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Seeing Anderson localization
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We propose an optical scheme to literally see Anderson localization by varying the optical wavelength or the
angle of incidence in order to tune between localized and delocalized states in a random multilayered filter.
This scheme allows us to clearly differentiate absorption from localization effects because the system behaves
as a filter centered at a given wavelength, where only one wavelength is perfectly transmitted and all others are
fully localized. At the resonant wavelength, the transmission is exactly one in the absence of absorption. The
presence of absorption only changes the overall transmission but not the wavelength dependence. These results
were obtained by developing a theoretical framework for the average optical transmission through disordered

media.
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I. INTRODUCTION

Anderson localization was discovered about 50 years ago
to describe the propagation of electrons in the presence of
disorder [1]. The main prediction back then, was the exis-
tence of disorder induced localized states, which do not con-
duct electricity. Many years later it turns out, that the concept
of Anderson localization is much more general and applies to
almost any type of propagation in time or space, when more
than one parameter is relevant (such as phase and amplitude).
The occurrence of Anderson localization in the propagation
of light, in particular, has become the focus of tremendous
interest due to the emergence of new optical technologies
and media such as low-dimensional and disordered optical
lattices [2,3]. While several experiments have reported the
measurement of Anderson localization of light [2-9], many
of the observations remain controversial because the effects
of absorption and localization have a similar signature, i.e.,
exponential decrease in the transmission with the system size
[10,11].

In order to literally see Anderson localization and to dis-
tinguish it from absorption, we consider the system shown in
Fig. 1. The setup is composed of Ny filters in series. Each
filter is composed of N, random optical layers and each layer
has a refractive index n; and a thickness d; as defined in Fig.
2. For optimal results, it is important that these layers are
very well defined. This is possible, for instance, by using
high accuracy multilayer growth techniques such as molecu-
lar beam epitaxy (MBE). Good material choices include
large band gap materials such as GaN (A=3.2 eV, n
=2.3) and InN (A=2 eV, n=3.1), which can be grown by
MBE with atomic precision [12,13]. The absence of surface
roughness ensures that this multilayered system is one-
dimensional in nature. Important surface roughness would
induce scattering at stray angles, which can lead to a one-
dimensional (1D) to three-dimensional (3D) crossover [14],
thereby strongly reducing localization effects, since localiza-
tion in 3D is much weaker than in 1D [15] and therefore
much more challenging to observe [8].

To illustrate the general behavior of our system, we con-
sidered the simplest random system of a binary distribution,
where we assume two kinds of materials, one with a refrac-
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tion index of ny=1 and the other with n;=3. Adding more
materials will not change the results qualitatively and the
analytical expressions derived below remain valid for any
choice or combination of materials.

The filters are placed in a way to allow the insertion of a
grating between any of them. The grating is necessary to
resolve the spectral composition of the transmitted light. The
position of the grating can be changed in order to measure
the transmission after 1,2,..., or Ny filters in series. When
using a white light source, this allows to spectrally resolve
the transmission after any number of filters. Anderson local-
ization will then lead to an exponential decay of the trans-
mission with the number of filters (see Fig. 1).

A. Fluctuations

A major difficulty in observing Anderson localization is
the existence of strong fluctuations [11,16]. In general, the
relative fluctuations of the transmission (ST/(T)) diverge
with decreasing transmission, where T=+(T—(T))? and (T)
is the average transmission. This is a fundamental problem,
which can be circumvented by considering In(7) (the trans-
mission in decibel) or the inverse transmission since in both
cases the relative fluctuations decrease with decreasing trans-
mission as shown in Fig. 2 for In(7) and is equivalent to a
configurational average. Such a log average over a small
number of configurations is feasible experimentally, since it
simply involves averaging the signal in decibel over several
configurations, corresponding to exchanging the position of
some filters. The numerical examples shown in the middle of
Fig. 1 are based on a small log average over 100 configura-
tions and assuming 100 different filters, each with an average
of 50 random layers and a spectral resolution of Inm. The
two bottom graphs are obtained by numerically averaging
the transmission over 100 random layers directly, whereas
the curves without absorption (k=0) and without surface
roughness (0=0) are obtained using the analytical expres-
sion from Eq. (3). The small fluctuations for « and o small
are due to the finite size effects of the numerical solution.

B. Numerical approach

The numerical results were obtained using a standard
method to describe a multilayered optical system with a
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FIG. 1. (Color online) The top shows the arrangement of the
filters, where a grating can be inserted in order to measure the
wavelength dependence of the transmission. The transmission is
shown in the middle left figure when the grating is placed after 1, 3,
10, 30, or 100 filters, which increases the quality factor filter with
the number of layers. The middle right figure represents the depen-
dence of the transmission on the number of layers at several wave-
lengths (480, 497, 499, and 500) nm, indicating an exponential
decay. The bottom left and right figures show the average transmis-
sion through 100 random layers for different values of absorption
and surface roughness, respectively.

transfer matrix. Each matrix describes the transmission after
one layer, where we assume the layers to be normal to the X
direction. For transverse magnetic (TM) waves, where the
magnetic-field component H* is parallel to each layer and the
electric field component E” is at an angle 6 (the angle of
incidence) to the first layer, the transfer matrix can be written
as [17]:

Hi ) cos(¢;)
Ej —isin(;)7;

M;

—isin(o,)/y \ ( H:
cos(4,) E!

J

(1)

For an incoming wave of wavelength A, the field compo-
nents on one side of a stack of N, layers can therefore be
related to the fields on the other side by taking the product of
the transfer matrices (M= HJ M;). Assuming a vacuum im-
pedance z; before and after the filter, the transmission of
light is given by T=4|M,+yM,+M,,/ y+M,,|™2, where
M, are the matrix elements of M [17]. The matrix elements

of M; used in Eq. (1) are material dependent with ¢;

=(277dj/)\)\rn12-—sin2(6) and yj=(zo/njz-)\r’n12-—sin2(0). For
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FIG. 2. (Color online) The top picture illustrates the details of a
random sequence of layers composing one filter. In the bottom left
figure the transmission as a function of wavelength is shown for a
system of 200 layers averaged 10* times. The analytical result from
Eqg. (3) is shown with a continuous line. The numerical average and
relative fluctuations are shown with square and triangles. The trans-
mission as a function of wavelength for different incidence angles
(0, 15, and 30°) is depicted in the bottom right figure, where the
continuous lines correspond to the analytical expression (3),
whereas the dotted lines correspond to the numerical log average.

transverse electrical (TE) waves these expressions have to be
replaced by H*— E*, E’ ——H", and 'yj:zalvnf—sinz(e).

C. Absorption

A major roadblock in the observation of Anderson local-
ization is the presence of absorption. Absorption stems from
the imaginary part of the refraction index, «;, where n;=n;
+ik;. nj’ is the real part and the imaginary component «; is

largJe when photon energies approach the band-gap energy or
when the materials are conducting. For the numerical calcu-
lations, the expressions above remain valid even if n; has a
complex part (leading to complex angles). Remarkably, the
presence of absorption does not significantly alter the
localization-delocalization transition (LDT), which is still
observed for reasonable values of absorption as shown in
Fig. 1 (graph absorption). While the overall transmission is
strongly reduced for values of «;= 1072 for each layer, the
relative wavelength dependence is not affected. Hence, even
in the presence of absorption we can observe the LDT dis-
cussed below.

D. Surface roughness

Another potential issue is the presence of surface rough-
ness between two adjacent layers. This can be modeled by
inserting a layer of width d=20, where o is the surface root
mean square and the corresponding refractive index is n
=(1 +n12-)/2+i77d(nj—1)2/(2\5)\) [18]. This approach is
valid when the correlation length of the roughness is much
smaller than the wavelength. In Fig. 1 (surface roughness)
we show that a small surface roughness does not signifi-
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cantly affect the LDT, which is the key to observing Ander-
son localization.

E. Localization delocalization transition

The LDT is obtained under the following condition: For a
given layer there exists a set of thicknesses d;=m\y/2n; (m
any integer) for which the layer is totally transparent at nor-
mal incidence and for the resonant wavelength \,. This cor-
responds to sin(¢;)=0 and to M; equal to the identity matrix
and does not depend on the neighboring layers. When ran-
domly combining different layers with the same resonance
condition, the overall resonance condition is preserved. The
position of these resonances was discussed by Cristanti [19].
Away from the resonant wavelength the system behaves like
a random system leading to Anderson localization. This type
of disorder was also studied in the context of electronic
transport in 1D and two-dimensional (2D) [20-22], where
metal-insulator type transitions were found. Figures 1 and 2
show this resonance, where the transmission is one (transpar-
ent) at Ay=500 nm and then decreases exponentially

2 .. .
(T=¢XA-2)7) away from the resonance condition. K is a
form factor which is proportional to the number of random
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can then be used to tune the quality factor of the filter. With-
out this special resonance condition, the transmission
through random optical layers decays exponentially at all
wavelengths at a similar rate [9,23,24]. The LDT implies that
this decay is dependent on the wavelength even in the pres-
ence of absorption.

F. Analytical approach

We now turn to characterize the transmission through this
random system by evaluating the product of M;’s composed
of random elements. Similar products of random matrices
have been widely studied and lead to matrix elements, which
increase exponentially with the number of products. The rate
of this exponential dependence is termed the Lyapunov ex-
ponent and will be derived analytically below. The Lyapunov
exponent corresponds to the inverse of the localization
length, beyond which the transmission vanishes. To obtain
analytical results the trick is to consider the square of the
52 instead of H;. This allows to capture the domi-
nant behavior beyond the plane-wave oscillations. A similar
technique was actually used in the context of electronic
transport [25-27] and we extend it here to optical systems.

layers and also depends on the variance of the disorder as Squaring Eq. (1) then leads to the following iterative
discussed below. This dependence on the number of layers equation:
|
|H cos®(¢;)  (sin(¢;)/;)? icos(¢;)sin(¢;)/v; |H5J?
B, |? = | (sin(¢;)y;)?  cos?(¢;)  —icos(¢;)sin(¢;)y; |EY|?
2\s{ L (EY i o 0 cos?(¢;) — sin2(¢j) 2%{(Hf(EJ”)*}
e s I
(2)
|

For N; layers the total transmission is now determined by (M33) = (M3X3 + M?X3)/2 (3)

the product FO (H M3X3)F Np which can be averaged over
the disorder, leading to, <F0> <M3X3)NI<FN> where (M3*%3)
is the disorder average of M 3 assuming that the material
parameters of the layers are not correlated. The disorder av-
erage depends on the distribution of the parameters entering
M3*3. The leading behavior is obtained by taking the eigen-
values of (M>*?), from which the Lyapunov exponent can be
extracted as A =max{In|Eig((M?>*3))[}. This yields an expres-
sion for the average resistance (inverse transmission), where
(1/T)=e™M1. Hence, perfect transmission corresponds to the
case where A=0. Interestingly, this expression can also be
related to the log-average transmission (In 7)=—AN,/2 and
to the average transmission (T)=e¢~*/* where the factors of
1/2 stem from the properties of the distribution of T’s [26].
The next step is obtaining (M>*3) for a given distribution.
For discrete distributions such as the binary one this is quite
straightforward, since the layer properties are determined by
only two possible configurations, {d,,n,} and {d;,n,}, re-
spectively. This yields

where MWg and M3X3 are simply M3 3 with {d
=d,, n<—n0} and {d;=d,, n;j=ny}, respectlvely For continu-
ous dlstrlbutlons analytlcal expresswns for (M>3*3) are often
too complicated to be useful and can be instead integrated
numerically.

Comparing these analytical expressions to the numerical
results demonstrate a remarkable agreement as seen in Figs.
1 and 2. The analytical expression using Eq. (3) reproduces
all the main features and shows the resonance behavior at
A=\g. The analytical expression is extremely useful in situ-
ations, where the localization length is large, since its nu-
merical determination would require a system size exceeding
the localization length as well as configurational averaging,
which can be computationally very expensive. Moreover, our
analytical expression (3) also works very well close to the
resonance, which gives A~ (A=\)? and perfectly repro-
duces our numerical results. This determines the form factor
K, which depends on the variance of the disorder. (Zero vari-
ance leads to K=0 or A=0.) Deviations exist when looking
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FIG. 3. (Color online) Left: The wavelength and incidence angle dependence of the transmission through a random multilayer on a linear
color scale for TE waves (left) and TM waves (right). Right: The transmission is shown on a linear color scale as a function of the angle of
incidence in the y and Z directions. Each subgraph spans —r/2 to +7r/2 and corresponds to a different wavelength. The resonant wavelength
(A\o=500 nm) corresponds to the bottom left panel. The horizontal (vertical) axis would correspond to the angle dependence of a TM (TE)

wave.

at the angle dependence, as shown in Fig. 2. While the ana-
Iytical expression predicts two transmission peaks with a
weak minimum in between, the numerical results show that
the minimum is more pronounced. This can be attributed to
restricting the average to the second moment, which can lead
to differences with the numerical results and in some cases
even lead to fluctuations in the Lyapunov exponent [27].

G. Angle dependence

Quite remarkably, it is now possible to tune the wave-
length of the resonance, simply by tilting the filter. We
present the angle and wavelength dependence of the trans-
mission in Fig. 3 for both the TE and TM waves using 200
random layers averaged over 100 configurations. Two
branches can be observed, one which is perfectly transmit-
ting and a second one which vanishes with increased angle.
In addition, there is an angle ® = = 1.25 with perfect trans-
mission for the TM incidence, where ®=arctan(n,/n,) rad
and n;/ng=3 for our particular configuration. This angle cor-
responds to the Brewster angle.

By combining the expression for TE and TM waves it is
possible to obtain the results for any polarization, simply by
using a linear combination of TE and TM waves. Moreover,
we can analyze what happens when tilting the filter in one or
the other direction. The tilt angle can be varied in two spatial
directions, one corresponding to the TM direction and the
other to the TE direction, or a combination of both, which is
seen in Fig. 3. Perfect transmission is now identified in a
form of a ring, whose diameter depends on the wavelength.
This angular dependence therefore allows for a direct and
beautiful visualization of the LDT and hence localization of
the averaged transmission.

Summarizing, we have shown a filter design, where we
can directly visualize Anderson localization by using a LDT.
The filter design is perfect in the sense that only one visible
wavelength is transmitted perfectly and all others are expo-
nentially suppressed. Not only does this provide for an opti-
mal filter design but also allows us to see Anderson localiza-
tion 50 years after its discovery.
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