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Particle sensing in optical tweezers systems provides information on the position, velocity, and force of the
specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers
experiments to quantify these parameters. In this paper, we show that quadrant detection is nonoptimal for
particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial
homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and
numerical simulations of the efficacies of both quadrant and spatial homodyne detection are shown. We
demonstrate that 1 order of magnitude improvement in particle sensing sensitivity can be achieved using spatial
homodyne over quadrant detection.
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I. INTRODUCTION

The application of the radiation pressure force for the
trapping of atoms and neutral particles was pioneered by
Ashkin �1�. This was followed by a plethora of seminal ex-
periments utilizing the radiation pressure force �2�, for ex-
ample, in the displacement and levitation in air and water of
micrometer-sized particles �3�, and together with Chu, for the
development of a stable three-dimensional atom cooling and
trapping experiment using frequency-detuned counterpropa-
gating laser beams �4�. In particular, the demonstration of
optical tweezers �5�, based largely on the transverse gradient
force of a single focused Gaussian optical beam, was a sig-
nificant contribution to optical trapping in biology �6�.

In biological systems, optical tweezers were first used to
trap and manipulate viruses and bacteria �7�. This was fol-
lowed by a burgeoning number of experiments using optical
tweezers for measurements of DNA-RNA stretching and un-
folding �8–12�, intracellular probing, manipulation of gamete
cells, trapping of vesicles, membranes and colloids �13,14�,
and DNA sequencing using RNA polymerase �15�. In par-
ticular, for the first time, quantitative biophysical studies of
the kinetics of molecular motors �16� �e.g., myosin �17� and
kinesin �18�� at the single molecule level was made possible
with the use of optical tweezers. Coupled with conventional
position sensitive detectors �i.e., using quadrant photodetec-
tors �13,19,20��, the position of, and force on, a bead tethered
to a molecular motor can be measured at the single molecule
level �21–23�. The sensitivities attainable for force and posi-
tion measurements of particles in optical tweezers are in the
subpiconewton and subnanometer regimes �13,17,23�, re-
spectively. The application of the optical tweezers technol-
ogy has led to a more complete biophysical understanding of
the kinetics of molecular motors �24–35�—a quintessential
demonstration of new physical techniques yielding new in-
sights into biology.

Beam position and momentum sensing is particularly cru-
cial for particle sensing in optical tweezers enabling high-
precision particle position and force measurements
�13,19,20�. Therefore it is important that such measurements
are performed optimally to achieve the highest measurement

efficacy. Recently, Hsu et al. �36� showed that the conven-
tional quadrant detection scheme is nonoptimal for measure-
ments of the position and momentum of optical beams, even
in the absence of classical noise sources. An alternative
scheme for the optimal detection of the position and momen-
tum of an optical beam was proposed, based on a spatial
homodyne detection scheme. This scheme has also been
proven to perform at the quantum limit of light based on
Cramer-Rao informational bounds �37�. Therefore, it has be-
come apparent that the use of quadrant detection for particle
sensing in optical tweezers systems is nonoptimal and the
introduction of spatial homodyne detection could offer the
possibility for greater particle tracking sensitivities.

In this paper, we address the pertinent questions for par-
ticle sensing technology in optical tweezers systems—have
we reached the limit of particle tracking sensitivity and can
this limit be surpassed using quantum resources? We believe
that in answering this technique-related question, naturally
arises a biophysical question—i.e., with significantly en-
hanced sensitivities, are we able to detect molecular kinetics,
at the single molecule level, that were previously unresolv-
able? This biophysical question has wide implications as
there are many vital protein conformational changes that oc-
cur in the angstrom regime and within millisecond time
scales �23�. For example, molecular motors move along
nucleic acids in steps of a single-base pair scale �e.g., 3.4 Å
on dsDNA� �23� and the bacterial DNA translocase FtsK
moves at speeds of 5 kilobases per second �38�. Therefore,
enhanced particle sensing could elucidate these finer features
with greater sensitivity than conventional particle sensing
techniques in optical tweezers systems.

This paper begins by formalizing an optimal parameter
estimation procedure for particle sensing based on the analy-
sis of the spatial properties of the field scattered by a particle
in an optical tweezers. We show that split detection is non-
optimal and consequently propose an optimal measurement
scheme based on spatial homodyne detection. The efficacy of
particle sensing is evaluated using the signal-to-noise ratio
�SNR� and sensitivity measures and the efficacy of spatial
homodyne detection and split detection systems are com-
pared.
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II. OPTIMAL PARAMETER ESTIMATION FOR SPATIAL
PROPERTIES OF OPTICAL FIELDS

An optical field can be formalized and described using a
range of parameters—e.g., the polarization, the amplitude-
phase quadratures, and the transverse spatial profile. These
parameters can be measured using a range of detection tech-
niques �e.g., polarimetry, direct detection, interferometry, and
beam profiling� and an estimate of their values in the pres-
ence of classical and quantum noises and detection ineffi-
ciency is obtained. Here we develop a formalism to quantify
an arbitrary spatial modification of the field parameterized by
a parameter p �e.g., p could quantify the displacement of a
spatial mode along a transverse axis �36��. In principle, an
arbitrary field can be treated and the field properties can be
modeled using Maxwell’s equations �39�. However, for
spherical fields such as those produced by scattering pro-
cesses from small particles, after optical imaging of the field,
the paraxial approximation is valid and the propagating field
can be described using two-dimensional spatial modes in a
convenient basis.

The sensitivity of measurements on optical fields is ulti-
mately limited by quantum noise on the fields, exhibited
typically as shot noise. To understand such limits, it is im-
portant to use a full quantum-mechanical description of the
field. The spatial quantum states of an optical field exist
within an infinite-dimensional Hilbert space. Depending on
the spatial symmetry of an imaged optical field, the spatial
states of the field may be conveniently expanded in the basis
of the rectangularly symmetric TEMmn or circularly symmet-
ric LGn,l modes. A field of frequency � can be represented
by the positive frequency part of the electric field operator

Ẽ+���ei�t. We are interested in the transverse information of
the field described fully by the slowly varying field envelope

operator Ẽ+��� given by

Ẽ+��� = i� ��

2�0V �
j,m,n

ãmn
j umn

j ��� , �1�

where �= �x ,y� is a coordinate in the transverse plane of the
field and the summation over the parameters j, m, and n is
given by

�
j,m,n

� �
j��x,y	

�
m=0

�

�
n=0

�

. �2�

In this paper, we adopt the TEMmn mode basis for conve-
nience, such that umn

j ��� and ãmn
j are, respectively, the trans-

verse beam amplitude function and the photon annihilation
operator for the TEMmn mode with polarization j. The
umn��� mode functions are normalized such that their self-
overlap integrals are unity, so that the inner product


umn
j ���,um�n�

j� ���� = �
−�

�

�umn
j ����� · um�n�

j� ���d�

= �mm��nn�� j j�. �3�

We now apply an arbitrary spatial perturbation, described by
parameter p, to the field. Equation �1� can then be rewritten

as a sum of coherent amplitude components and quantum
noise operators, given by

Ẽ+��,p� = i� ��

2�0V �
j,m,n

ãmn
j umn

j ��,p�

= i� ��

2�0V
��p�v��,p� + �
j,m,n

�ãmn
j umn

j ��,0�� ,

�4�

where

��p�v��,p� = �
j,m,n


ãmn
j �umn

j ��,0� = �
j,m,n


ãmn
j �umn��,0�ĵ ,

where ��p� is the coherent amplitude of mode v�� , p� and ĵ
is the unit polarization vector. We see from Eq. �4� that ��p�
and v�� , p� can be related to Ẽ+�� , p� by

��p� =�2�0V

��

E+��,p�,E+��,p�� , �5�

v��,p� = − iNvE+��,p� , �6�

where E+�� , p�= 
Ẽ+�� , p�� and the normalization constant
Nv is given by

Nv = 
E+��,p�,E+��,p��−1/2

= �� �
−�

�

�E+��,p��� · E+��,p�d��−1/2

. �7�

Note that ���p��2 is the mean number of photons passing
through the transverse plane of the field per second and in
this paper, we assume ��p� to be real, without loss of gen-
erality. The quantum noise operator corresponding to mode
umn���=umn

j �� ,0� is given by �ãmn
j .

In the limit of small estimate parameter p, the Taylor ex-
pansion of the first bracketed term in Eq. �4� is given by

��p�v��,p� � ��0�v��,0� + p� ����p�v��,p��
�p

�
p=0

, �8�

where the first term on the right-hand side of Eq. �8� indi-
cates that the majority of the power of the field is in the
v�� ,0� mode. The second term on the right-hand side of Eq.
�8� defines the spatial mode w��� corresponding with small
changes in the parameter p,

w��� =
1

Nw
� ����p�v��,p��

�p
�

p=0
, �9�

where Nw is the normalization given by

Nw = �� ����p�v��,p��
�p

�
p=0

,� ����p�v��,p��
�p

�
p=0
�−1/2

.

�10�

From Eq. �8� we see that the amplitude of mode w��� is
directly proportional to the magnitude of the spatial pertur-
bation of the field.
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A. Split detection

For optical beam position and momentum measurements,
the conventional detection scheme used is split detection �a
one-dimensional quadrant detector�. In split detection, the
optical beam under interrogation is incident centrally on a
split detector, as shown in Fig. 1�c�.

The difference between the photocurrents from the two
halves of the split detector contains partial information about
the position or momentum of the beam, given by �36�

�iSD =
2�0V

�� 
�
−�

0

Ẽ+† · Ẽ+d� − �
0

�

Ẽ+† · Ẽ+d�� = ��p�X̃f
+,

�11�

where X̃f
+= ãf

†+ ãf is the amplitude quadrature operator of the
flipped mode with transverse-mode amplitude function

v f��� = � v��,0� , x 	 0

− v��,0� , x 
 0.
� �12�

The amplitude quadrature operator can be written in terms of
its coherent amplitude

� f�p� = ��p�
v f���,v��,p�� , �13�

wherein resides the signal due to the parameter p and a quan-

tum noise operator �X̃f
+= X̃f

+− 
X̃f
+� which is ultimately re-

sponsible for placing a quantum limit on the measurement
sensitivity so that

�iSD = ��p��2� f�p� + �X̃f
+� . �14�

The 
v f��� ,v�� , p�� term in Eq. �13� is the overlap integral
between the flipped mode v f��� and the displaced mode
v�� , p�.

B. Spatial homodyne detection

Hsu et al. �36� proposed a new displacement measure-
ment scheme that is optimal for detecting beam position and
momentum. The spatial homodyne scheme utilizes a homo-
dyne detection setup that has a local oscillator mode opti-
mized for the displacement measurement of the input beam,
as shown in Fig. 1�d�. The local oscillator �LO� beam inter-
feres with the input beam on a 50:50 beam splitter. The out-
puts of the beam splitter are then detected using a pair of
balanced single-element photodetectors, with the difference
in photocurrents providing the measurement signal. The spa-
tial homodyne scheme was also proven to perform at the
Cramer-Rao bound �37�, therefore extending the capabilities
of the spatial homodyne scheme for the optimal measure-
ment of any spatial parameter p �e.g., the measurement of the
orbital angular momentum of light �40��. We now proceed to
derive the photocurrent for the spatial homodyne detection
scheme.

The input beam �as described in Eq. �4�� is interfered with
the bright LO beam with mode-shape w��� to obtain

Ẽ�
+ =

1
�2

�Ẽ+ � ẼLO
+ � . �15�

The positive frequency part of the electric field operator for
the LO is given by

ẼLO
+ ��� = i� ��

2�0V
�LOw��� + �
j,m,n

�ãmn,LO
j umn

j ����ei�,

�16�

where � is the phase difference between the local oscillator
and the input beam.

The photocurrent at each photodetector �distinguished by
the subscripts + and −, respectively�, assuming detectors of
infinite extent, is given by

i� =
2�0V

��
�

−�

�

Ẽ�
+† · Ẽ�

+ d� �17�

=
2�0V

��
�

−�

� 1

2
�Ẽ+ � ẼLO

+ �† · �Ẽ+ � ẼLO
+ �d� , �18�

whereby one output of the spatial homodyne attains a

-phase shift with respect to the other output due to the hard
reflection from the beam splitter.

Substituting Eqs. �1� and �16� into Eq. �18� and taking the
subtraction of the photocurrent from the two detectors gives

Obj Img

PSD

Far-field
Image Plane

LO with optimized
mode-shape

(c)

(b)

(a)

(d)

Trapping
field

Focusing
lens

Scattered
field

Trapping
beam

Detected
scattered field

Detected
scattered field

Input
beam

Input
beam

FIG. 1. �Color online� �a� Schematic diagram and �b� wave-front
illustration for an optical tweezers experiment. A trapping field is
focused onto a particle. The particle scatters the incident trapping
field, with the resulting scattered and residual trapping fields col-
lected by an objective �Obj� lens. This is followed by imaging of the
collected fields onto a position-sensitive detector �PSD� in the far
field using an imaging �Img� lens. The position-sensitive detector
could consist of either a �c� split detection system or a �d� spatial
homodyne scheme with the local oscillator �LO� beam in an opti-
mized spatial mode for the relevant measurement of parameter p.
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�iSH = i+ − i−

= �LO�
−�

� 
e−i��w����� �
j,m,n

ãmn
j umn

j ��,p� + ei�w���

�� �
j,m,n

ãmn
j umn

j ��,p��†�d�

= �LO�e−i� �
j,m,n

ãmn
j 
w���,umn

j ��,p��

+ ei�� �
j,m,n

ãmn
j 
w���,umn

j ��,p���†�

= �LO�e−i�ãw + ei�ãw
† � = �LOX̃w

�, �19�

where ãw is an annihilation operator describing the compo-
nent of the input field in mode w��� and by definition the

X̃w
�=e−i�ãw+ei�ãw

† is the quadrature operator of that compo-
nent at phase angle �. In the above, we have taken the con-
dition �LO� 
ãw� and invoked the linearization approxima-
tion, thereby removing terms that do not involve �LO. The
orthonormality property of modes given in Eq. �7� has also
been used.

An optimal estimate of the parameter p is obtained when
the local oscillator mode w��� is chosen to match the asso-
ciated input mode v�� , p�, as shown in Eq. �19�. The spatial
homodyne detection scheme then extracts from the signal
field a quadrature variable associated with the local oscillator
field mode, with quadrature phase angle given by �.

It should be noted that Delaubert et al. �37� showed that
optimal parameter estimation can be achieved using a pho-

todetector array for the cases where the signal field Ẽ+�� , p�
is shot-noise limited or single-mode squeezed, so long as the
array resolution is sufficiently small. Array detection is re-
stricted to amplitude quadrature detection and is not polar-
ization resolving, however, in situations where these restric-
tions are satisfied is formally identical to spatial homodyne
detection.

C. Quantifying the efficacy of parameter estimation

We now introduce the SNR and sensitivity measures for
the spatial homodyne and split detection schemes. For the
spatial homodyne detection scheme, the measured signal is
the mean signal component of the difference photocurrent in
Eq. �19�, given by


�iSH� = �LO�w�p��ei�� + e−i��� , �20�

where �w�p�=��p�
w��� ,v�� , p��. For matched local oscil-
lator and signal phases such that �=0, the maximal signal is
obtained, given by


�iSH� = 2�LO�w�p� . �21�

The corresponding noise component is given by

�
�iSH
2 � − 
�iSH�2 = �LO�X̃w

�, �22�

where �2X̃w
�= 
��X̃w

��2� is the variance of the signal field
mode. The resulting SNR is given by

SNRSH =
2�w�p�

�X̃w
�LO

. �23�

If the optical field is in a coherent state, as is typical of a low

noise laser �X̃w
�LO=1 and the SNR for the spatial homodyne

detection scheme is given by

SNRSH,coh = 2�w�p� . �24�

Clearly, although experimentally challenging, squeezing the

signal mode such that �X̃w
�LO
1 has the capacity to further

enhance the SNR.
Alternatively, we introduce the sensitivity S measure,

which is defined as a change to parameter p required to pro-
vide SNR=1 for a signal field in a coherent state given by

SSH,coh = 
� �SNR

�p
�

p=0
�−1

=
1

2

� ��w�p�

�p
�

p=0
�−1

. �25�

For comparison, the corresponding SNR for the split detec-
tion scheme in the coherent-state limit is given by

�SNRSD,coh� = 2� f�p� , �26�

with a sensitivity given by

SSD,coh =
1

2

� �� f�p�

�p
�

p=0
�−1

. �27�

III. PARTICLE SENSING IN OPTICAL TWEEZERS

Figure 1�a� shows a typical optical tweezers setup. A trap-
ping beam in the TEM00 mode is focused onto a scattering
particle. In this instance, we assume that the particle is
spherical, with a permittivity greater than that of the me-
dium, �2��1. If the particle has a diameter larger than the
wavelength of the trapping beam, light rays are refracted as
they pass through the particle, as shown in Fig. 2. This re-
fracted light results in an equal and opposite change of mo-
mentum imparted on the particle. Due to the intensity profile
of the beam, the outer ray is less intense than the inner ray.
Consequently, the resulting force acts to return the particle to
the center of the trapping beam focus �6�.

Trapping
beam
intensity
profile

ray 1

ray 2

Fgrad ε1

ε2

Fscat

FIG. 2. �Color online� Illustration showing a TEM00 trapping
beam impinging on a spherical scattering particle. Rays 1 and 2 are
refracted in the spherical particle, thereby undergoing a change in
momentum. A corresponding equal and opposite change in momen-
tum is imparted on the particle resulting in the particle being at-
tracted to the center of the trapping beam. Fgrad and Fscat are the
gradient and scattering forces, respectively. �1 and �2 are the respec-
tive permittivities of the medium and the sample.
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The effective restoring or trapping force is due to two
force components: �i� the gradient force Fgrad resulting from
the intensity gradient of the TEM00 trapping beam, which
acts transversely toward the high intensity region, and �ii� the
scattering force Fscat resulting from the forward-direction ra-
diation pressure of the trapping beam incident on the par-
ticle. In the focal region of the optical tweezers trap, the
gradient force is typically dominant.

It is important to note that in some optical tweezers ex-
periments, the trapped particle has radius less than the wave-
length of the trapping laser. In this regime, the trapping force
on the particle is generated due to an induced dipole mo-
ment. The dipole moment induced will be along the direction
of trapping beam polarization. The assumption that the par-
ticle is spherical is no longer important, since the particle has
no structural deviations greater than the wavelength of the
trapping beam. This allows the particle to be treated as a
normal dipole, hence the particle experiences a force due to
interaction of its induced dipole moment with the transverse
electromagnetic fields of the impinging light. This force is
proportional to the intensity of the beam and has the same
net result as before; it acts to return the particle to the center
of the trapping beam focus. The position and force sensing of
the trapped particle can then be obtained by imaging the
scattered field from the particle on a position sensitive detec-
tor such as the commonly utilized quadrant photodetector
�13,19,20� or a spatial homodyne detector �36�.

A. System configuration

The collection efficiency of the light field is given by the
numerical aperture �NA� of the objective lens �as shown in
Fig. 1�b��, given by

�NA� = n sin � , �28�

where n and � are the refractive index and the collection half
angle of the lens, respectively. � is related to the lens diam-
eter D �assuming the object is at the focus, with focal length
fL� by

tan � =
D/2
fL

. �29�

B. Propagation of fields through system

We now formalize all the relevant fields that propagate
through the optical tweezers system, as shown in the sche-
matic of the optical tweezers arrangement of Fig. 1�a�. Fig-
ure 1�b� illustrates the wave front of the trapping and scat-
tered fields. The trapping field is incident from the left of the
diagram and is then focused onto a spot from the focusing
lens. The particle is trapped near the center of this focal spot
and scatters the incident trapping field, with the forward scat-
tered and residual trapping fields being collected by the ob-
jective lens. This is followed by imaging into the far-field
onto a position-sensitive detector.

1. Trapping field

Assuming that the trapping field is Gaussian and hence in
a TEM00 mode, the positive frequency part of the electric

field for the trapping beam at the waist of the trap �denoted
by the superscript T� is given by

Etrap
T+ ��� = i� ��

2�0V
�trapu00

T ��� , �30�

with the mode-shape function given by

u00
T ��� =

2

wT
�


e−�2/wT
2
p̂trap, �31�

where �2= ���2, wT is the waist size of the trapping beam, and
p̂trap is a unit vector representing the polarization of the trap-
ping field.

Using the paraxial approximation, the positive frequency
part of the electric field of the trapping beam after propaga-
tion of a distance fO from the focus to the objective lens �of
focal length fO� is given by

Etrap
O+ ��� = i� ��

2�0V
�trapexp�− ikfO�u00

O �R��� , �32�

where k=2
 /� is the wave vector of the trapping field. With
the exception of the replacement wO→wT, u00

O ��� is defined
identically to u00

T , with the radius of the spot at the objective
being wO given by

wO =
fO�


wT
. �33�

Aperturing due to the finite radius R of the objective lens is
taken into account via the aperture function �R��� given by

�R��� = �1, � 
 R

0, � 	 0,
� �34�

where R can be related to the NA of the imaging sys-
tem and refractive index of the trapping medium n by
R= fONA /�n2− �NA�2.

2. Scattered field

In principle, there could be multiple inhomogeneous par-
ticles within the optical tweezers focus, scattering the input
trapping field. For this scenario, several numerical methods
exist to calculate the scattered field—e.g., the finite differ-
ence frequency domain and T-matrix hybrid method �41� and
the discrete-dipole approximation and point matching
method �42�. However, for simplicity, we consider the scat-
tering from a single spherical, homogeneous particle with
diameter much smaller than the wavelength. The resulting
scattered field can be modeled as dipole radiation, having a
positive frequency electric field �39� given by

Escat
+ �r,p� = − k2a3� �1 − �2

�1 + 2�2
� e−ikr�

r�
r̂� � r̂� � Etrap

T+ �p� ,

�35�

where r=xx̂+yŷ+zẑ is the coordinate of the field
with respect to the center of the optical tweezers,
r�= �x− p�x̂+yŷ+zẑ is the coordinate of the field with respect
to the displaced particle, r�= �r��, and r̂�=r� /r�. The radius
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of the spherical scattering particle is given by a.
The scattered field is then collected by the objective lens

�as shown in Fig. 1�b��, with the corresponding positive fre-
quency part of the electric field given by

Escat
O+ ��,p� = ��Escat

+ �rO,p� · l̂�l̂ + �Escat
+ �rO� · m̂�n̂	

�� fO

rO�
exp�ik�rO − fO���R��� �36�

=− iK���

�0c
� fO

rO�

exp�− ik�rO − rO� − fO��
rO�

�R���

· ��rÔ� � rÔ� � u00
O �l̂ + �rÔ� � rÔ� � u00

O �n̂� ,

�37�

where rO=xx̂+yŷ+ fOẑ and rO� = �x− p�x̂+yŷfOẑ. The unit

vectors l̂, m̂, and n̂,

l̂ =
1

��
�y,p − x,0� , �38�

m̂ =
1

��rO
�− fO�x − p�,− fOy,��2� , �39�

n̂ =
− 1

��
�x − p,y,0� , �40�

are used to include the effect of the objective lens on the
polarization of the scattered field, where ��= �x− p�x̂+yŷ and
��= ����. The term �fO /rO� describes the compression of the
intensity of the scattered field due to the change in propaga-
tion direction induced by the objective lens. To simplify the
equation, we have defined the constant K given by

K = �trapk
2a3� �1 − �2

�1 + 2�2
� . �41�

3. Detection

Since the total field after the objective lens consists of
both the scattered field and the residual trapping field, we
now include both fields to describe the total field after the
objective lens, given by

Etotal
O+ ��,p� = Escat

O+ ��,p� + Etrap
O+ ��� . �42�

After the objective lens, the beam is focused onto a detector
in the far-field image plane via the use of an imaging lens.
Assuming the lens is thin and ideal, the field in the image
plane is obtained by taking the Fourier transform of Eq. �42�,
given by

Etotal
I+ ��,p� = F„Etotal

O+ ��,p�… �43�

=F„Escat
O+ ��,p�… + F„Etrap

O+ ���… �44�

=Escat
I+ ��,p� + Etrap

I+ ��� , �45�

where �= �X ,Y� are the transverse coordinates in the image
plane. It is important to note that the analysis presented here
is independent of the absolute scaling of the image plane
coordinates. In an experimental situation, a scaling factor is
introduced that depends on the choice of magnification
lenses used.

The critical parameters for assessing sensitivity of particle
monitoring are ��p�, v�� , p�, and w���. These parameters
can now be calculated using Eqs. �5�, �6�, and �9�. Using Eq.
�5�, we now find

��p� =�2�0V

��

Etotal

I+ ��,p�,Etotal
I+ ��,p�� �46�

��2�0V

��

Etrap

I+ ���,Etrap
I+ ���� �47�

=�trap, �48�

where we have assumed that the trap power is greater than
the scattered power, as is the case for scattering from a small
particle, and for simplicity that only the scattered field is
apertured by the objective lens. The latter assumption is rea-
sonable for optical tweezers systems with a sufficiently large
trap waist size and numerical aperture. In this paper, we re-
strict our analysis to the realistic scenario of NA�0.2 and
choose a trapping field waist size of 4 �m. With these pa-
rameters, trap field clipping due to the aperture causes only
15 ppm loss and is therefore negligible.

Using Eq. �6�, we obtain

v��,p� = − iNvEtotal
I+ ��,p�

= − i�2�0V

��

1

�trap
�Escat

I+ ��,p� + Etrap
I+ ���� , �49�

where we have used the relations for Nv and ��p� given in
Eqs. �7� and �48�, respectively.

Now using Eq. �9�, we obtain the functional form for the
mode that contains information about the particle position
given by

w��� = − iNv� �Escat
I+ ��,p�
�p

�
p=0

. �50�

Note that this mode is only dependent on the scattered field.
We now calculate the SNR of the spatial homodyne and

split detection schemes for particle sensing in an optical
tweezers arrangement. Substituting the expressions obtained
in Eqs. �48�–�50� into Eq. �24�, the SNR for the spatial ho-
modyne detection scheme is given by
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�SNRSH,coh� = 2�w�p�

= 2��p�
w��,p�,v��,p��

= − 2i�2�0V

��
�

−�

�

w��,p���Escat
I+ ��,p�

+ Etrap
I+ ����d�

= − 2i�2�0V

��
�

−�

�

w���� · Escat
I+ ��,p�d�

= − 2K�2V�
−�

�

w���� · A���d� , �51�

where the effective aperture function in the image plane co-
ordinates is given by

A��� = F�� fO

rO�

exp�− ik�rO − rO� − fO��
rO�

��rO

ˆ

� � rO

ˆ

� � u00
O �l̂

+ �rO

ˆ

� � rO

ˆ

� � u00
O �n̂��R���� . �52�

In a similar manner using Eq. �26�, the SNR for the split
detection scheme is given by

�SNRSD,coh� = − 2K�2V�
−�

�

v f���� · A���d� . �53�

Correspondingly, the sensitivities for the spatial homodyne
and split detection schemes can be conveniently calculated
using Eqs. �25� and �27�, respectively.

IV. SIMULATION AND RESULTS

A formal description for the trapping and scattered fields
in an optical tweezers configuration was presented in Sec.
III. We now numerically solve for the scattered field from
a particle trapped in the optical tweezers. We utilize the field
imaging system shown in Fig. 1�b� to image the scattered
field into a propagating optical beam that is subsequently
detected. We compare the SNR and sensitivity of both split
and spatial homodyne detection schemes �described in
Sec. II�.

As mentioned in the preceding section, the origin of the
coordinate system is defined to be at the focal point of the
optical tweezers focusing lens system. The optical fields
propagate in the z direction and the scattering particle was
assumed to be spherical and homogeneous. We model par-
ticle displacement in the x-y plane to illustrate the effect on
the scattered field in the transverse plane. The far-field inten-
sity distribution arriving at the detector is given by the inter-
ference between the trapping and forward scattered fields
calculated from Eq. �45� and shown in Fig. 3. As the trapping
field is far more intense than the scattered field, we have
subtracted its intensity from the images shown in this figure
as well as subsequent figures to make visible the interference
fringes between scattered and trapping fields.

Note that the terms due to just the scattered field have
been ignored to reduce numerical error, justified since the

total scattered power is 4 orders of magnitude smaller than
the trapping beam power. The detection area was chosen to
be larger than the area of the calculated image field to avoid
inaccuracies due to clipping of the image. Notice that as the
particle moves in one direction, the intensity distribution
shifts in the opposite direction due to the lensing effect of the
objective. Note also the difference in intensity distribution
between the x and y trapping beam polarization directions—
i.e., the interference pattern appears “compressed” along the
polarization axis due to the dipole scattering distribution of
the particle.

The SNRs for the split and spatial homodyne detection
schemes were calculated, the results of which are shown in
Figs. 4�a�–4�c�. The SNR of the split detection scheme was
evaluated by applying Eq. �53� to the calculated interference
signal, shown in Fig. 4�a�. To calculate the SNR for the spa-
tial homodyne detection, the optimal LO mode first had to be
determined. Improved SNR is possible with spatial homo-
dyne detection when compared to split detection for all par-
ticle displacement regimes. However, the optimal LO mode
depends on the position of the particle, so to achieve this, a
dynamical mode optimization routine would need to be
implemented. Here we present results with detection opti-
mized for two specific cases: �i� for a particle located close to
the origin �p�wT� as modeled in the theory section and �ii�
for a particle displaced from the origin by a factor of order
wT.

For the small displacement limit, the LO field was deter-
mined from the first-order term in the Taylor expansion of
Eq. �9� for the scattered field. The resulting SNR is shown in
Fig. 4�b�; with the corresponding LO spatial modes assuming
y and x linearly polarized trapping fields shown in Figs. 4�d�
and 4�e�, respectively. One observes that for displacements
significantly less than the trapping beam waist size, the SNR
is linear, with the optimum sensitivity—corresponding to
maximum slope in the SNR—occurring at zero displacement

(a) (b) (c)

(d) (e) (f)

In
te
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ity

(a
rb

.u
ni

ts
)

FIG. 3. �Color online� Interference pattern of the trapping and
forward scattered field in the far-field image plane for 200 mW
trapping power, �=1064 nm, particle radius a=0.1 �m, permittiv-
ity of the medium �1=1, permittivity of the particle �2=3.8, and
objectives with NA=0.99 and focal spot size of 4 �m. We assume
absorptive losses in the sample are negligible. �a�–�c� and �d�–�e�
assume the trapping field is linearly x and y polarized, respectively.
The color bar shows scale of the intensity distribution. The particle
displacements are given by �a�, �d�: 1 �m, �b�, �e�: 0.5 �m, and
�c�, �f�: 0 �m.
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and significantly surpassing that achievable with split detec-
tion. Particle tracking with optimum sensitivity is possible in
this linear regime. At particle displacements of around
��0.4� �m, however, the SNR peaks. Small displacements
of a particle around these points leave the SNR unchanged.
Hence the signal read out from the spatial homodyne detec-
tor also remains unchanged, with the result that particle
tracking becomes ineffective. As the particle position in-
creases further, it moves out of the trapping field, causing a
drop in the total scattered power and consequential exponen-
tial decay in the SNR.

It is possible to recalculate the LO field mode to optimize
the sensitivity for particles fluctuating around any arbitrary
position by performing a Taylor expansion in p of the scat-
tered field about that position and retaining only the first-
order term. Figure 4�c� shows the resulting SNR and corre-
sponding LO mode shapes when the LO mode is optimized

for particles fluctuating around 0.4 �m. Notice that now the
maximum SNR slope, and hence optimum sensitivity, is
shifted from zero displacement to displacements of around
0.4 �m. Hence, we see that as the tracked particle moves, it
is possible to dynamically adjust the LO field shape to opti-
mize the measurement sensitivity and hence the particle
tracking.

We now numerically evaluate the sensitivities of the split
and spatial homodyne schemes in the small displacement
limit, given by Eqs. �27� and �25�, respectively. The sensitiv-
ity is the minimum detectable displacement, defined as the
displacement required to change the SNR by 1. The respec-
tive sensitivity curves for �i� split and �ii� spatial homodyne
detections versus the numerical aperture of the objective lens
are shown in Fig. 5.

The minimum detectable displacement for both the split
and homodyne detection schemes decreases with increasing
NA of the collection lens. As the NA increases, more of the
scattered field is collected, therefore providing more infor-
mation about the scattering particle. The spatial homodyne
outperforms the split detection scheme for all NA values.
This is due to the spatial homodyne scheme providing opti-
mal information extraction of the detected field whereas the
split detection scheme only measures partial information of
the detected field, as derived in Eq. �13�. Therefore curve �ii�
is the quantum limit for particle sensing in optical tweezers
systems. In order to perform measurements below this quan-
tum limit, nonclassical resources have to be used. For ex-
ample, squeezed light in the spatial mode �43� corresponding
to the displacement signal mode can be injected into the
optical tweezers system to reduce the quantum noise floor
and therefore enhance position sensing �36�.
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FIG. 4. �Color online� Normalized SNR vs particle displacement
for �a� split detection, �b� spatial homodyne detection with LO spa-
tial mode optimized for small displacement measurements, and �c�
spatial homodyne detection with LO spatial mode optimized for
larger displacement measurements. The black solid and red dashed
lines are for linearly x and y polarized trapping fields, respectively.
The LO spatial modes for the small displacement measurements are
�d� y- and �e� x-polarized trapping fields, while for large displace-
ment measurements are �f� y and �g� x polarized trapping fields.
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FIG. 5. �Color online� Minimum detectable displacement vs col-
lection lens NA for �i� split and �ii� spatial homodyne detections,
normalized by K. Solid and dashed lines are for linearly x- and
y-polarized trapping fields, respectively. The axis on the right shows
the minimum detectable displacement assuming 200 mW trapping
power, �=1064 nm, particle radius a=0.1 �m, permittivity of the
medium, �1=1, permittivity of the particle �2=3.8, and objectives
with focal spot size of 4 �m. We assume absorptive losses in the
sample are negligible. The split detection nonoptimality shaded area
shows the particle sensing sensitivity loss due to incomplete infor-
mation detection from split detection. The quantum resources
shaded area indicates the region where quantum resources such as
squeezed light �43� can be used to further enhance the sensitivity of
particle sensing measurements.
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V. CONCLUSION

We have developed a formalism for particle sensing in
optical tweezers via the analysis of the transverse spatial
modes imaged from a scattered field. The conventional quad-
rant detection scheme, used ubiquitously in optical tweezers
experiments, was shown to only detect partial information
from the scattered light field. We propose instead the use of
spatial homodyne detection whereby optimal information
from the scattering particle can be obtained via the appropri-
ate transverse spatial mode shaping of the LO field. A nu-

merical simulation of the SNR and sensitivity of both split
and spatial homodyne detections was presented and we dem-
onstrate that up to 1 order of magnitude improvement in the
sensitivity of spatial homodyne over split detection can be
achieved.
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