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It is shown that the momentum density of free electromagnetic field splits into two parts. One has no
contribution to the net momentum due to the transversality condition. The other yields all the momentum. The
angular momentum that originates from the former part is spin, and the angular momentum that originates from
the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given
in terms of the electric vector in reciprocal space. The spin and orbital angular momentum defined this way are
used to investigate the angular momentum of nonparaxial beams that are described in a recently published
paper �Phys. Rev. A 78, 063831 �2008��. It is found that the orbital angular momentum depends, apart from an
l-dependent term, on two global quantities, the polarization represented by a generalized Jones vector and
another characteristic represented by a unit vector I, though the spin depends only on the polarization. The
polarization dependence of orbital angular momentum through the effect of I is obtained and discussed. Some
applications of the result obtained here are also made. The fact that the spin originates from the part of
momentum density that has no contribution to the net momentum is used to show that there does not exist the
paradox on the spin of circularly polarized plane wave. The polarization dependence of both spin and orbital
angular momentum is shown to be the origin of conversion from the spin of a paraxial Laguerre-Gaussian
beam into the orbital angular momentum of the focused beam through a high numerical aperture.
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I. INTRODUCTION

The orbital angular momentum �AM� of light did not
draw much attention �1,2� until 1992 when Allen and his
co-researchers �3� showed that a beam of Laguerre-Gaussian
mode can carry both spin and orbital AM. They found that
the spin is carried by the polarization � and the orbital AM is
carried by the helical wave front represented by a phase fac-
tor exp�il��, where l is an integer. Since then great progress
has been made �4� in experiments. The orbital AM has been
measured �5,6�. The transfer of spin and orbital AM to mi-
croscopic particles �7–10� and to liquid crystals �11–13� has
been observed.

Recently, experimental results �14,15� showed that the
spin and orbital AM of a nonparaxial beam play distinct roles
in the interaction with microscopic birefringent particles
trapped off the beam axis in optical tweezers. It was ob-
served �15� that the spin of light makes the particle rotate
around its own axis and the orbital AM makes the particle
rotate around the beam’s axis. Furthermore, the spin was
found �16� to be converted into orbital AM by an inhomoge-
neous anisotropic element. More interestingly, partial spin of
a paraxial beam was observed �17� to be converted into or-
bital AM of a nonparaxial beam by a high numerical aper-
ture. These experimental results demonstrate that the spin
and orbital AM of a nonparaxial beam are different in nature
on one hand and are connected somehow to each other on the
other. But up until now, there is no satisfactory theory to
elucidate the difference and relation. The distinction that the
spin is carried by the polarization and the orbital AM is
carried by the helical wave front was drawn basically from
the knowledge of a type of paraxial beams �3,18,19�. It is not

valid for nonparaxial beams �20–22�. With a specific non-
paraxial beam, Barnett and Allen �20� found that “the seem-
ingly natural separation of the angular momentum…is no
longer possible.” The purpose of this paper is to advance a
theory to explain the difference and relation between the spin
and orbital AM of nonparaxial beams.

To this end, we should first know how to represent a non-
paraxial beam that as a whole is in a definite state of polar-
ization. As mentioned before, Barnett and Allen �20� once
put forward a nonparaxial solution. But that solution was
shown �23� to fail to meet the demand. Fortunately, a theo-
retical representation that meets the demand was recently
developed �24�. The beam in this representation exhibits as a
whole a definite polarization in the sense that all the plane
waves that constitute the beam are described by the same
normalized Jones vector. In other words, the normalized
Jones vector in this representation is a global characteristic
that plays the role of describing the polarization of the beam.
This Jones vector will be referred to as the generalized Jones
vector. Apart from the global generalized Jones vector, a
nonparaxial beam in this representation exhibits another glo-
bal characteristic denoted by a unit vector. The global unit
vector was applied �25� to explain the spin Hall effect of
light �26�. In this paper, I will make use of this representation
to show how the orbital AM depends on the polarization
through the effect of the global unit vector.

Second, we should also know how to define the spin and
orbital AM of an electromagnetic field in free space. The
total AM J�x0� of a free electromagnetic field with respect to
the point x0 is defined as �27�

J�x0� =� jd3x = J�0� − x0 �� pd3x , �1�

where j= �x−x0��p is the AM density with respect to the
same reference point, p=�0�0E�H is the momentum den-*cfli@shu.edu.cn

PHYSICAL REVIEW A 80, 063814 �2009�

1050-2947/2009/80�6�/063814�11� ©2009 The American Physical Society063814-1

http://dx.doi.org/10.1103/PhysRevA.80.063814


sity defined in terms of the electric vector E and the magnetic
vector H, and

J�0� =� x � pd3x �2�

is the AM with respect to the origin. The separation of total
AM into spin and orbital AM was discussed before �1,27–29�
by performing the integration in Eq. �1� by parts and neglect-
ing a surface integral at infinity. In this paper, I will put
forward a rigorous approach to the separation of total AM
into spin and orbital parts by examining the property of mo-
mentum density. This approach allows us to apply the ob-
tained result to plane waves.

The paper is arranged as follows. In Sec. II, it is found
from the transversality condition that the momentum density
of an electromagnetic field in free space splits into two parts.
One part does not have any contribution to the net momen-
tum; the other part produces all the momentum. The AM that
originates from the former part does not depend on the
choice of the reference point and is the spin. The AM that
originates from the latter part is in general dependent on the
choice of the reference point and is the orbital AM. In Sec.
III, the integral expressions for the spin and orbital AM ob-
tained in Sec. II are used to investigate the AM properties of
nonparaxial beams described by the aforementioned repre-
sentation. Since the light beam is assumed to be monochro-
matic, both the integrals of spin and orbital AM are infinite.
In order to deal with the infinity, the technique of �-function
normalization is used. As expected, the spin AM is found to
be dependent on the polarization. But what is surprising is
that the orbital AM is also dependent on the polarization. It is
shown how the orbital AM depends on the polarization
through the effect of the global unit vector. Two different
problems are discussed in Sec. IV by making use of the
obtained results. Section V concludes the paper with further
remarks.

II. SEPARATION OF THE TOTAL AM INTO SPIN AND
ORBITAL AM

Consider an arbitrary electromagnetic field in free space.
Its electric vector in real space can be expressed as an inte-
gral over the plane-wave spectrum,

E�x,t� =
1

2
� 1

�2��3/2� E�k�exp�i�k · x − 	t��d3k + c.c.� ,

�3�

where k is the wave vector and E�k� is the electric vector in
reciprocal space. The magnetic vector of the beam is derived
from Eq. �3� and Maxwell’s equations to be

H�x,t� =
1

2
� 1

�2��3/2� k � E

�0	
exp�i�k · x − 	t��d3k + c.c.� .

�4�

Integral expression �3� or �4� leads to the following transfor-
mations �27�,

	�− k� = − 	�k�, E�− k� = E��k� . �5�

With the help of Eqs. �3� and �4� and vector algebra a� �b
�c�= �a ·c�b− �a ·b�c, the momentum density splits into two
parts,

p = �0�0E � H = p1 + p2, �6�

where

p1 =
�0

4�2��3� E� · E

	
kei�k�+k�·xe−i�	�+	�td3k�d3k

+
�0

4�2��3� E� · E�

	
kei�k�−k�·xe−i�	�−	�td3k�d3k + c.c.,

�7�

p2 = −
�0

4�2��3� E� · k

	
Eei�k�+k�·xe−i�	�+	�td3k�d3k

−
�0

4�2��3� E� · k

	
E�ei�k�−k�·xe−i�	�−	�td3k�d3k + c.c.,

�8�

E�E�k�, E��E�k��, 	�	�k�, and 	��	�k��. Based on
the transversality condition k ·E=0, it is readily proven by
use of transformations �5� that p2 does not have any contri-
bution to the net momentum,

P2 =� p2d3x = 0. �9�

This tells us a fact that all the momentum P comes only from
p1,

P = P1 =� p1d3x = �0� E� · E

	
kd3k , �10�

which is independent of time.
Accordingly, the total AM also splits into two parts,

J�x0� =� �x − x0� � pd3x = S�x0� + L�x0� .

Because of property �9�, the first part S that originates from
p2 is independent of the choice of the reference point,

S�x0� = S�0� =� x � p2d3x . �11�

In other words, the fact that S is independent of the choice of
the reference point roots in an intrinsic property of the elec-
tromagnetic field, the transversality condition. It is thus rea-
sonable to regard this intrinsic AM as the spin. The second
part that originates from p1 is in general dependent on the
choice of the reference point,

L�x0� = L�0� − x0 � P1, �12�

where
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L�0� =� x � p1d3x . �13�

It is plausible to regard this part as the orbital AM. Substi-
tuting Eq. �8� into Eq. �11�, one obtains by straightforward
calculations

S =� �0

i	
E� � Ed3k . �14�

The momentum density p2 leads to the spin AM, though it
does not produce any momentum. Such an astonishing fact
means that there is no paradox on the spin AM of circularly
polarized plane waves. This will be discussed in Sec. IV.
Substituting Eq. �7� into Eq. �13�, one has

L�0� =� �0

i	
E†�k � �k�Ed3k , �15�

where �k is the gradient operator with respect to k, and the
superscript † stands for the conjugate transpose �30�. For the
readers’ convenience, the details to calculate Eqs. �14� and
�15� are summarized in Appendix. It is very interesting to
note that the spin �Eq. �14�� and orbital AM �Eq. �15�� ob-
tained this way look very like their quantum-mechanical
counterparts �27�.

At last, let us give here for later convenience the total
energy of the beam in terms of the plane-wave spectrum,

W =� 	�0

2
E†E +

�0

2
H†H
d3x =� �0E†Ed3k . �16�

III. AM PROPERTIES OF NONPARAXIAL BEAMS

The AM of a propagating beam in the z direction is com-
monly considered in the literature �3,18–21� to be equivalent
to the line density, that is to say, to the AM per unit length in
the z direction. In order to avoid any possible ambiguity that
may arise from the AM density �31,32�, I do not use this
notion here. In fact, we have given in Eqs. �14� and �15� the
expressions for the spin and orbital AM themselves with re-
spect to the origin. In this section, we will use those expres-
sions to investigate the AM properties of nonparaxial beams.
To do this, let us now convert the representation form of
nonparaxial beams that was advanced in Ref. �24� into a
form that is suitable for present purpose.

A. Description of nonparaxial beams: introduction to a global
unit vector

The electric vector E of a nonparaxial beam in real space
is given by Eq. �3�. The electric vector E in reciprocal space
is factorized into three factors �24�,

E = m
̃f , �17�

where

m = �u v � �18�

is the mapping matrix, 
̃= �

1


2
� is the generalized Jones vec-

tor that is assumed to be independent of the wave vector and

to satisfy the normalization condition 
̃†
̃=1, and f is the
electric scalar in reciprocal space. The unit column vectors u
and v of m represent the two mutually orthogonal states of
linear polarization and are defined in terms of the local wave
vector k and a global unit vector I as follows:

u = v �
k

k
, v =

k � I

�k � I�
, �19�

which lead to an important normalization property of the
mapping matrix,

mTm = 1, �20�

where the superscript T denotes the transpose. Unit vector I
can be specified by its polar angle � and azimuthal angle �.
For the sake of simplicity, let us assume I to lie in the plane
zox, that is to say �=0. In this case, we have

I��� = ex sin � + ez cos �

and the mapping matrix

m =
1

k�k � I�

���ky
2 + kz

2�sin � − kzkx cos � kky cos �

− ky�kz cos � + kx sin �� k�kz sin � − kx cos ��
�kx

2 + ky
2�cos � − kzkx sin � − kky sin �

 ,

�21�

where �k�I�= �k2− �kx sin �+kz cos ��2�1/2. Due to the
symmetry relation I��+��=−I���, it is postulated through-
out this paper that

��� 
�

2
. �22�

A monochromatic beam has a definite wave number. It is
convenient to use spherical polar coordinates to express the
electric scalar as

f =
��k − k��

k2 f̄��,�� ,

where 0�� and 0�2�. Since f̄�� ,�� is a periodic
function of � with period 2�, a physically allowed function
has the following Fourier expansion:

f̄��,�� = �
l=−�

�

f l���exp�il�� .

In this paper, we consider only one term of the expansion
and rewrite the electric scalar as follows:

f =
��k − k��

k2 f l���exp�il�� , �23�

where the angular-spectrum function f l��� is assumed to be
square integrable. In order to use the technique of � normal-
ization, the complex conjugate of f is replaced with
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f� =
��k − k��

k2 f l
����exp�− il�� . �24�

For a beam that propagates in the z direction, its angular-
spectrum function satisfies

f l��� = 0 for
�

2
 �  � . �25�

Furthermore, if the beam is well collimated and thus can be
paraxially approximated, �f l���� is sharply peaked at �=0.
The half width �� of �f l���� is the divergence angle of the
beam.

So obtained E guarantees that the field vectors E and H in
Eqs. �3� and �4� satisfy Maxwell’s equations. Now that unit
real vectors u and v are orthogonal to each other, the 
̃ that
is independent of the wave vector acts as a global character-
istic to describe the inner degree of freedom of the beam, the
state of polarization. We thus have two independent global
quantities, I and 
̃, to describe a beam. It should be pointed
out that a physically allowed beam may be a linear superpo-
sition of a series of so described beam. They each have their
own I and 
̃. The beam that we will consider in this paper is
assumed to have definite I as well as 
̃. In the following, we
will pay much attention to the effect of these two global
characteristics on the orbital AM. Only the AM with respect
to the origin will be considered.

B. Orbital AM is dependent on I as well as �

The longitudinal component of orbital AM with respect to
the origin can be turned from Eq. �15� into

Lz =� �0

	
E†	− i

�

��

Ek2 sin �dkd�d� �26�

in spherical polar coordinates. Hereafter the symbol for the
origin will be omitted for the sake of simplicity. By making
use of Eq. �17�, one has

E†	− i
�E

��

 = 
̃†m†	− i

�m

��


̃f�f + f�	− i

� f

��

 . �27�

When property �20� is taken into account, straightforward
calculations yield

m†	− i
�m

��

 = − �̂3 cos �

+
�̂3

2

cos � − cos �

1 − cos � cos � − sin � sin � cos �

+
�̂3

2

cos � + cos �

1 + cos � cos � + sin � sin � cos �
,

�28�

where �̂3= � 0 −i
i 0 � is the Pauli matrix. Substituting Eq. �28�

into Eq. �27� and noticing Eq. �23�, one obtains

E†	− i
�E

��

 = �l − � cos ��f�f

+
�

2

�cos � − cos ��f�f

1 − cos � cos � − sin � sin � cos �

+
�

2

�cos � + cos ��f�f

1 + cos � cos � + sin � sin � cos �
,

where

� = 
̃†�̂3
̃ = − i�
1
�
2 − 
2

�
1�

is the polarization ellipticity. Substituting it into Eq. �26� and
considering Eqs. �23� and �24�, one finds after performing
the integration with respect to variables k and �

Lz =
2��0l

k2	
��k − k���

0

�

�f l����2sin �d� +
2��0�

k2	
��k − k��

� �
0

� �1

2
	 cos � + cos �

�cos � + cos ��
+

cos � − cos �

�cos � − cos ��
 − cos ��
��f l����2sin �d� . �29�

In obtaining Eq. �29�, the following integral formula is used:

�
0

� dx

1 + a cos x
=

�

�1 − a2
,��a�2 � 1� . �30�

Substituting Eq. �17� into Eq. �16� and considering Eqs. �23�,
�24�, and �20�, one has for the total energy of the beam

W =
2��0

k2 ��k − k���
0

�

�f l����2sin �d� . �31�

It is clear that the orbital AM per unit energy is

Lz

W
=

l

	
+

�

	

�
0

� �1

2
	 cos � + cos �

�cos � + cos ��
+

cos � − cos �

�cos � − cos ��
 − cos ���f l����2sin �d�

�
0

�

�f l����2sin �d�

. �32�
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Next let us calculate the transverse component of orbital
AM. The x component is rewritten from Eq. �15� to be

Lx = −� �0

	
E†�ky	i

�

�kz

 − kz	i

�

�ky

�Ek2 sin �dkd�d� .

�33�

According to Eq. �17�, one has

E†�ky	i
�

�kz

 − kz	i

�

�ky

�E

= 
̃†�kym
T	i

�m

�kz

 − kzm

T	i
�m

�ky

�
̃f�f

+ f��ky	i
�

�kz

 − kz	i

�

�ky

� f . �34�

When property �20� is taken into account, straightforward
calculations yield

kym
T	i

�m

�kz

 − kzm

T	i
�m

�ky



= �̂3 sin � cos �

+
�̂3

2

�cos � − cos ��cot �

1 − cos � cos � − sin � sin � cos �

+
�̂3

2

�cos � + cos ��cot �

1 + cos � cos � + sin � sin � cos �
. �35�

Substituting Eqs. �34� and �35� into Eq. �33� and considering
the rotation symmetry of f in Eq. �23�, one obtains after
performing the integration with respect to variables k and �,

Lx = −
��0�

k2	
��k − k��cot ��

0

� 	 cos � + cos �

�cos � + cos ��

+
cos � − cos �

�cos � − cos ��
�f l����2sin �d� . �36�

In obtaining Eq. �36�, formula �30� is used. The x component
of orbital AM per unit energy is thus

Lx

W
= −

� cot �

	

�
0

� 1

2
	 cos � + cos �

�cos � + cos ��
+

cos � − cos �

�cos � − cos ��
�f l����2sin �d�

�
0

�

�f l����2sin �d�

. �37�

Similar calculations give for the y component of orbital AM per unit energy

Ly

W
= 0. �38�

Equations �32�, �37�, and �38� are valid for any physically allowed angular-spectrum function f l���. Remembering that the unit
vector I lies in the plane zox, they show that as a vector quantity, the orbital AM with respect to the origin is located in the
plane formed by I and the propagation direction for the rotation-symmetry electric scalar �23�. Apart from an l-dependent term
in the longitudinal component, the orbital AM is closely dependent on the polarization � through the unit vector I.

For a beam propagating in the z direction, property �25� is satisfied. Considering our postulation �22�, Eqs. �32� and �37�
become

Lz

W
=

l

	
+

�

	

�
0

�/2 �1

2
	1 +

cos � − cos �

�cos � − cos ��
 − cos ���f l����2sin �d�

�
0

�/2

�f l����2sin �d�

, �39�

Lx

W
= −

� cot �

	

�
0

�/2 1

2
	1 +

cos � − cos �

�cos � − cos ��
�f l����2sin �d�

�
0

�/2

�f l����2sin �d�

, �40�
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respectively. Equation �40� indicates that if I is neither per-
pendicular nor parallel to the propagation direction, the
transverse component of orbital AM does not vanish. Let us
discuss the following three cases.

1. �Θ�= �
2

This is the case in which I is perpendicular to the
propagation direction. The beam described in this case is
uniformly polarized �24� in the paraxial approximation in the
traditional sense �33�. In this case, Eqs. �39� and �40�
become

Lz

W
=

l

	
+

�

	

�
0

�/2

�1 − cos ���f l����2sin �d�

�
0

�/2

�f l����2sin �d�

,

Lx

W
= 0, �41�

respectively, indicating that the transverse component van-
ishes and the longitudinal component depends on the polar-
ization. It should be noted that the vanishing transverse com-
ponent here is just with respect to the origin. With respect to
any reference point that is not on the beam axis �the z axis�,
the transverse component is by no means equal to zero as is
shown by Eq. �12�. Furthermore, by making use of paraxial
approximation in which cos � in the integrand of the nu-
merator can be approximated by unity, cos ��1, Eq. �41�
reduces to

Lz

W
=

l

	
. �42�

Only under so special conditions, is the longitudinal compo-
nent of orbital AM approximately independent of the polar-
ization. Equation �42� is exactly the result that was obtained
from the consideration of paraxial Laguerre-Gaussian beams
�3�.

2. Θ=0

This is the case in which the unit vector I is parallel to the
propagation direction. The beam described in this case is
known as cylindrical vector beam �34,35�. In this case, Eqs.
�39� and �40� become

Lz

W
=

l

	
−

�

	

�
0

�/2

�f l����2cos � sin �d�

�
0

�/2

�f l����2sin �d�

,

Lx

W
= 0, �43�

respectively. The transverse component vanishes too. But it
is seen from Eq. �43� that even in the paraxial approxima-
tion, the longitudinal component is not independent of the
polarization and is given by

Lz

W
=

l

	
−

�

	
. �44�

3. �Θ�š��

A well-collimated beam has a very narrow divergence
angle ��. This situation allows us to consider such a case in
which ������ is satisfied. The refracted beam that occurred
in the spin Hall effect of light �26� was proven �25� to belong
to this category. In this case, we have cos �−cos ��0 in
the region in which �f l���� is appreciable. Equations �39� and
�40� are thus approximated as

Lz

W
�

l

	
+

�

	

�
0

�/2

�1 − cos ���f l����2sin �d�

�
0

�/2

�f l����2sin �d�

,

Lx

W
� −

� cot �

	
, �45�

respectively. The longitudinal component is almost equal to
that in the case of ���= �

2 . But the transverse component is
not equal to zero. Equation �45� expresses a simple polariza-
tion dependence through the unit vector I.

C. Spin is dependent only on the polarization

Substituting Eq. �17� into Eq. �14� and taking Eqs. �23�
and �24� into account, one gets

S =
�0�

k2	
��k − k��� k

k
�f l����2sin �d�d� . �46�

It shows that the transverse component of spin vanishes. The
longitudinal component is given by

Sz =
2��0�

k2	
��k − k���

0

�

�f l����2cos � sin �d� . �47�

Clearly, the spin AM does not depend on the unit vector I.
From Eqs. �47� and �31�, it follows that the longitudinal
component of spin per unit energy is

Sz

W
=

�

	

�
0

�

�f l����2cos � sin �d�

�
0

�

�f l����2sin �d�

, �48�

which is valid for any physically allowed angular-spectrum
function f l���. For a paraxial beam, cos ��1 holds and Eq.
�48� reduces to

Sz

W
�

�

	
. �49�

This is what was obtained from the consideration of paraxial
Laguerre-Gaussian beams �3�.
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D. Total AM

The total AM is the sum of spin and orbital AM. Since the transverse component of spin vanishes, we discuss here only the
property of longitudinal component of the total AM. Combining Eqs. �32� and �48� together, one has

Jz

W
=

l

	
+

�

	

�
0

� 1

2
	 cos � + cos �

�cos � + cos ��
+

cos � − cos �

�cos � − cos ��
�f l����2sin �d�

�
0

�

�f l����2sin �d�

. �50�

It is instructive to note that Jz does consist of two parts. One
depends only on an integer l, and the other depends only on
�. But the former is not the orbital AM, and the latter is not
the spin AM. Equation �50� is valid for any physically al-
lowed function f l���. When Eq. �25� is taken into account
for a beam propagating in the z direction, it becomes

Jz

W
=

l

	
+

�

	

�
0

�/2 1

2
	1 +

cos � − cos �

�cos � − cos ��
�f l����2sin �d�

�
0

�/2

�f l����2sin �d�

,

�51�

which clearly shows the effect of the unit vector I. If �=0,
Eq. �51� reduces to

Jz

W
=

l

	
, �52�

which is independent of the polarization whether the beam is
paraxial or not. If ���= �

2 on the other hand, one gets from
Eq. �51�

Jz

W
=

l

	
+

�

	
, �53�

which is also valid beyond the paraxial approximation.
Though the total AM exhibits so simple dependence on l and
�, the first term l

	 is not the orbital AM and the second one
�
	 is not the spin AM, unless the paraxial approximation
holds. It will be shown in the next section that the polariza-
tion dependence of Lz for a nonparaxial beam of perpendicu-
lar I is the basis of conversion from spin to orbital AM by a
high numerical aperture.

In summary of this section, I have shown that the orbital
AM is closely related to the unit vector I. It is due to the
effect of I that the orbital AM is dependent on the polariza-
tion. If I is parallel to the propagation direction, both the spin
and orbital AM have only longitudinal components. They are
all polarization dependent whether the beam is paraxial or
not. But the total AM does not depend on the polarization. To
the best of my knowledge, this is the first time to give the
AM expression of cylindrical vector beams. If I is perpen-
dicular to the propagation direction, the spin and orbital AM
also have only longitudinal components. But in the paraxial
approximation, the orbital AM is nearly independent of the

polarization and is equal to l
	 , and the spin AM is nearly

equal to �
	 . If I is neither parallel nor perpendicular to the

propagation direction, the transverse component of orbital
AM is not equal to zero. Comparison with the result of Ref.
�3� indicates that the unit vector I of Laguerre-Gaussian
beams is perpendicular to the propagation direction.

IV. APPLICATIONS

In this section, I will apply the results obtained before to
discuss two different problems. One is the so-called paradox
on the spin of circularly polarized plane wave. It will be
shown that such a paradox does not exist at all. The other is
the conversion of partial spin of a paraxial beam to the or-
bital AM of the focused beam through a high numerical ap-
erture. The conversion will be shown to root in the polariza-
tion dependence of both spin and orbital AM.

A. There is no paradox on the spin of circularly polarized
plane wave

The so-called paradox on the spin of circularly polarized
plane wave has been the subject of discussion �1,36,37� ever
since Beth �38� experimentally demonstrated that a circularly
polarized plane wave carries spin AM � and was still inves-
tigated recently �31,39–42�. It states that because the electric
and magnetic vectors of a circularly polarized plane wave are
perpendicular to the wave vector, its momentum density
must be in the propagation direction. As a result, the AM
component in the propagation direction must be zero �43�
due to the cross product of the position vector with the mo-
mentum density. This is contrary to Beth’s observation.

This paradox was ordinarily solved by considering a plane
wave as the limit of a finite-sized wave �31,37,41�. But as we
have shown in Sec. II, the spin of an electromagnetic field in
free space does not come from the part of momentum density
that produces the net momentum. Instead, it originates from
the other part of momentum density that does not have con-
tribution to the net momentum. From this point of view, it
follows that there is no paradox on the spin of circularly
polarized plane wave. After all, what is produced from the
momentum density in the propagation direction is the net
momentum. In order to elucidate that the spin does not origi-
nate from this momentum density, let us make use of Eq.
�14� to calculate the AM of a plane wave.
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The electric vector of a plane wave in reciprocal space is
given by

E = m
̃f0�3�k − k�� , �54�

where k� is the wave vector of the plane wave. If Eq. �54� is
substituted directly into Eq. �14�, an infinity will occur. To
deal with the infinity, we make use of the technique of �
normalization as before by replacing E� with

E� = m
̃�f0
��3�k − k�� . �55�

Substituting Eqs. �54� and �55� into Eq. �14�, one gets

S =
�

	
�0�f0�2

k

k
�3�k − k�� . �56�

Similarly, substituting Eqs. �54� and �55� into Eq. �16�, one
has for the total energy of the wave

W = �0�f0�2�3�k − k�� . �57�

It follows that the spin per photon in the plane wave is

S

W
�	 = ��

k

k
, �58�

which is entirely along the direction of wave vector k. For
circular polarizations �= �1, the spin AM per photon is ��,
which is in perfect agreement with Beth’s experimental ob-
servation. This indicates that when one talked about the para-
dox on the plane wave’s spin, he or she did not realize the
role that the momentum density in Eq. �8� plays in the AM.
It is very interesting to note that we arrive at the quantum
feature �27� of photon’s spin by a purely classical approach,
from which one might appreciate the nonlocal property of
the photon. Since the spin comes from the part of momentum
density that does not produce any momentum on one hand
and is stored in the whole real space over which the plane
wave spreads on the other, it might be probable that the
concept of photon’s spin density in real space is physically
meaningless �31,32�.

B. Conversion from spin to orbital AM by a high numerical
aperture

The incident beam in the AM conversion experiment �17�
is LG0

1, a Laguerre-Gaussian beam. So its unit vector I is
perpendicular to the propagation direction and its parameter l
is equal to one, l=1. Before focusing, the spin and orbital
AM per unit energy of the paraxial beam in the propagation
direction are approximately �

	 and 1
	 , respectively, as Eqs.

�49� and �42� show. After focusing, the spin per unit energy
of the nonparaxial beam is obtained from Eq. �48� to be

�

	

�
0

�/2

�f l����2cos � sin �d�

�
0

�/2

�f l����2sin �d�

,

indicating that only a fraction of the incident spin remains in
the focused beam, where f l��� now stands for the angular-

spectrum function of the focused beam. If the rest of the
incident spin

�

	�1 −

�
0

�/2

�f l����2cos � sin �d�

�
0

�/2

�f l����2sin �d� 
is converted into the orbital AM �44�, the orbital AM of the
focused beam should be

1

	
+

�

	�1 −

�
0

�/2

�f l����2cos � sin �d�

�
0

�/2

�f l����2sin �d�  .

This is just the result predicted by Eq. �41�. We thus explain
the conversion from the spin to the orbital AM on the basis
that the orbital AM can be dependent on the polarization. If
�=−1, the orbital AM per photon is less than �. On the other
hand, if �=1, the orbital AM per photon is larger than �. The
authors of Ref. �17� put forward their own theoretical expla-
nation based on the analysis of the longitudinal component
of the focused beam’s electric vector. Because the longitudi-
nal component of the electric vector is not able to represent
the whole beam, they failed to show how the orbital AM of
the focused beam depends on the polarization of the incident
paraxial beam.

V. CONCLUSIONS AND REMARKS

In conclusion, I put forward a rigorous approach to the
separation of the total AM into the spin and orbital AM. This
approach is based on the analysis of the momentum density.
It was shown that the momentum density can split into two
parts. One part that does not produce any momentum corre-
sponds to the spin. The other part that produces all the mo-
mentum corresponds to the orbital AM. The spin defined this
way was applied to show that there is no paradox about the
spin of circularly polarized plane wave. Apart from the con-
clusion that the spin is dependent on the polarization, I fur-
ther showed that the orbital AM is also dependent on the
polarization. The polarization-dependent orbital AM was ap-
plied to explain the experiment �17� that converted partial
spin of the paraxial beam LG0

1 into the orbital AM of the
focused beam through a high numerical aperture.

The unit vector I was shown to have an evident effect on
the orbital AM. In the first place, Eqs. �32�, �37�, and �38�
show that the orbital AM is located in the plane formed by I
and the propagation direction. Second, Eqs. �28� and �35�
show that the polarization-dependent term of orbital AM is
determined by the direction of I. When I is parallel to the
propagation direction, the orbital AM is always dependent on
the polarization. When I is perpendicular to the propagation
direction, the orbital AM is almost independent of the polar-
ization in the paraxial approximation. These phenomena may
imply that the orbital AM is most connected with the polar-
ization, the inner degree of freedom, when I is parallel to the
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propagation direction and is least connected with the inner
degree of freedom when I is perpendicular to the propagation
direction. In a word, the effect of I on the orbital AM may
offer further insights into the nature of the AM of light.
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APPENDIX: DERIVATION OF EQS. (14) and (15)

Let us first derive Eq. �15�. Substituting Eq. �7� into Eq.
�13�, one has

L�0� = L1 + L2 + c.c., �A1�

where

L1 =
�0

4�2��3� d3k�d3k� d3x
E� · E

	
x � kei�k�+k�·xe−i�	�+	�t,

�A2�

and

L2 =
�0

4�2��3� d3k�d3k� d3x
E� · E�

	
x � kei�k�−k�·xe−i�	�−	�t.

�A3�

Upon integrating Eq. �A2� over the real space and noticing
the following properties of Dirac’s � function and its first-
order derivative:

��t� =
1

2�
�

−�

�

exp�i	t�d	, ���t� =
i

2�
�

−�

�

	 exp�i	t�d	 ,

�A4�

one obtains

L1 =
�0

4i
� �kyez − kzey�

E� · E

	
e−i�	�+	�t

����kx� + kx���ky� + ky���kz� + kz�d3k�d3k

+
�0

4i
� �kzex − kxez�

E� · E

	
e−i�	�+	�t��kx� + kx�

����ky� + ky���kz� + kz�d3k�d3k

+
�0

4i
� �kxey − kyex�

E� · E

	
e−i�	�+	�t��kx� + kx�

���ky� + ky����kz� + kz�d3k�d3k .

It is changed by eliminating the � functions into

L1 =
�0

4i
� �kyez − kzey�

E�kx�,− ky,− kz� · E

	

�e−i��	�kx�,−ky,−kz�+	��t���kx� + kx�dkx�d
3k

+
�0

4i
� �kzex − kxez�

E�− kx,ky�,− kz� · E

	

�e−i�	�−kx,ky�,−kz�+	�t���ky� + ky�dky�d
3k

+
�0

4i
� �kxey − kyex�

E�− kx,− ky,kz�� · E

	

�e−i�	�−kx,−ky,kz��+	�t���kz� + kz�dkz�d
3k .

Noticing the following property of the derivative of the �
function,

�
t1

t2

f�t����t − t0�dt = − f��t0�, t1 � t0 � t2, �A5�

and taking transformation �5� into account, the above equa-
tion is reduced to

L1 =
�0

4i
� kyez − kzey

	
	E ·

�E�

�kx
+ i

kxt

�0�0	
E� · E
d3k

+
�0

4i
� kzex − kxez

	
	E ·

�E�

�ky
+ i

kyt

�0�0	
E� · E
d3k

+
�0

4i
� kxey − kyex

	
	E ·

�E�

�kz
+ i

kzt

�0�0	
E� · E
d3k

=
i�0

4
� 1

	
ET�k � �k�E�d3k .

By making the variable replacement k→−k, it is changed
into a familiar form,

L1 =
1

4
� �0

i	
E†�k � �k�Ed3k . �A6�

Since operator −i�k is Hermitian, the L1 in Eq. �A6� is real.
A similar calculation produces from Eq. �A3�

L2 = L1. �A7�

It is clear that substituting Eqs. �A6� and �A7� into Eq. �A1�
will yield Eq. �15�.

Then we derive Eq. �14�. Substituting Eq. �8� into Eq.
�11�, one has

S = S1 + S2 + c.c., �A8�

where

S1 = −
�0

4�2��3� d3k�d3k� d3x
E� · k

	
x � Eei�k�+k�·xe−i�	�+	�t,

�A9�

and
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S2 = −
�0

4�2��3� d3k�d3k� d3x
E� · k

	
x

� E�ei�k�−k�·xe−i�	�−	�t. �A10�

Upon integrating Eq. �A9� over the real space and noticing
Eq. �A4�, one obtains

S1 =
i�0

4
� �Eyez − Ezey�

E� · k

	

�e−i�	�+	�t���kx� + kx���ky� + ky���kz� + kz�d3k�d3k

+
i�0

4
� �Ezex − Exez�

E� · k

	

�e−i�	�+	�t��kx� + kx����ky� + ky���kz� + kz�d3k�d3k

+
i�0

4
� �Exey − Eyex�

E� · k

	

�e−i�	�+	�t��kx� + kx���ky� + ky����kz� + kz�d3k�d3k .

It is changed into, by eliminating the � functions and taking
Eqs. �A5� and �5� into account,

S1 =
i�0

4
� Eyez − Ezey

	
k ·

�E�

�kx
d3k

+
i�0

4
� Ezex − Exez

	
k ·

�E�

�ky
d3k

+
i�0

4
� Exey − Eyex

	
k ·

�E�

�kz
d3k .

From the transversality condition k ·E�=0, we know that

k ·
�E�

�kx
= − Ex

�, k ·
�E�

�ky
= − Ey

�, k ·
�E�

�kz
= − Ez

�.

S1 then reduces to

S1 =
1

4
� �0

i	
E� � Ed3k , �A11�

which is clearly real. Similarly, S2 in Eq. �A10� is found to
be real and is equal to S1,

S2 = S1. �A12�

Substituting Eqs. �A11� and �A12� into Eq. �A8� will yield
Eq. �14�.

�1� J. Humblet, Physica 10, 585 �1943�.
�2� G. Abbate, P. Maddalena, L. Marrucci, L. Saetta, and E. San-

tamato, Phys. Scr. T39, 389 �1991�.
�3� L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 �1992�.
�4� S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics

Rev. 2, 299 �2008�.
�5� J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J.

Courtial, Phys. Rev. Lett. 88, 257901 �2002�.
�6� G. C. G. Berkhout and M. W. Beijersbergen, Phys. Rev. Lett.

101, 100801 �2008�.
�7� N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt.

Lett. 22, 52 �1997�.
�8� M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H.

Rubinsztein-Dunlop, Nature �London� 394, 348 �1998�.
�9� H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-

Dunlop, Phys. Rev. Lett. 75, 826 �1995�.
�10� L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant,

and K. Dholakia, Science 292, 912 �2001�.
�11� E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y.

R. Shen, Phys. Rev. Lett. 57, 2423 �1986�.
�12� B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, Phys.

Rev. Lett. 86, 2285 �2001�.
�13� B. Piccirillo, A. Vella, and E. Santamato, J. Opt. B: Quantum

Semiclassical Opt. 4, S20 �2002�.
�14� A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys.

Rev. Lett. 88, 053601 �2002�.
�15� V. Garcés-Chávez, D. Mc Gloin, M. J. Padgett, W. Dultz, H.

Schmitzer, and K. Dholakia, Phys. Rev. Lett. 91, 093602
�2003�.

�16� L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96,

163905 �2006�.
�17� Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T.

Chiu, Phys. Rev. Lett. 99, 073901 �2007�.
�18� S. J. van Enk and G. Nienhuis, Opt. Commun. 94, 147 �1992�.
�19� M. V. Berry, Proc. SPIE 3487, 6 �1998�.
�20� S. M. Barnett and L. Allen, Opt. Commun. 110, 670 �1994�.
�21� L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291

�1999�.
�22� S. M. Barnett, J. Opt. B: Quantum Semiclassical Opt. 4, S7

�2002�.
�23� C.-F. Li, Opt. Commun. �unpublished�.
�24� C.-F. Li, Phys. Rev. A 78, 063831 �2008�.
�25� C.-F. Li, Phys. Rev. A 79, 053819 �2009�.
�26� O. Hosten and P. Kwiat, Science 319, 787 �2008�.
�27� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, New York, 1995�, Chap. 10.
�28� C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Pho-

tons and Atoms �Wiley, New York, 1989�, Chap. I.
�29� S. J. van Enk and G. Nienhuis, Europhys. Lett. 25, 497 �1994�.
�30� Here a†b denotes the inner product of two complex vectors, a

and b, in the form of matrix multiplication.
�31� L. Allen and M. J. Padgett, Opt. Commun. 184, 67 �2000�.
�32� P. B. Monteiro, Paulo A. Maia Neto, and H. M. Nussenzveig,

Phys. Rev. A 79, 033830 �2009�.
�33� D. N. Pattanayak and G. P. Agrawal, Phys. Rev. A 22, 1159

�1980�.
�34� K. S. Youngworth and T. G. Brown, Opt. Express 7, 77

�2000�.
�35� C.-F. Li, Opt. Lett. 32, 3543 �2007�.
�36� J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec-

trons �Addison-Wesley, New York, 1955�.

CHUN-FANG LI PHYSICAL REVIEW A 80, 063814 �2009�

063814-10



�37� J. W. Simmons and M. J. Guttmann, States, Waves and Pho-
tons �Addison-Wesley, MA, 1970�.

�38� R. A. Beth, Phys. Rev. 50, 115 �1936�.
�39� R. I. Khrapko, Am. J. Phys. 69, 405 �2001�.
�40� L. Allen and M. J. Padgett, Am. J. Phys. 70, 567 �2002�.
�41� A. Stewart, Eur. J. Phys. 26, 635 �2005�.

�42� M. Mansuripur, Opt. Express 13, 5315 �2005�.
�43� D. Lenstra and L. Mandel, Phys. Rev. A 26, 3428 �1982�.
�44� T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H.

Rubinsztein-Dunlop, J. Opt. A, Pure Appl. Opt. 10, 115005
�2008�.

SPIN AND ORBITAL ANGULAR MOMENTUM OF A CLASS… PHYSICAL REVIEW A 80, 063814 �2009�

063814-11


