
as

P2�u2� =� 1

2��u2
2�

exp�− u2
2/2�u2

2�� �18�

�u2
2� = �

1

2�a2�
, below threshold �a1 
 0�

1

2�3a1 + �a2��
, above threshold �a1 � 0� .�

�19�

With the help of distributions �17� and �18�, we find that the
moments of u1 and u2 are given by

�u1
2n� = �2n − 1� ! !

D−�n+1/2��− a1�

2nD−1/2�− a1�
, �u1

2n+1� = 0, �20�
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�u2
2n� = �2n − 1� ! ! �u2

2�n, �u2
2n+1� = 0. �21�

Using these results in Eqs. �13� and �14�, we can express the
normally ordered quadrature variances as

�:��X̂�2:� =� 
2

2no

D−3/2�− a1�
2D−1/2�− a1�

, �22�

�:��P̂�2:� = −� 
2

2no
�u2

2� . �23�

As a quick check, far below threshold �a1
0, �a1��1�,
these expressions reduce to

�:��X̂�2:� →� 
2

2no

1

2�a1�
=

1

4
� ��/�

1 − ��/�� , �24�

�:��P̂�2:� → −� 
2

2no

1

2�a2�
= −

1

4
� ��/�

1 + ��/�� , �25�

which agree with the expressions for below threshold opera-
tion �36�. From Eq. �25�, we see that maximum squeezing of

quadrature P̂ occurs near threshold �a1=0 or 
 /no=�� /�
=1�. A more accurate evaluation of quadrature squeezing us-
ing Eq. �7�, which can be expressed in closed form, yields a
minimum slightly above threshold, the correction being of
order 1 / �a2�. Note that Eqs. �24� and �25� were derived by
assuming a1 and a2 to be large negative numbers. This means
Eq. �25� remains valid even near threshold, whereas Eq. �24�
breaks down near threshold. This is because a2 is always a
large negative number whereas a1 is a large negative number
only far below threshold but vanishes as threshold is ap-
proached. Near threshold �a1
0 or 
 /no=�� /�
1�, we can
use the behavior of parabolic cylinder function for small ar-
guments in Eq. �22� to arrive at the following expression for
the variance of the unsqueezed quadrature:

�:��X̂�2:�






no

�no
��3/4�
��1/4��1 + a1

��1/4�
2�2��3/4�

	1 − 4���3/4�
��1/4��2
�

=



no

�no0.338�1 + 0.568a1� . �26�

This expression shows that while the fluctuations of un-
squeezed quadrature continue to increase in passing the
threshold, they stay finite being of order �no /3 near thresh-
old. Figures 1�a� and 2�b� show the variation of normally
ordered quadrature variances near threshold as functions of
pump parameter a1 which is in agreement with these conclu-
sions.

High above threshold a1�1, we find

�:��X̂�2:� →� 
2

2no
a1, �27�

�:��P̂�2:� → −� 
2

2no

1

2�3a1 + �a2��
= −

1

8
� ��/�

2���/�� − 1
� .

�28�

From Eq. �28�, we see that with increasing pump parameter

a1, squeezing of P̂-quadrature fluctuations decreases reach-

ing the limit �:��P̂�2:�→− 1
16 for a1�1 �
 /no=�� /��1�.
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FIG. 1. ��a� and �b�� Variation of normally ordered quadrature

variances �:��X̂�2:� and �:��P̂�2:� and ��c� and �d�� normalized
quadrature variances fX and fP with pump parameter a1 near thresh-
old for no=106. Solid and dashed curves are obtained by using Eqs.
�15� and �16� and Eqs. �17� and �18�, respectively. For �a�, �c�, and
�d�, solid and dashed curves are indistinguishable. Negative values

of �:��X̂�2:� or �:��P̂�2:� or values of fX and fP outside the range
0
 fX , fP
1 are signatures of nonclassical fields.
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FIG. 2. Variation of mean photon number as a function of pump
parameter a1 for n0=106. For comparison, the �dashed� curve shows
the mean photon number for the single-mode laser.
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This limit is approached very slowly and lies outside the
pump parameter range covered by Fig. 1.

Nonclassical nature of quadrature fluctuations can also be
characterized in terms of normalized variances fX

= �:��X̂�2:� / �:�â†�â:� and fP= �:��P̂�2:� / �:�â†�â:�, which
for a classical fields are constrained by the inequalities �28�

0 � fX, fP � 1. �29�

This means fX and fP are bounded by 0 and 1. By expressing
the normalized fluctuations fX and fP in terms of u1 and u2 as

fX =
�u1

2�
�u1

2� − �u2
2�

, fP = −
�u2

2�
�u1

2� − �u2
2�

�30�

and using Eqs. �22� and �23�, we see that for the degenerate
parametric oscillator fX�1 and fP
0. Variation of fX and fY
with pump parameter a1 is shown in Fig. 1. We see that fX
stays above the classical limit 1 for all pump parameter val-
ues and approaches it from above as the pump parameter
increases high above threshold. Normalized fluctuations fP
of squeezed quadrature, on the other hand, are always nega-
tive, implying nonclassical nature of these fluctuations. Thus
normalized fluctuations of both quadratures violate classical
bounds. Characterization of quadrature fluctuations in terms
of fX and fP brings out the nonclassical character of not only
squeezed quadrature fluctuations but also unsqueezed
quadrature fluctuations.

B. Photon number fluctuations

Other quantities of practical interest are the mean photon
number �n̂� and normalized second moment g�2��0� of photon
number operator. The latter is related to the normally ordered
relative variance of photon number by �:��n̂�2:� / �n̂�2

=g�0��0�−1, where �n̂= n̂− �n̂� represents the deviation of
photon number from its mean. The mean and normalized
second moment of photon number operator can be expressed
in terms of moments of u1 and u2 as

�n̂� � �â†â� → �x2x1� =� 
2

2no
�u1

2 − u2
2� , �31�

g�2��0� �
�: n̂2:�
�n̂�2 →

�x2
2x1

2�
�x2x1�2 =

��u1
2 − u2

2�2�
�u1

2 − u2
2�2 . �32�

With the help of Eqs. �20� and �21�, the moments of u1 and
u2 needed in these equations can be evaluated as

�u1
2 − u2

2� = 	 D−3/2�a1�
2D−1/2�a1�

− �u2
2�
 , �33�

��u1
2 − u2

2�2� = 	3D−5/2�− a1�
4D−1/2�− a1�

−
D−3/2�− a1�

2D−1/2�− a1�
�u2

2� + 3�u2
2�2
 .

�34�

Below threshold, for large negative pump parameter values,
say, a1
−10, we can use the asymptotic form �12� of para-
bolic cylinder function and arrive at the following expres-
sions:

�n̂� →� 
2

2no
	 1

2�a1�
−

1

2�a2�
 , �35�

g�2��0� → 3 +
1

2�n̂�
. �36�

Above threshold for large pump parameters, say, a1�10, we
find

�n̂� →� 
2

2no
	a1 −

1

2a1
−

1

2�3a1 + �a2��
 , �37�

g�2��0� → 1 +
1

a1
2 +

1

2a1�3a1 + �a2��
. �38�

At threshold a1=0 ��� /�=1�, we arrive at the following re-
sults:

�n̂�th → �no
��3/4�
��1/4�


 0.338�no, �39�

gth
�2��0� →

1

4
	��1/4�

��3/4�
2


 2.188, �40�

where we have used the fact that �� /�=1 at threshold in Eq.
�39�. Thus the mean photon number at threshold is of the
order of �no and normalized photon number variance is
gth

�2��0�−1=1.188. The latter, being independent of scale fac-
tors, can be used to identify the threshold of oscillation.

Figure 2 shows the variation of mean photon number
�n̂� / �n̂�th as a function of pump parameter a1. The mean pho-
ton number grows monotonically as the pump parameter a1
increases. The growth, which is slow below threshold,
speeds up as threshold is approached becoming linear above
threshold as a1 increases. Note that the mean photon number
at threshold is 
�no /3 �see Eq. �39��. Hence the parameter
no can be interpreted as the square of mean photon number in
the DPO at threshold. For comparison, the dashed curve
shows the variation of photon number with pump parameter
for a single-mode laser.

Figure 3�a� shows the variation of relative photon number
fluctuations as a function of a1. From Eq. �36�, we see that
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FIG. 3. Variation of normalized second-, third-, and fourth-order
moments of photon number fluctuations with pump parameter a1

for n0=106. Dashed curve in �a� shows g�2��0�−1 for the single-
mode laser.
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below threshold �a1
0�, the photon number variance
g�2��0�−1��:��n̂�2:� / �n̂�2→2+1 /2n̄ compared to g�2��0�
−1→1 for thermal light or for a laser operating below
threshold. Thus below threshold, the light from the DPO is
more bunched than the light from a thermal source or from a
laser operating below threshold. Even at threshold, the DPO
with g�2��0�−1=1.188 is noisier than a laser with g�2��0�−1
=0.57. Once above threshold, the photon number fluctua-
tions in a DPO decrease rapidly as g�2��0�−1�1 /a1

2. Figure
3�b� shows the variation of normalized third- and fourth-
order moments of photon number fluctuations: �3
��:��n̂�3:� / ��n̂�3 and �4��:��n̂�4:� / �n̂�4. The quantity �3
measures the skewness �lack of symmetry� of the distribution
about the mean; a negative value of �3 implies the distribu-
tion is skewed toward smaller �than the mean� values and a
positive value implies skewness toward larger values. The
quantity �4 is a measure of kurtosis �the peakedness� of the
distribution; large values of �4 ��4�3� indicate a flatter dis-
tribution �compared to a Poisson distribution� and smaller
values indicate a more peaked distribution. These moments
rapidly decrease from their superthermal values below
threshold to zero above threshold as the DPO crosses its
threshold. As in the case of a laser, the changes described
here take place over a pump parameter range given approxi-
mately by �a1�
10. This corresponds to 
 /no differing from
its threshold value 
 /no=1 by a very small amount �
 /no

−1��10 /�2no �see Eq. �8��, which for no=106 amounts to
�
 /no−1��7�10−3. It is clear that although the overall be-
havior of the DPO in crossing the threshold is similar to that
of a single-mode laser, there are important differences. Thus
the DPO, in general, is noisier than a single-mode laser.
Large relative photon number fluctuations of the DPO below
and near threshold are due to the fact that in this regime of
operation, the DPO cavity has no photons most of the time,
but each time a pump photon is down converted to a pair of
photons, the photon number in the DPO cavity surges for
short periods �of the order of cavity lifetime� resulting in a
small mean but large photon number fluctuations. This is
also reflected in the form of the cavity photon number dis-
tribution pn below threshold, which has a single peak at n
=0 and a tail extending to large photon numbers. As the DPO
crosses the threshold, the photon number distribution evolves
into a distribution with a single peak at a nonzero value of n
�corresponding to nonzero amplitude of oscillation� high
above threshold. However, this transformation of the photon
number distribution for the DPO follows a path different
from that for a laser. To see this, we consider the photon
number distribution itself.

C. Photon number distribution

The probability that the DPO cavity contains n photons is
given by pn= �n��̂�n�. Using Eqs. �2� and �4�, we can write

pn =� �
−�

�

dx1dx2
�x1x2�n

n!
exp�− x1x2�P�x1,x2� . �41�

Substituting the distribution P�x1 ,x2� given in Eq. �4� and
carrying out the integration, we obtain pn,

p2n =
1

N

�
�2n

�2n�! �
m=0

�
�
�2m

�2m�!	 ��m + n + 1/2�
��m + n + no + 1/2�
2

, �42�

p2n+1 =
1

N

�
�2n+1

�2n + 1�! �
m=0

�
�
�2m+1

�2m + 1�!	 ��m + n + 3/2�
��m + n + no + 3/2�
2

,

�43�

where the normalization constant N is given by

N = �
m=0

�
�2
�2m

�2m�! 	 ��m + 1/2�
��m + no + 1/2�
2

. �44�

Another expression for pn, which is more suitable for near
threshold operation, can be derived as follows. Near thresh-
old, we can express x1 and x2 in terms of new variables u1
and u2 �Eqs. �6�� and write

pn =
4

n!
�

0

�

du1�
0

�

du2	 


�2no

�u1
2 − u2

2�
n

�exp	−



�2no

�u1
2 − u2

2�
P�u1,u2� . �45�

Using the near threshold expression �7� for P�u1 ,u2�, we find
that pn can be written as

pn = �
r=0

n

f1�r�f2�n − r� , �46�

where

f1�r� =
�a1 − a2�r

r ! 22r

��r + 1/2�D�−�r+1/2�����a2� − 3a1�/4�

��1/2�D�−1/2��− a1�

�exp���a1 + �a2����a2� − 7a1�/64�� , �47�

f2�r� =
�− 1�r�2r − 1� ! !

2r�r�!
� 4�a2�

3�a2� − a1
	 a1 + �a2�

3�a2� − a1

r

.

�48�

Figure 4 shows pn as a function of n below, at, slightly
above, and much above threshold. Below, threshold pn has a
sharp peak at n=0 and a long tail reflecting large photon
number fluctuations. In passing the threshold a1=0, photon
number distribution pn develops into a bimodal distribution;
in addition to the peak at n=0, a broad maximum centered at
a nonzero value of n begins to emerge. With further increase
in the pump parameter, the peak at n=0 is suppressed rapidly
while the broad maximum sharpens into a Gaussian centered
at increasingly larger values of photon number n. In addition,
pn displays a peculiar steplike behavior �see Fig. 5�, which is
particularly prominent for small values of n throughout the
region of threshold. In contrast to this, the photon number
distribution for the single-mode laser oscillator has a single
peak throughout the threshold region and in passing the
threshold the peak at n=0 below threshold evolves smoothly
into a peak at a nonzero value of n above threshold �16,17�.
The DPO does ultimately reach a state where the relative
photon number fluctuations go to zero as is the case for a
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single-mode laser above threshold. However, the phase prop-
erties of the light from the DPO continue to carry the signa-
tures of its quantum nature which manifests itself in field
quadrature squeezing. In this sense, the state of the DPO
continues to be distinct from that of a laser oscillator even
high above threshold.

We can also calculate the photon counting distribution
p�m ,T�, the probability of detecting m photons in time T by
a detector placed outside the cavity. We note that the operator
for the photon flux leaving the DPO cavity, in the positive-P

representation, is Î�2�n̂→2�x1x2, where 2� is the photon
number decay rate from the cavity and n̂ is the photon num-
ber operator. For short counting interval T such that 2�T
�1, the time integrated flux for a detector of quantum effi-
ciency � can be approximated as ��t

t+Tdt2�x1x2

�2�Tx1x2. Then the photon counting distribution p�m ,T�
can be written as

P�m,T� =
4

m!
�

0

�

du1�
0

�

du2	 �


�2no

�u1
2 − u2

2�
n

�exp	−
�


�2no

�u1
2 − u2

2�
P�u1,u2� , �49�

where �=�2�T. A comparison of this equation to Eq. �44�
shows that it can be obtained form Eq. �44� with the replace-
ment 
→�
. We can then derive expressions such as Eqs.
�45�–�47� for P�m ,T�. The behavior of P�m ,T� for arbitrary
time interval T below threshold was discussed in great detail
in Ref. �13� and will not be pursued further here.

III. NONDEGENERATE PARAMETRIC OSCILLATOR

In a nondegenerate parametric oscillator, a nonlinear crys-
tal placed inside an optical cavity down converts a photon in
pump mode â3 into one photon each in two nondegenerate
modes â1 and â2 also referred to as signal and idler modes.
Hamiltonian for this system can be written as

Ĥ = i���â1
†â2

†â3 − â1â2â3
†� + i��3��â3

† − â3� + Ĥloss,

�50�

where � is the mode-coupling constant which can be ex-

pressed in terms of nonlinear crystal parameters and Ĥloss
describes mode losses. Mode â3 is excited by a classical
pump field of frequency �3 and dimensionless amplitude �,
such that ���2 gives the number of pump photons incident on
the cavity in one lifetime of the cavity �2�3�−1. If the cavity
lifetime ��2�3�−1� at pump frequency is short compared to
the cavity lifetime ��2��−1� at down-converted frequencies so
that ��3���, a typical situation, we can eliminate the pump
mode â3 adiabatically. Then, if �̂ represents the density ma-
trix for the subharmonic fields, we can introduce the corre-
sponding phase-space density P in the positive-P represen-
tation by �22�

�̂ =� �
D

d2�1d2�1�d2�2d2�2�

��1���2���1����2��
��1���1���2���2�

P��� � ,

�51�

where D is a suitably chosen domain in the eight-
dimensional phase space spanned by the complex variables
�1, �2, �1�, and �2� and P��� ��P��1 ,�2 ,�1� ,�2�� is real,
positive, and normalized to unity. Complex variables �i and
�i� are associated with the operators âi and âi

† by âi��i�
=�i��i� and ��i��âi

†=�i���i��. As already noted in the discus-
sion of the DPO, in the positive-P representation, �i and �i�
are not complex conjugates of each other. Using the density
matrix in Eq. �51� in terms of positive-P function, the equa-
tion of motion for the density matrix leads to the following
Fokker-Planck equation �18,23,24�

0

0.05

0.1

0.15

0.2

0 5 10 15 20

σ/no=0.99

n

p
n

0 800 1600 2400

n

p
n

σ/n
o
=1.001

10
-4

10
-3

10
-2

(a)

(c)

10
-4

10
-3

10
-2

10
-1

0 100 200 300 400 500 600
p
n

n

σ/n
o
=1.00

0 2000 4000 6000 8000

1
0
4
p
n

n

0

2

4

6 σ/n
o
= 1.004

(b)

(d)

FIG. 4. DPO photon number distribution pn for n0=106 and
several different operating points near threshold: �a� 
 /no=0.99, �b�

 /no=1.00, �c� 
 /no=1.001, and �d� 
 /no=1.004. The distribu-
tions, although plotted as continuous curves, are meaningful only
for integer values of n.
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FIG. 5. Steplike behavior of photon number distribution pn for
the DPO near threshold for n0=106 and 
 /no=1.002. �b� shows the
peak near n=0 in detail. The distributions are meaningful for only
integer values of n.
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�P��� �
�	

= −
�

��1
	− �1 +




no
�2� −

2

no
�2��1�2
P��� �

+
1

no

�2

��1 � �2
�
 − 2�1�2�P��� �

−
�

��2
	− �2 +




no
�1� −

2

no
�1��1�2
P��� �

−
�

��1�

	− �1� +



no
�2 −

2

no
�1��2��2
P��� �

+
1

no

�2

��1� � �2�

�
 − 2�1��2��P��� �

−
�

��2�

	− �2� +



no
�1 −

2

no
�1��2��1
P��� � .

�52�

Here, 	 is time measured in units of �−1, 
=2�3� /� is a
dimensionless measure of pump field amplitude, and param-
eter no=2��3 /�2 is proportional to the square of the number
of photons in the NDPO at threshold. The threshold condi-
tion is given, as before, by 
 /no��� /�=1.

These equations describe evolution of P��� � in an eight-
dimensional phase space. However, a close inspection of this
equation shows that a trajectory starting initially in the four-
dimensional subspace �2=�1�, �2�= ��1��� remains confined
to this subspace �23,25�. Since the initial state, the vacuum
state, lies in this four-dimensional subspace, we can restrict
our discussion to this subspace. This conclusion also follows

from the observation that in terms of operators b̂1= �â1

+ â2� /�2 and b̂2=−i�â1− â2� /�2, the Hamiltonian of Eq. �50�
can be transformed into a Hamiltonian for two independent
degenerate parametric oscillators with annihilation operators

b̂1 and b̂2,

Ĥ =
i

2
����b̂1

†2â3 − b̂1
2â3

†� + �b̂2
†2â3 − b̂2

2â3
†�� + i��3��â3

† − â3�

+ Ĥloss. �53�

Then by introducing the real variables

x1 = ��1 + �2�/�2, x2 = − i��1 − �2�/�2, �54�

x3 = ��1� + �2��/�2, x4 = i��1� − �2��/�2, �55�

the Fokker-Planck equation for the probability distribution
p� p�x�� with x� ��x1 ,x2 ,x3 ,x4� can be written as

�p

�t
= −

�

�x1
	− x1 +

x3

no
�
 − �x1

2 + x2
2��
p

+
1

2no

�2

�x1
2 ��
 − �x1

2 + x2
2��p�

−
�

�x2
	− x2 +

x4

no
�
 − �x1

2 + x2
2��
p

+
1

2no

�2

�x2
2 ��
 − �x1

2 + x2
2��p�

−
�

�x3
	− x3 +

x1

no
�
 − �x3

2 + x4
2��
p

+
1

2no

�2

�x3
2 ��
 − �x3

2 + x4
2��p�

−
�

�x4
	− x4 +

x2

no
�
 − �x3

2 + x4
2��
p

+
1

2no

�2

�x4
2 ��
 − �x3

2 + x4
2��p� . �56�

The steady-state solution of this Fokker-Planck equation is
found to be �18�

p�x�� = const��
 − �x1
2 + x2

2���
 − �x3
2 + x4

2���no−1

�exp�2x1x3 + 2x2x4� , �57�

where �x1
2+x2

2�, �x3
2+x4

2�

. Once again using the fact that
the parameter no
106–108 is very large, we can introduce
scaled pseudoquadrature variables

u1 = � no

8
2�1/4
�x1 + x3�, u2 = � no

8
2�1/4
�x1 − x3� , �58�

u3 = � no

8
2�1/4
�x2 + x4�, u4 = � no

8
2�1/4
�x2 − x4� �59�

and write the steady-state distribution to an excellent ap-
proximation as

P�u�� 

1

N
exp�a1�u1

2 + u3
2� + a2�u2

2 + u4
2� − 1/2��u1

2 + u2
2 + u3

2

+ u4
2�2 + 4�u1

2 + u3
2��u2

2 + u4
2��� , �60�

where the pump parameters a1 and a2 are given by

a1 = �2no�
/no − 1� = �2no���/� − 1� , �61�

a2 = − �2no�
/no + 1� = − �2no���/� + 1� . �62�

The normalization constant N, determined by the condition
�P�u��du� =1, is given by

N = �2��

2
exp�a1

2/2��
0

�

ds exp	−
1

2
�s − a1�2

+
1

2
�3s + �a2��2
erfc�3s + �a2�

�2
� , �63�

where erfc�z� is the complement of error function given by

erfc�z� =
2

��
�

z

�

dte−t2 = 1 − erf�z� . �64�

for large values of its argument, this function has the
asymptotic forms
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erfc�z� =�
exp�− z2�

��z
	1 −

1

2z2 +
3

4z4 − ¯
 , z → �

2 −
exp�− z2�

���z�
	1 −

1

2z2 +
3

4z4 − ¯
 , z → − � .�
�65�

The form of the distribution function P�u�� in Eq. �60� is
similar to the joint probability distribution for two-mode la-
sers �16,17� if we identify pseudoquadrature variables with
real field amplitudes in two-mode lasers. It describes oscil-
lators u1 and u3 with pump parameter a1 and oscillators u2
and u4 with pump parameter a2. The variables u1 and u3
represents unsqueezed quadratures and variables u2 and u4
correspond to squeezed quadratures.

Pump parameter a2 is always a large negative number,
its magnitude always being larger than �2no�1. This
means that u2 and u4 always remain below threshold and
their distributions are centered at zero and have narrow width
�
1 / �a2��. Pump parameter a1 determines the operating point
for the oscillators u1 and u3 and therefore the operating point
of the NDPO. The threshold of oscillation for the NDPO is
a1=0 or �� /�=1. Pump parameter a1 is negative below and
positive above threshold. Depending on the pump parameter
a1, we can further simplify the distribution function.

Below threshold 
 /no=�� /�
1 where both a1 and a2
are large negative quantities, we can approximate the
positive-P distribution by

P�u�� 

�a1��a2�

�2 exp�− �a1��u1
2 + u3

2� − �a2��u2
2 + u4

2�� . �66�

Thus below threshold, the P distribution can be expressed as
the product of four independent Gaussian distributions with
zero mean. Moments of ui �i=1,2 ,3 ,4� can be expressed in
terms of their variances as

�ui
2n+1� = 0,

�ui
2n� = �2n − 1� ! ! � 1

2�ai�
�n

, �67�

where n is an integer and a3=a1 and a4=a2. Complete pho-
ton statistics, including photoelectron counting distribution,
intensity correlations, and waiting time distribution, in this
limit, have been discussed already �25�.

Near threshold a1
0���
��, parameter a2
−�8no is
still a large negative number. This means u2 and u4 continue
to behave as independent Gaussian random variables with
zero mean and their distributions are dominated by their
small values. On the other hand, as a1 changes from below to
above threshold, u1 and u3 are no longer Gaussian. In this
range, the steady-state distribution P�u�� given in Eq. �60� can
be approximated by

P̃�u�� 
 � �a2�
�
�exp�− �a2��u2

2 + u4
2��

�� 1

Q
exp	a1�u1

2 + u3
2� − 1

2 �u1
2 + u3

2�2
� , �68�

where the normalization constant Q is given by

Q =� �
−�

�

du1du3 exp�a1�u1
2 + u3

2� − 1
2 �u1

2 + u3
2�2�

= �3/2 exp� 1
2a1

2� erfc�− a1/�2� . �69�

The distribution in Eq. �68� indicates that u2 and u4 behave
as statistically independent Gaussian random variables
whereas u1 and u3 are non-Gaussian, strongly coupled, and
statistically correlated random variables. Since the distribu-
tion depends only on u1

2 and u3
2, it is an even function of u1

and u3. Hence the odd-order moments of u1 and u3 vanish:
�u1

2n+1�=0= �u3
2n+1�. Furthermore, since u1 and u3 occur on

equal footing in the distribution, their nonzero moments are
equal: �u1

2n�= �u3
2n�. Normalization constant Q treated as a

function of a1 also serves as a moment generating function as
in the case of two-mode lasers �16,17�. Thus moments of u1

2

and u3
2 can be calculated from
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FIG. 6. Mean photon number in either mode of the NDPO as a
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��u1
2 + u3

2�n� =� �
−�

�

du1du3�u1
2 + u3

2�n

�exp�a�u1
2 + u3

2� − 1
2 �u1

2 + u3
2�2�

=
�n ln Q

�a1
n , �70�

�u1
2n� = �u3

2n� . �71�

As an example, using Eqs. �69�–�71� we obtain, for n=1,

�u1
2� = �u3

2� =
1

2
	a1 +� 2

�

exp�− a1
2/2�

erfc�− a1/�2�

 . �72�

A. Photon number fluctuations

The steady-state distribution P̃�u�� given in Eq. �68� has a
simple form and allows us to derive analytical expressions
for the photon statistics and compare them to the results
obtained from the distribution P�u�� given in Eq. �60�. We
find that the results obtained from both Eqs. �68� and �60� are
in excellent agreement with the results obtained from the
exact distribution p�x�� given in Eq. �57� for no larger than
104.

The mean photon number �n̂i�= ��i��i� for the ith mode,
calculated by using the distribution �68�, is given by

�n̂1� =� 
2

2no
��u1

2� − �u2
2��

=� 
2

8no
	a1 +� 2

�

exp�− a1
2/2�

erfc�− a1/�2�
−

1

�a2�
 �73�

and normally ordered variance of n̂1 is given by

�:��n̂1�2:� = ���1��1�2� − ��1��1�2 =

2

8no
���u1

2 + u3
2�2� + ��u2

2

+ u4
2�2� − 4�u1

2 + u3
2��u2

2 + u4
2� − 4�u1

2 − u2
2�2�

=

2

8no
	1 +

1

�a2�2
− �a1 +� 2

�

exp�− a1
2/2�

erfc�− a1/�2�
�

�
2

�a2�
+� 2

�

exp�− a1
2/2�

erfc�− a1/�2�
�
 . �74�

For comparison, the mean and normally ordered variance
calculated by using the distribution of Eq. �60� is �18�

�n̂1� =� 
2

8no
	a1 − a2 +

1

N��

2
�exp�a1

2/2� erfc�− a1/�2�

− exp�a2
2/2� erfc�− a2/�2��
 , �75�

�:��n̂1�2:� =

2

4no
	 ��u1

2�
�a1

+
��u2

2�
�a2

− 4
��u2

2�
�a1

− 4�u1
2��u2

2�
 ,

=

2

64no
	− 14 + �10a2 − 14a1��u1

2�

+ �10a1 − 14a2��u2
2� − 32��u1

2� − �u2
2��2

+
5

N�2 +��

2
a1

�exp�a1
2/2� erfc�− a1/�2� +��

2
a2

�exp�a2
2/2� erfc�− a2/�2��
 , �76�
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FIG. 8. �a� Variation of normally ordered variance of photon
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moments D2r for different values of r. Negative value of moments
indicates nonclassical behavior.

FIG. 9. Joint photon number distribution p�n1 ,n2� for the NDPO
�a� below, �b� at, and �c� above threshold for no=105.
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where the normalization constant N is given by Eq. �63� and

�u1
2� =

1

16	− �a1 − 3a2� +
1

N��

2
�3 exp�a1

2/2� erfc�−
a1

�2
�

− exp�a2
2/2� erfc�−

a2

�2
��
 , �77�

�u2
2� =

1

16	− �a2 − 3a1� +
1

N��

2
�3 exp�a2

2/2� erfc�−
a2

�2
�

− exp�a1
2/2� erfc�−

a1

�2
��
 . �78�

Equations �75� and �76� reduce, respectively, to Eqs. �73� and

�74� when we use the fact that a2 is a large negative number.
Figure 6 shows the mean photon number calculated from

Eqs. �73� and �75� as a function of pump parameter a1 for
no=105. We find that even for this somewhat smaller value of
no, the two curves are indistinguishable. The agreement is
expected to be even better for larger values of no. Below
threshold �a1
0�, the mean photon number is small, as ex-
pected, and increases slowly as a1 approaches the threshold.
As a1 passes the threshold, the mean increases rapidly and
grows linearly with pump parameter above threshold. This
behavior is similar to that for a single-mode laser �16�. Far
below threshold �a1
0� and far above threshold �a1�0�, the
expression for the mean leads to

�n̂1� →��

2

8no
	 1

�a1�
−

1

�a2�
 , below threshold ��a2� � �a1� � 5�

� 
2

8no
	a1 +

1
�2�

exp�− a1
2/2� −

1

�a2�
 , above threshold ��a2� � a1 � 5� . � �79�

Figure 7 shows the behavior of normalized variance
g�2��0�−1��:��n̂1�2:� / �n̂1�2 near threshold as a function of
mean photon number �n̂1� for no=105. Once again, the re-
sults obtained from the two distributions �60� and �68� are
indistinguishable in Fig. 7. For comparison, g�2��0�−1 for a
single-mode laser �16� is also shown �dashed curve� in the
same figure. For this comparison, we chose the saturation
photon number for the laser, which is analogous no, to be
such that the laser has the same mean photon number at

threshold as either of the NDPO modes. We see that below
threshold g�2��0�−1 for the NDPO is nearly unity indicating
that below threshold, fluctuations of light in each mode of
the NDPO are thermal. Much above threshold, g�2��0�−1 for
the NDPO decreases rapidly to zero indicating an approach
to a state with a relatively well-defined photon number.
These observations are in agreement with the expressions for
normalized variance obtained from Eqs. �73� and �74� below
threshold �a1
0� and above threshold �a1�0�,

g�2��0� − 1 → �1 −
8

�a1�� 1

�a1�
+

2

�a2�� , below threshold:��a2� � �a1� � 1�

1

a1
2 −

1

a1�a2�
, above threshold:��a2� � a1 � 1� . � �80�

It is interesting to note that the curve for the NDPO follows
the curve for a laser. This is in contrast to the behavior of the
DPO, which has superthermal fluctuations below threshold
and differs significantly from the curve for the laser even in
the threshold region.

From the discussion in the preceding two paragraphs, we
see that the threshold behavior of both modes of the NDPO
is similar to that of a laser; the quantum character of NDPO
light is not reflected in photon number variances of the
modes. However, the nonclassical nature of the light from
the NDPO is reflected in the variance and higher-order mo-
ments of photon number difference �PND� variable n̂1− n̂2

=�n̂. Using the distribution given by Eq. �68�, we find that
the normally ordered variance of the photon number differ-
ence is given by

�:��n̂�2:� 
 − no� 


no
�2 1

�a2�	a1 +� 2

�

exp�− a1
2/2�

erfc�− a1/�2�

 .

�81�

If we use the distribution �60�, we can express normally or-
dered variance of the photon number difference �n̂ as
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�:��n̂�2:� = −

2

no
	4�u1

2��u2
2� + 2

��u2
2�

�a1



=−

2

8no
	3 + 2�3a1 − a2��u1

2�

−
1

N�1 +��

2
a1 exp�a1

2/2�

�erfc�− a1/�2��
 . �82�

Once again, on utilizing the fact �a2��1, we find that Eq.
�82� reduces to Eq. �81�.

The most significant aspect of Eqs. �81� and �82� is that
the normally ordered variance of the photon number differ-
ence variable is a negative quantity reflecting nonclassical
behavior of the light from the NDPO �18,37�. This nonclas-
sical feature of the variance of difference variable survives
even in the semiclassical limit 
 /no�1, which corresponds
to the NDPO operating high above threshold.

Figure 8�a� shows a comparison of the variance �:��n̂�2:�
computed from Eq. �60� �solid curve� and Eq. �68� �dashed
curve� as a function of pump parameter a1 near threshold for
no=105. For these figures, a1 ranges approximately from −8
to 8 corresponding to �
 /no−1�
2%. Below threshold, the
variance of the difference variable is small and negative and
the two curves coincide. As the pump parameter increases
and the NDPO crosses threshold, the difference between the
two curves begins to show up. This is because with increas-
ing a1, the peak of the steady-state distribution begins to
explore larger values of u1 and u3 so that the contribution of
the terms that were dropped from Eq. �60� to arrive at Eq.
�68� begins to show up. These terms are particularly signifi-
cant for the moments of photon number difference variable.
We also find that these results are in agreement with the

�:��n̂�2:� obtained by using the exact distribution given in
Eq. �57�. It is interesting to note that near threshold, the
curve for normally ordered variance follows the mean �n̂1�
plotted in Fig. 6 except that it has opposite sign, which sug-
gests that �:��n̂�2:�
−�n̂1� near threshold.

Higher-order moments of �n̂� n̂1− n̂2 can be calculated
by using a method similar to that for two-mode lasers
�17,34,35� or using Eq. �91�. We find that even-order mo-
ments �:��n̂�2r:� are positive quantities for r=2,4 ,6 , . . . and
negative quantities for r=1,3 ,5 , . . .. Negative values of
�:��n̂�2r:� violate classical inequalities reflecting the quantum
nature of the NDPO light. These violations can be traced to
strong intermode photon number correlations relative to pho-
ton autocorrelations for the two modes. Relative size of these
violations can be characterized by introducing normalized
moments of �n̂,

D2r �
�:��n̂�2r:�
��:��n̂�2:��r

, r = 1,2,3, . . . . �83�

Figure 8�b� shows the variation of normalized moments for
2r=4,6 ,8 ,10 as functions of pump parameter a1 near
threshold. Above threshold, these moments approach the val-
ues �1. Recall that odd-order moments of n̂ vanish.

It is clear from this discussion that even though the two
modes of the NDPO behave individually like a single-mode
laser, the quantum nature of the NDPO light survives in vari-
ance and higher-order moments of photon number difference
variable even high above threshold. Similar comments hold
for squeezing, which is not present in either of the two

modes but the combination modes b̂1= �â1+ â2� /�2 and b̂1=
−i�â1− â2� /�2 retain it even in the semiclassical limit �18�.
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B. Joint photon number distribution

In view of the nonclassical character of the variable n̂
= n̂1− n̂2, another quantity of interest is the joint photon num-

ber distribution p�n1 ,n2� for the probability of n1 photons in
mode â1 and n2 photons in mode a2. This distribution is
given by

p�n1,n2� � �:
�â1

†â1�n1

n1!

�â2
†â2�n2

n2!
exp�− �â1

†â1 + â2
†â2��:�→ ���1��1�n1

n1!

��2��2�n2

n2!
exp�− ��1��1 + �2��2���

P

, �84�

where the last averaging is with respect to the positive-P function. Using the distribution function given in Eq. �57�, we obtain
p�n1 ,n2� for n1�n2 as

p�n1,n2� =
1

Z

1

n1 ! n2! �
m=0

�
�
/2�2m+n1+n2+�n1−n2�

m ! �m + �n1 − n2��! 	��m + 1
2 �n1 + n2� + 1

2 �n1 − n2� + 1���no�

��no + m + 1
2 �n1 + n2� + 1

2 �n1 − n2� + 1� 
2

, �85�

where the normalization constant Z is given by

Z = �
m=0

�
�
�2m

�m!�2	��m + 1���no�
��no + m + 1� 
2

. �86�

p�n1 ,n2� for n1
n2 is obtained by interchanging n1 and n2.
Figure 9 shows the form of the joint photon number distri-
bution below, at, and above threshold.

Photon number distribution for mode 1 can be obtained
by summing p�n1 ,n2� over n2,

p1�n1� = �
n2=0

�

p�n1,n2� . �87�

Solid curves in Fig. 10 show the photon number distribution
p1�n1� of mode 1 as a function of n1 for different values of

 /no. Below threshold �
 /no
1�, the peak of the distribu-
tion is at zero. As 
 /no increases from below to above
threshold, the peak of the distribution gradually moves to the

right to nonzero values of n1. This behavior of p1�n1� is
similar to the photon number distribution for the single-mode
laser �16�.

Another quantity of interest is the PND variable n=n1
−n2. We expect this variable to vanish in the mean since
photons are created in pairs inside the cavity. Indeed, it can
be seen that p�n1 ,n2� is an even function of n1−n2. However,
once inside the cavity, photons from each pair can escape
independently causing photon number difference to fluctuate.
These fluctuations also exhibit nonclassical features. We can
obtain the distribution for the photon number difference vari-
able n�n1−n2 by introducing two independent variables

n = n1 − n2, − � 
 n 
 � ,

N = n1 + n2, �n� � N 
 � . �88�

Expressing p�n1 ,n2� in terms of these variables and summing
over N, with a simple change of variable s=N− �n� �0�s

��, we obtain the distribution for the PND variable n,

�n =
1

Z
�
s=0

�

�
m=0

�
�
/2�2m+2s+2�n�

s ! �s + �n�� ! m ! �m + �n��!	��m + s + �n� + 1� ! ��no�
��no + m + s + �n� + 1� 
2

. �89�

This distribution depends only on the absolute value of n and
guarantees that all normally ordered odd-order moments of n
including the mean vanish.

Below threshold �
 /no
1�, the joint photon number dis-
tribution can be evaluated in terms of a hypergeometric func-
tion. The resulting expression, however, is not very illumi-
nating and will not be reproduced here. On the other hand,
the distribution of photon number difference variable n=n1

−n2 below threshold takes the form of a geometric distribu-
tion given by

�n 
 	1 − �2 + �1 − �2

1 + �1 − �2 
� �2

2 − �2 + 2�1 − �2��n�

, � =



no
.

�90�

This below threshold result is an excellent approximation to
the exact result �89� even very close to threshold �
 /no
�0.99� for no as small as 
104. For larger no, the agreement
improves for operating points even closer to threshold. The
distribution �n �Eq. �89�� for the photon difference variable
is shown in Fig. 11 for several values of 
 /no from below to
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above threshold. Below threshold �
 /no=0.995�, the results
from Eq. �90� are indistinguishable from the exact results in
Fig. 11.

As already noted following Eq. �89�, all normally ordered
moments of odd powers of n=n1−n2 vanish. For normally
ordered even-order moments of n, we find

�:��n̂�2r:� = � �− �r�2r − 1� ! !

2r ��
m=0

�
�m + r�!

m!


2�m+r�

���m + r + no + 1��2 /�
m=0

�

2m

���m + no + 1��2 . �91�

Note that even-order moments of n for r=2,4 ,6 , . . . are posi-
tive quantities whereas those for r=1,3 ,5 , . . . are negative
quantities. The negative values of the latter set of moments
are a reflection of the nonclassical character of light from the
NDPO and is a direct consequence of cross correlation be-
tween down-converted modes being stronger than autocorre-
lations �18,37�.

IV. CONCLUSION

In this paper, we have discussed the quantum statistical
properties of light emitted by degenerate and nondegenerate
parametric oscillators in the region of threshold. Unlike the
regions far below and above threshold where one can linear-
ize the equations of motion around the steady states, near
threshold one must take full account of the nonlinearity of
mode-mode interaction. By using positive-P phase-space
representation of the density matrix of the field, we were able
to derive a Fokker-Planck equation for the positive-P func-
tion and its steady-state solution that takes into account the
full nonlinearity of the problem as well as the quantum-
mechanical nature of the noise. The steady-state solution al-
lows us to derive analytic expressions for various quantities
such as the mean, variance, and higher-order moments of
photon number variables. With the help of these expressions,
we are able to provide a quantitative description of the trans-

formation that the fluctuations undergo in passing the thresh-
old. We find that most dramatic changes occur in a very
narrow range given, approximately, by �
 /no−1��10 /�no.
Although the transformation of many quantities as the OPO
passes its threshold mirrors, the transformation of corre-
sponding quantities for the single- and two-mode lasers,
there are important differences. In particular, the light from
the OPO retains many of its nonclassical characteristics even
as it undergoes this transformation. It is remarkable that the
steady-state expressions presented here for various quantities
pertaining to the OPO not only describe the threshold trans-
formation but also encompass the inherently nonclassical
character of light produced by these oscillators.

The results obtained by using the simpler distributions
presented here are in excellent agreement with those ob-
tained from the exact distributions for large values of no.
This is the regime in which most laboratory OPOs currently
operate. These simpler distributions allow us to investigate
properties of the OPOs in an analytic fashion and provide
simple intuitive picture of their fluctuation properties. For
systems with small values of no, the approximations we have
may become suspect. A similar analytic description of the
OPOs in this limit will require further exploration and differ-
ent types of approximations. However, in this limit, we can
always revert to the exact distribution p�x�� given in this pa-
per to discuss the fluctuation properties of OPOs.
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