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Single � photon propagation in a dense absorptive medium with two widely spaced resonances is experi-
mentally studied. After an initial fast decay, a revival of the photon amplitude in the form of a bump, exceeding
the probability amplitude of the incident photon, is observed. The irradiation time of this bump delays ap-
proximately by the lifetime of the excited nuclei in the absorber. This effect is explained by the interference of
the incoming radiation with the collectively scattered radiation, the phase of which is modulated with the
frequency of the doublet splitting. Initially, the destructive interference changes to a constructive one, distin-
guishing the storage and retrieval stages of the photon propagation in a dense medium, i.e., the collective
absorption and collective re-emission processes.
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I. INTRODUCTION

The single-photon interaction with a resonant medium is
of importance from a fundamental point of view and from
applications in quantum cryptography and quantum comput-
ing �see, for example, �1� and references therein�. It is re-
markable that since its discovery, Mössbauer spectroscopy
has worked with sources emitting single photons. Even the
invention of synchrotron radiation sources of extremely high
brilliance did not change the situation in Mössbauer spec-
troscopy because the spectrum of synchrotron radiation
spreads from visible light to hard x-rays with the upper limit
extending up to 100 keV, while a typical value for the natural
nuclear resonance width, for example, for 57Fe, is �2
�10−8 eV �see, for example, Ref. �2��. Many interesting ex-
periments with single-photon sources and synchrotron radia-
tion have been performed demonstrating the collective exci-
tation of nuclei incorporated into a solid. Because of the
small resonant cross section of the nucleus, thick resonant
absorbers have been studied. A � photon incident on an en-
semble of nuclei can interact resonantly with each nucleus.
Meanwhile, the energy of the one photon is only sufficient to
excite a single nucleus in the ensemble. However, the obser-
vation of Bragg diffraction in a perfect crystal demonstrates
that we have a collective nature of scattering of a single �
photon by the ensemble, instead of scattering only by a
single nucleus �2�. This happens because, in the scattered
radiation, we cannot distinguish which nucleus has scattered
the photon. By one of the rules of quantum mechanics, we
must sum all probability amplitudes of the photon evolution
in the absorber, which takes into account scattering in all
nuclei including the multiple scattering events. All these
“quantum trajectories” of the photon in the ensemble of nu-
clei give the complete probability amplitude of the photon at
the output of the absorber. The collective excitation of an
ensemble of nuclei by a � photon was named by Trammell
�3�, and Kagan and Afanas’ev �4� the delocalized nuclear

excitation or “nuclear exciton.” The nuclear exciton has be-
come a central concept of the theory of nuclear resonant
scattering. It was shown that the nuclear ensemble behaves
like a macroscopic resonator with properties qualitatively
different from those of an individual nucleus �2�.

Controllable delay, storage, and retrieval of a single pho-
ton are important in quantum communication and informa-
tion processing where single photons have been proposed to
use as “flying quantum bits,” connecting spatially separated
nodes in a quantum network �5�. Excellent buffers for data
synchronization can be constructed with the help of electro-
magnetically induced transparency �EIT� �6,7�. Recently, it
was clearly demonstrated that electromagnetic pulses are de-
layed and can even be “stopped” in an optically dense me-
dium with a narrow transparency window in the absorption
spectrum controlled by an auxiliary excitation field �8,9�.
The storage and retrieval of photon pairs with EIT even al-
lowed to essentially increase their coherence time �10�. An
appreciable delay of electromagnetic pulses can be realized
also without an auxiliary excitation of a resonant medium. It
was observed in a dense medium with two widely spaced
absorption resonances �11–14�. The slowing down of the
group velocity of the pulse is due to normal dispersion in the
middle of the doublet structure. It has been explained by the
energy storage of the pulse in the excited atomic states �15�.
The pulse is appreciably delayed and its shape is not cor-
rupted if the pulse duration is shorter than the lifetime of the
atomic excited state and its bandwidth is smaller than the
doublet splitting. Single-photon propagation under these con-
ditions has been analyzed in Ref. �15�.

In this paper, we study the propagation of a single � pho-
ton in a dense absorptive medium with a doublet structure.
The available radiation source and the nuclei in the absorber
have the same linewidth in our experiment, and hence, the
condition �15� of the long lifetime of the excited nuclei in the
absorber compared with the coherence time of a source pho-
ton is not fulfilled. Therefore, we cannot expect a delay of a
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photon wave packet exceeding appreciably its coherence
time. However, in an absorber with moderate thickness, we
have observed a photon delay approximately equal to the
lifetime of the excited nuclei. Interference of the photon
quantum paths has been considered. We have shown that the
delay is caused by destructive interference of these paths due
to quantum beats.

The paper is organized as follows. In Sec. II, we present
the definition of a single-photon field. In Sec. III, we repre-
sent the formalism of the description of multiple scattering of
a photon in an absorber with a single resonance. In Sec. IV,
we consider multiple scattering of a photon in an absorber
with two resonances. In Sec. V, we derive the response func-
tion of a thick absorber with a doublet structure. In Sec. VI,
we analyze our results from the view point of the group
velocity concept. In Secs. VII and VIII, experimental results
and their discussion are presented.

II. RADIATION FIELD OF THE SOURCE NUCLEUS

In the absence of hyperfine splitting of the nuclear levels,
the source nucleus in the excited state emits a spherically
symmetric wave packet. The radiation state of this wave
packet, for long times,

�b� = �
k

gk
exp�− ik · r0�

�k + i�
�1k,	0q
� , �1�

consists of many single-photon Fock states �1k , 	0q
�, which
contain one photon in the mode �k with wave vector k and
other modes with q�k, denoted by 	0q
, are empty. The
radiation state �1� is normalized such that in total it contains
only one photon. Here, r0 is the location of the emitting
nucleus, �k=�k−�0 is the frequency difference of the k
mode and the resonant transition from the excited state e to
the ground state g, and 2� is the decay rate of the excited
state e �radiative and nonradiative if present�. The coupling
parameter of the radiation with the source is gk. Defining the
electric field operator

E�+��r,t� = �
k

�̂kEkake−i�kt+ik·r, �2�

which contains only the annihilation operators ak, the unit
polarization vector �̂k, and the normalized amplitude Ek of
the mode k, we can calculate the single-photon field

b�t� = �0�E�+��r,t��b� . �3�

Here, for simplicity, we omit the vector notation for the
single-photon field. Performing the sum over the wave vector
k in the expression for the single-photon field, one obtains
�16�

b�t� =
E0

d
��t − d/c�e−�i�0+���t−d/c�, �4�

where d= �r−r0� is the distance from the source, E0 is a nor-
malized amplitude and ��t� is the Heaviside step function,
assuring causality. This wave packet has a sharply rising
leading edge at t=d /c and an exponentially decaying tail.

The former is defined by the time t0=0 at which the source is
formed in the excited state and the latter specifies the coher-
ence time or the mean correlation time of the photon �ph
=1 /�. Such a time dependence of the single-photon field has
been detected, using radiation of a single nucleus in time
delayed-coincidence measurements of � photons emitted in a
nuclear cascade �17–22�.

Lynch et al. �17� empirically introduced a similar expres-
sion for the source photon within a classical theory of �
photon propagation in a dense resonant absorber. A single-
photon radiation field is presented as a damped electric field
b�t�=b0�t�exp�−i�0t�, where the distance d from the source
is neglected and the amplitude of the field at the input of the
absorber,

b0�t� = ��t�e−�t, �5�

is normalized to unity. Later, Harris �23� derived quantum
mechanically the same expression confirming the empirical
approach of Lynch. In the theory of Harris, the radiative and
nonradiative channels of the decay of the excited nucleus via
conversion electron have been taken into account.

If we adopt the Fourier transform of the form

F��� = �
−�

+�

f�t�ei�tdt , �6�

the Fourier transform of the radiation field amplitude �5� is

B0��� =
i

� + i�
. �7�

III. COHERENT SCATTERING OF A PHOTON IN A
RESONANT ABSORBER

In this section, we briefly outline the method of descrip-
tion of the photon propagation in a medium where the reso-
nant nuclei are incorporated randomly and do not form a
regular structure. Hence, no Bragg scattering is present. An
incident photon, represented by a plane wave at the input of
absorber, is scattered coherently only in the forward direction
by all nuclei, and propagates inside �see, for example, Ref.
�2��. There is no coherent scattering in other directions be-
cause of destructive interference. Incoherent scattering in
other directions may take place, but its probability is much
smaller than the probability of coherent scattering in the for-
ward direction. The classical �17� and quantum mechanical
�23� theories give the following expression for the probabil-
ity amplitude of a photon at the output of the resonant ab-
sorber:

b�z,t� =
1

2	
�

−�

+�

B0���exp�− i��t − z/c� − A���z�d� , �8�

where z is the physical thickness of the absorber and A��� is
the transmission function, which is defined by a complex
dielectric constant or which can be calculated from the re-
sponse of a single nucleus to the incident radiation. If the
nuclei in the absorber have a single absorption line tuned in
resonance with the source photon, the transmission function
can then be expressed as follows:
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A��� =
i
0

� + i�
, �9�

where 2
0 /� is the absorption coefficient 
B, i.e., Beer’s law
coefficient applicable to a monochromatic radiation tuned in
resonance.

For a single-photon radiation field �7�, the integral in Eq.
�8� has been calculated in Refs. �17,24�. The result is

b�z,t� = e−�tJ0�2T�t���t� , �10�

where T=2
0z /�=
Bz is the effective thickness of the ab-
sorber and z /c is neglected since it is small. The integral is
calculated with the help of the generating function for the
Bessel function. Below, we calculate this integral by apply-
ing a different technique to show the role of multiple scat-
tering. Our approach is important for the explanation of pho-
ton scattering in the absorber with a doublet structure.

Expanding exp�−A���z� in a power series in Eq. �8�, we
can express the transmitted radiation as a sum

b�z,t� = �
n=0

�

bn�t� , �11�

where

bn�t� =
�− z�n

2	n!
�

−�

+�

e−i�tB0���An���d� . �12�

can be interpreted as radiation scattered n times. For ex-
ample, the term with n=0 corresponds to the radiation
passed through the absorber without scattering, the term with
n=1 corresponds to the radiation produced by all nuclei scat-
tering only one time each, the term with n=2 corresponds to
the radiation produced by nuclei undergoing first a single
scattering and then one rescattering, i.e., it is radiation pro-
duced by all nuclei participating in one rescattering event.
Generally, n corresponds to radiation formed by �n−1�-times
rescattering events �multiple scattering� where all nuclei in
the absorber participate. Calculating the integral in Eq. �12�,
we obtain

bn�t� = e−�t��t�
�− T�t/2�n

�n!�2 . �13�

The sum �11� of the multiple scattering components of the
radiation field gives the expansion of the Bessel function
J0�2T�t� in a power series, multiplied by exp�−�t���t�.
Here, it is important to notice that each scattering event
changes the phase of the scattered field by 	. For example,
single scattering produces a field that is in antiphase with the
incoming radiation. This point is discussed in every detail,
for example, in Refs. �25,26�.

IV. COHERENT SCATTERING IN A DOUBLET
STRUCTURE

We consider the excitation scheme discussed in Ref. �15�,
see Fig. 1. The nuclei in the absorber experience a quadru-
pole splitting 2� of the excited state, forming a doublet
structure of two closely spaced excited states e1 and e2. The

carrier frequency of the source photon �0 is tuned to the
middle �m of this doublet structure. We assume that the spec-
tral width of the photon 2�=2 /�ph is smaller than the split-
ting 2�. For simplicity, we consider an equal strength of the
interaction of a single photon for both transitions: g→e1 and
g→e2. Then, the transmission function of the absorber with
the doublet structure is �15�

A��� =
i
0/2

� + � + i�
+

i
0/2
� − � + i�

. �14�

If the transition probabilities are not equal, then the photon
carrier frequency �0 should be detuned from the middle of
the doublet �m to the frequency �m+�n, which corresponds
to peak transmission. The detuning is �n��
1

1/3−
2
1/3�� /

�
1
1/3+
2

1/3�, where 
1 and 
2 account for the transition prob-
abilities g→e1 and g→e2, respectively. However, for ex-
ample, in the experiment described in Ref. �14�, where

1 /
2=7 /9, the error introduced by assuming 
1=
2 is ap-
proximately 0.5%. Therefore, below we disregard the differ-
ence between 
1 and 
2.

The probability amplitude of a single photon at the output
of the absorber with a doublet structure is described by Eq.
�8� with the transmission function defined in Eq. �14�. If we
follow the same strategy as in Sec. III and expand the expo-
nent exp�−A���z� in a power series, then this probability am-
plitude is defined by Eq. �11�. In the case of a doublet struc-
ture, it is difficult to find a general expression for bn�t� with
arbitrary n. We calculated only four terms of this expansion.
They are b0�t�=��t�exp�−�t�,

b1�t� = −
T�

2�
sin��t�b0�t� , �15�

b2�t� = �T�

4�
�2

�t sin��t�b0�t� , �16�

e2

e1

g

� 0

� �

FIG. 1. The excitation scheme of a nucleus in the absorber by a
single photon with frequency �0, which is tuned to the middle of
the two excited states separated by an energy 2��.
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b3�t� = −
1

6
�T�

4�
�3

	�1 + ��t�2�sin �t − �t cos �t
b0�t� .

�17�

These terms are sufficient to describe the initial stage of the
� photon decay if the absorber is moderately thick, i.e., if the
condition T�4� is satisfied. A comparison of the numeri-
cally integrated Eq. �8� with the expansion �11�, where only
the first four terms are taken into account, is shown in Fig. 2.
For the plots, we take � /2�=3.27 and the time scale is in
units of the lifetime of the excited state �lft=�ph /2. For opti-
cal thicknesses up to T=8, our approximation fits excellently
the numerical results. In the initial stage, we have destructive
interference of the scattered radiation with the incident one
because both are in antiphase. Such an interference reflects
the absorption of a photon by the nuclei in the absorber.
Then, the scattered radiation changes its phase and the inter-
ference becomes constructive. The nuclear excitation energy,
stored in the absorber, is transformed to the radiation field

and the photon probability exceeds its probability without
absorber �shown by the dashed line�. This process is modu-
lated with frequency �. Plots 2�a–c� clearly demonstrate the
modulation, which is independent of T if it is not too large.
For a larger thickness, T=16, our approximation describes
well only the destructive stage of the photon interference in
the thick absorber.

The approximation, which takes into account a finite
number of the expansion terms, cannot correctly describe the
time evolution of the photon probability at the output of the
absorber for large t. This is because, for example, the third
and the fourth terms of the expansion are proportional to t
and t2, respectively. However, our approximation describes
well the initial evolution.

V. RESPONSE FUNCTION

In this section, to find the asymptotic behavior of the pho-
ton probability for large t, we develop a different approach
based on the knowledge of the spectral function for a thick
absorber with a doublet structure �transfer function�. It al-
lows to calculate the response function of the absorber to a
short pulse �impulse response�. Then, to calculate the integral
in Eq. �8�, we apply a convolution theorem.

First, we represent the integrand F���exp�−i�t� in Eq. �8�
as follows:

F���e−i�t = B0���e−A+���ze−A−���ze−i�t, �18�

where z /c is omitted and

A���� =
i
0/2

� � � + i�
. �19�

For B0���, its Fourier counterpart is b0�t�, Eq. �5�. For
exp�−A����z�, the original function is

R��t� =
1

2	
�

−�

+�

e−i�t−A����zd� . �20�

We calculated this integral. The result is

R��t� = ��t� − e�i�tbsc�t� , �21�

where ��t� is the delta function,

bsc�t� = b0�t�T�

4t
J1�T�t� , �22�

and J1�x� is the Bessel function of the first order. R��t� is the
response function of a thick absorber with a single resonance
to a short deltalike pulse whose spectrum is infinitely wide.
Similar expressions have been found in Refs. �24,27,28�,
where � is set equal zero. One can interpret the absorber
response, R��t�, as consisting of the prompt radiation �the
first term, which is the delta function� and the radiation pro-
duced in multiple scattering processes �the second term
�bsc�t��.

The response function of an absorber with two resonances
is

0 1 2 3 4 5 60

0.5

1

1.5

|b(t,z)|2
Τ = 4

t/ � lft

(a)

0 1 2 3 4 5 60

0.5

1

1.5

|b(t,z)|2
T = 8

t/ � lft

(b)

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

|b(t,z)|2
T = 16

t/ � lft

(c)

FIG. 2. Time evolution of the photon probability, �b�t ,z��2 at the
output of the absorber with effective thickness T. The dashed line
shows the photon probability without an absorber. The thin solid
line is a result of the numerical integration of Eq. �8�. The analytical
approximation, Eq. �11�, where only four terms of the expansion are
taken into account, is shown by dots. Time scale is in units of the
lifetime �lft of the excited nucleus, ��lft=3.27.
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Rds�t� =
1

2	
�

−�

+�

e−i�t−�A+���+A−����zd� . �23�

According to the convolution theorem, it can be expressed as

Rds�t� = �
−�

+�

R+�t − ��R−���d� . �24�

Integration gives

Rds�t� = ��t� − 2 cos��t�bsc�t� + bint�t� , �25�

where

bint�t� = �
0

t

ei��t−2��bsc�t − ��bsc���d� . �26�

In Eq. �26�, the integral boundaries are defined taking into
account the properties of the function bsc�t����t�.

In case of a doublet structure, the absorber response Rds�t�
is the sum of three terms: the prompt radiation, the scattered
radiation for each individual resonance of the doublet with
its own phase, exp��i�t�, independently, and the radiation,
bint�t�, produced due to the interference of the radiation scat-
tered on both spectral components, simultaneously.

Applying again the convolution theorem, we obtain for a
single photon the following expression at the output of a
thick absorber:

b�z,t� = �
−�

+�

b0�t − ��Rds���d� . �27�

This expression can be reduced to

b�z,t� = b0�t��1 − b+�t� − b−�t� + b12�t�� , �28�

b��t� = �
0

t

e�i��fsc���d� , �29�

b12�t� = �
0

t

dx�
0

x

dyei��x−2y�fsc�x − y�fsc�y� , �30�

where fsc�t�=bsc�t� /b0�t�. The meaning of the terms in Eq.
�28� is the same as in the response function, Rds�t�, i.e., it is
the sum of the prompt radiation, of the scattered radiation
formed by the individual resonances, b+�t� and b−�t�, and the
interference term, b12�t�.

One can simplify the expression for b��t� as follows:

b��t� = 1 − e�i�tJ0��t� � i��
0

t

e�i��J0����d� , �31�

where �=T�=2
0z. Then, the first three terms inside the
square brackets of Eq. �28�, bsum�t�=1−b+�t�−b−�t�, are re-
duced to

bsum�t� = 2�cos��t�J0��t� + ��
0

t

sin����J0����d�� − 1.

�32�

The first term in the square brackets of Eq. �32� decays to
zero as �J0��t�. The second term is zero for t=0, and it
rises oscillatory with time. For t→�, it has an asymptote
�see Ref. �29��

2��
0

�

sin����J0����d� = 2 cos� �

4�
� . �33�

To estimate the asymptotic behavior of the term b12�t� for
t→�, we express Eq. �30� as follows:

b12�t� = �
0

t

dye−i�yfsc�y��
0

t−y

d�ei��fsc��� . �34�

Since fsc�y�→0 for y→�, we can approximate

lim
t→�

b12�t� = �
0

�

dye−i�yfsc�y��
0

�

d�ei��fsc��� . �35�

Then, with the help of the table of integral transforms �29�,
we find

lim
t→�

b12�t� = 2�1 − cos� �

4�
�� . �36�

Combining Eqs. �32�, �33�, and �36�, we obtain that

lim
t→�

�bsum�t� + b12�t�� = 1. �37�

Thus, the scattered radiation is delayed and it tends to b0�t�
with time. We have to emphasize that if the coherence time
of the source photon, �ph, and the lifetime of the nuclear
coherence in the absorber are equal, the probability ampli-
tude of the radiation field at the output of the absorber is
factorized, see Eq. �28�, i.e., it can be expressed as the prod-
uct, b�z , t�=b0�t�F�t�, of the probability amplitude of the in-
put radiation, b0�t�, and some response function of the ab-
sorber, F�t�. The response function does not depend on �ph
and contains only the parameters � and �=2
0z. In the case
of a single resonance, the response function is F�t�
=J0�2�t�. In the case of a doublet, it is F�t�=1−b+�t�
−b−�t�+b12�t�. To simplify this function, we transform the
interference term, b12�t�, as follows.

With the help of the permutation of integrals and the vari-
able substitution

�
0

t

dx�
0

x

dy → �
0

t

dy�
y

t

dx → �
0

t

dy�
0

t−y

d� , �38�

the term b12�t� is modified as

b12�t� = F1�t� + F2�t� + F3�t� + F4�t� , �39�

F1�t� = 1 − cos��t�J0��t� − 2��
0

t

sin����J0����d� ,

�40�
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F2�t� = ��
0

t

sin���t − 2���J0����J0���t − ���d� ,

�41�

F3�t� = − �
0

t

cos���t − 2��� �

4�
J1����J0���t − ���d� ,

�42�

F4�t� = �2�
0

t

dy�
0

t−y

d� cos���y − ���J0��y�J0���� .

�43�

It can be shown that F2�t��0. Then, Eq. �28� is reduced to

b�z,t� = b0�t��cos��t�J0��t� + F3�t� + F4�t�� . �44�

The result can be interpreted as the contribution from “reso-
nant” scattering of the incident radiation on two components
of the doublet, modulated with a frequency equal to the dou-
blet splitting, br�t�=b0�t�cos��t�J0��t�, plus the interfer-
ence of these scattering amplitudes, bms�t�=b0�t��F3�t�
+F4�t��. Their time evolution is shown in Fig. 3. The inter-
ference term, bms�t� �dash-dot line�, is delayed and it almost
reproduces the probability amplitude of the incident photon
for large t �solid line�.

Thus, in the case of a doublet structure, the response func-
tion is F�t�=cos��t�J0��t�+F3�t�+F4�t�. If the splitting is
zero, �=0, then F4�t�=0 and �cos��t�J0��t�+F3�t�� ��=0
=J0�2�t�. This result is consistent with the response func-
tion of an absorber with a single resonance, F�t�
=J0�2T�t�.

VI. GROUP VELOCITY CONCEPT

If the distance between resonances, 2�, is much larger
than the spectral width of the incident photon, 2�=2 /�ph,
most of the photon spectrum falls in between the two reso-
nances. This part experiences negligible absorption �resonant
loss�. Only the long tails of the Lorentzian spectrum of the

photon, whose wings drop as �1 /�, are absorbed if �
= ��. Meanwhile, the central part of the photon spectrum
interacts with the nuclei due to the dispersion ����� �in-phase
component of the nucleus response�. In the middle of the
doublet, this dispersion is normal and one can expect a re-
duction in the group velocity of the radiation wave packet.

The approximate solution for the single-photon propaga-
tion in a dense medium with a transparency window is ob-
tained in Refs. �15,30–32�. It is based on the group velocity
concept for the wave packet. Following Refs. �15,30–32�, we
approximate the transmission function A��� in Eq. �8� by its
expansion in a power series near �=0. It was shown in Refs.
�15,30�. that to describe the propagation of the adiabatic part
of the pulse �that part whose spectrum is confined inside the
transparency window�, one can take only four terms of the
expansion

A���z �
Ttrn

2
− i�td +

�2

�eff
2 − i

�3

3�dst
3 , �45�

where

Ttrn =
2
0z�

�2 + �2 , �46�

td =

0z��2 − �2�

��2 + �2�2 , �47�

�eff = ��2 + �2�3


0z��3�2 − �2�
, �48�

�dst =3 ��2 + �2�4

3
0z���2 − �2�2 − 4�2�2�
. �49�

The two first terms of the expansion �45� give a reduction in
the pulse amplitude and a time delay

bg�z,t� = e−Ttrn/2b0�t − td� . �50�

The reduction in the pulse amplitude is defined by the ab-
sorption just in the middle of the doublet. The delay of the
pulse is caused by the reduction in its group velocity to the
value

Vg = �c−1 +

0��2 − �2�
��2 + �2�2 �−1

. �51�

The third term of the expansion �45� gives a time broadening
of the pulse

bA�z,t� =
�eff

2	
�

−�

+�

bg�z,��e−��eff/2�2�t − ��2
d� , �52�

where the index A in bA�z , t� means the analytical approxi-
mation of Eq. �8�. The time broadening of the pulse corre-
sponds to its spectrum narrowing caused by the absorption of
the spectral wings of the pulse by the two resonances. For a
single-photon wave packet, Eq. �52� is reduced to �31�

bA�z,t� = �+�z,t�exp�− Ttrn/2 − ��t − td�� , �53�

where

0 1 2 3 4 5 60.5

0

0.5

1

bms(t)

br(t)

t/ � lft

FIG. 3. Time evolution of the probability amplitude br�t�, dotted
line, and bms�t�, dash-dot line. The probability amplitude of the
incident photon is shown by the solid line. Time scale is in units of
�lft. Thickness parameter is T=8, ��lft=3.27.
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���z,t� =
1

2
e�2/�eff

2 �1 � erf��eff�t − td�
2

�
�

�eff
�� , �54�

erf�x� is the error function. The function �−�z , t� will be used
below for an incident wave packet with a different shape.

It should be noted that the group delay dispersion, D2
=Im��2A��� /��2� ��=0, which is the imaginary part of the third
term of the expansion Eq. �45�, is zero for a doublet whose
spectral components have equal transition probabilities. If
the two resonances have different intensities, then D2�0,
and it causes a pulse chirp, accompanied with a pulse broad-
ening in time �see Ref. �32� for details�. In this case, the
contribution of the group delay dispersion for a doublet
structure may be appreciable, as it has been experimentally
observed in Refs. �12–14�. Besides, if the carrier frequency
of the pulse �0 is detuned from the middle of the doublet,
�m, then the group delay dispersion D2 also becomes non-
zero, even for a doublet with equal strengths for the two
resonances. Combining both effects, one can find a particular
detuning from the middle of the doublet with nonequal
strengths of the absorption lines to compensate fully the
group delay dispersion and make it exactly zero. The value
of this detuning is found in Ref. �14�.

The fourth term of the expansion �45� is responsible for
the third order group delay dispersion D3
=Im��3A��� /��3� ��=0. Its contribution may result in a distor-
tion of the pulse �30�.

In Ref. �30�, the competition of the contributions of the
third and fourth terms of the expansion �45� in the pulse
development in an optically thick medium was studied. It
was shown for a Gaussian pulse with a spectral halfwidth �in
that the spectral halfwidth �out of the output pulse �which is
still Gaussian if the fourth term of the expansion is not taken
into account� is defined by the formula

�out =
�in

1 + ��in/�eff�2
. �55�

From this expression, it follows that for a thick medium �T
�1�, the pulse spectrum narrows as �out��eff
���2 /�� /3T /2 �see Eq. �48��, if �in��eff and ���.
Meanwhile, the contribution of the fourth term becomes ef-
fective if the spectrum halfwidth of the modified pulse, �out,
becomes comparable with or larger than �dst. This parameter
decreases with thickness T as �dst�� /33T� /2� �see Eq.
�49��. Therefore, if �in��eff, the spectrum halfwidth of the
pulse decreases faster with thickness increase than the distor-
tion parameter �dst and the fourth term of expansion �45�
does not contribute to the pulse evolution since �out�dst.
Formally, this inequality is reduced to �� /��43T /2, which
holds for T→�. Actually, one has to take the experimental
values of the parameters of the medium and the input pulse
to make a judgment about this competition. For example, in
the experiment �14�, the doublet splitting is four orders of
magnitude larger than the linewidths of the resonances and
the spectral width of the pulse is at least ten times smaller
than the splitting: � /�=104 and � /�in=10. According to Eq.
�55�, for these values of the parameters, the spectral width of
the output pulse, �out, starts narrowing to �eff if T�1010. Up

to this value of thickness, the pulse spectrum does not nar-
row. Meanwhile, since �dst decreases with thickness in-
crease, for T�107, we have already satisfied the condition
�in��dst of the pulse distortion before its spectrum starts
narrowing. This results in the irreversible corruption of the
pulse seen as a time broadening and distortion of its central
part and an appearance of the wiggles in its trailing edge.

We can show that in our experiment, the third and fourth
terms of the expansion �45� almost do not affect the central
part of the photon spectrum. For that, we consider the nu-
merical example, given in Sec. IV, where the parameters of
the model are typical for our experiment. If in this case we
analyze the evolution of the Gaussian pulse whose halfwidth
of the spectrum is �in=� at the input of the medium with the
doublet splitting ��6�, then �eff��in

103 /T, which means
that the narrowing of the pulse spectrum starts only when
T�103. According to Eq. �49�, the distortion parameter for
the given values of the parameters is �dst=�in

3103 /T. It
means that the pulse starts to be distorted also when T
�103. In our experiments, T20, and hence, the contribu-
tion of both terms should be negligible. Meanwhile, the pho-
ton wave packet is not Gaussian. It will be shown below that
the photon spectrum consists of a Lorentzian �symmetrical
part� and an asymmetrical part whose wings drop as �1 /�.
The asymmetric part is responsible for the sharp-rising lead-
ing edge of the photon wave packet. Photon filtering through
the medium with the doublet structure may split the photon
wave packets in two components, i.e., the sharp, fast decay-
ing oscillatory component and a smooth, delayed component
decaying with the same rate as the input wave packet.

The smoothing of the leading edge of the delayed compo-
nent is produced by the third term of the expansion �45� �see
Eqs. �52� and �53��. The function �+�z , t� in Eq. �53� gives
the smoothing of the Heaviside step function in Eq. �50�,
spreading it around time td+2� /�eff

2 . �+�z , t� rises from zero
to the value exp��2 /�eff

2 �, which is close to 1 for �eff��.
This transient domain is spread in a time interval �8 /�eff.
The competition of the functions �+�z , t� and exp�−��t− td��
in Eq. �53� shortens this transient domain if T is large
enough. As a result, we see a smooth rise of the probability
amplitude of the delayed part of the photon followed by a
decay.

The time evolution of bA�z , t�, Eq. �53�, is shown in Fig.
4�a� for T=8 and �b� for T=80. The doublet splitting satisfies
the condition ��lft=3.27. The estimated value of the transient
domain, given only by the contribution of the function
�+�z , t�, is 1.25�lft for T=8 and it is 4�lft for T=80. This
domain is almost not shortened by the competition of the two
functions for T=8, but it is shortened to the value 2.6�lft for
T=80.

The function bA�z , t� gives a nice approximation of the tail
of the photon probability amplitude, while its front part is
inconsistent with the result of the numerical integration of
Eq. �8�. This is due to the sharp leading edge of the incident
photon, which is defined by the step function ��t�. It induces
transients dying out quite fast for a thick absorber �see Fig.
4�b�, where T=80�. For a moderately thick absorber �T=8,
Fig. 4�a��, these transients overlap with the front part of the
delayed photon, completely changing the time evolution of
the photon probability amplitude. The time delay for T=80 is
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td=1.744�lft and for T=8 it is td=0.174�lft. In both cases, the
leading edge of the delayed part of the probability amplitude
of the photon is smooth due to the contribution of the third
term of the expansion A���z, Eq. �45�. Therefore, instead of
bg�z , t�, Eq. �50�, we have bA�z , t�, Eq. �53�, for the delayed
part of the photon.

To describe the transients, which are precursory of the
delayed part of the photon, we follow the arguments used in
Ref. �31�.

We formally represent the Fourier transform of the single-
photon field, Eq. �7�, as B0���=B0s���+B0a���, where

B0s��� =
�

�2 + �2 , �56�

B0a��� =
i�

�2 + �2 , �57�

are the symmetric and antisymmetric parts, respectively. The
first part is an even function whose wings decrease as � /�2.
The second part is an odd function whose wings drop as i /�.
Therefore, the antisymmetric part has much longer tails. The
time-domain counterparts of these functions are

b0s�t� =
1

2
exp�− ��t�� , �58�

b0a�t� =�
1

2
exp�− �t� if t � 0,

0 if t = 0,

−
1

2
exp��t� if t  0.� �59�

The function b0s�t� has no discontinuity, except a discontinu-
ity in its slope. The function b0a�t� is a noncontinuous func-
tion. Therefore, the former should not acquire large ampli-
tude transients at the output of a thick absorber, and the latter
should have them.

Substituting the amplitudes b0s�t� and b0a�t� into Eq. �27�,
we obtain the following expressions for these amplitudes at
the output of a thick absorber with a doublet structure

bs,a�z,t� = �
−�

+�

b0s,a�t − ��Rds���d� . �60�

After some tedious algebra, we obtain

bs�z,t� = �
1
2 �b�z,t� − btr�z,t�� if t � 0,

1
2exp��t −

��

�2 + 4�2� if t � 0, � �61�

ba�z,t� = �
1
2 �b�z,t� + btr�z,t�� if t � 0,

− 1
2exp��t −

��

�2 + 4�2� if t  0, � �62�

where b�z , t� is defined in Eq. �44� and btr�z , t� is

btr�z,t� = �
n=1

5

�n�t� . �63�

The functions �i�t� are derived in a similar way as the ex-
pressions for b��t�, see Eq. �31�, and for b12�t�, see Eq. �39�.
These functions are

�1�t� = e−�t cos��t�J0��t� , �64�

�2�t� = − ��2 + 4�2�e�t�Jc�0�Jc�t� + Js�0�Js�t�� , �65�

�3�t� = e−�t�
0

t

2� cos���t − 2���J0����J0���t − ���d� ,

�66�

�4�t� = F3�t�e−�t, �67�

�5�t� = − ��2 + 4�2��
0

t

dy�
t−y

�

d�e�t−2��y+��

�cos���y − ���J0��y�J0���� , �68�

where

Jc�t� = �
t

�

cos����e−2��J0����d� , �69�
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FIG. 4. Time evolution of the analytical approximation of the
probability amplitude, bA�t�, the dotted line. The solid line is the
result of the numerical calculation of the integral in Eq. �8�. The
parameters are the same as in Fig. 3. T=8 for �a� and T=80 for �b�.
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Js�t� = �
t

�

sin����e−2��J0����d� . �70�

Here, to simplify the expressions, we used the identity

Js
2�0� + Jc

2�0� =

exp�−
��

�2 + 4�2�
�2 + 4�2 . �71�

The group velocity approach, where the transmission func-
tion A���z is approximated by Eq. �45�, gives the following
expressions for the symmetric and antisymmetric parts of the
photon:

bAs�z,t� = �R+�z,t� + R−�z,t��/2, �72�

bAa�z,t� = �R+�z,t� − R−�z,t��/2, �73�

where

R��z,t� = ���z,t�exp�− Ttrn/2 � ��t − td�� . �74�

A comparison of this approximation with the exact result,
Eqs. �61� and �62�, is shown in Fig. 5. The deviation of the
approximation from the exact result is caused by discontinui-
ties of the slope of the symmetric component b0s�t� and of
the amplitude of the antisymmetric component b0a�t� at t
=0. The former produces small amplitude transients and the

deviation of bs�z , t� from bAs�z , t� is small. The latter pro-
duces large amplitude transients and the deviation of ba�z , t�
from bAa�z , t� is appreciable. Since a single-photon field b0�t�
has a sharp-rising amplitude at t=0, which resembles the
jump of the amplitude of b0a�t� from −1 /2 to +1 /2 at t=0,
we conclude that just the antisymmetric part, ba�z , t�, gives
the dominant contribution to the transients.

If we take the difference between the antisymmetric and
symmetric components, we can expect that for t�0, this
difference is a good approximation for the transients follow-
ing the sharp leading edge of the probability amplitude of a
single-photon

ba�z,t� − bs�z,t� = btr�z,t� . �75�

Meanwhile, according to the group velocity approach, the
difference between the slow components of the antisymmet-
ric and symmetric parts of the photon is

bAa�z,t� − bAs�z,t� = − R−�z,t� . �76�

Therefore, the true transients are described by the difference
of Eqs. �75� and �76�

bttr�z,t� = btr + R−�z,t� . �77�

Combining these relations, we approximate the probability
amplitude of the photon at the output of a thick absorber as

b�z,t� � bA�z,t� + bttr�z,t� . �78�

Here, the first term, bA�z , t�, describes the delayed part of the
photon, and the second term, bttr�z , t�, describes the transients
induced by the sharp leading edge of the photon. Fig. 6
shows a comparison of the exact difference of b�z , t� and
bA�z , t�, which is bdif�z , t�=b�z , t�−bA�z , t�, �solid line� with
our approximation, Eq. �77�, bttr�z , t� �dotted line�. Both plots
almost coincide in a wide range of the time scale. The tran-
sients decay fast, experiencing two wiggles, i.e., one dip with
a negative amplitude and one bump with a positive ampli-
tude. The time dependence of the delayed part of the photon
�dashed line� is shown for comparison. It has one bump co-
inciding with the negative dip of the transients. Therefore,
we have destructive interference of the delayed part of the
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FIG. 5. The time evolution of the symmetric and antisymmetric
components of the probability amplitude of the photon at the output
of the absorber with effective thickness T=8 �solid line�. These
components at the input are shown by the dashed line. The dotted
line shows the approximation obtained with the group velocity ap-
proach. The doublet splitting is ��lft=3.27.
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FIG. 6. The time evolution of the true transients bttr�z , t� �dots�
and of the difference bdif�z , t�=b�z , t�−bA�t ,z� �solid line�. The time
evolution of the delayed component of the photon, bA�z , t�, is shown
for comparison. The parameters are the same as in Fig. 5.
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photon with transients. Then, when the positive bump ap-
pears, we have a constructive interference of the delayed part
and the transients. The frequency of the transients is defined
by the doublet splitting �. Therefore, for moderately thick
samples, T�8, quantum beats with frequency � result in a
delay of the photon for a time ��lft. Figure 7 shows the
transients bttr�z , t� for T=4 �solid line� and for T=8 �dots�. It
is clearly seen, that for samples with moderate thickness, the
frequency of transients is mostly defined by �.

VII. EXPERIMENT

A Mössbauer experiment is performed by measuring the
transmission of recoilless � radiation through a resonant ab-
sorber whose resonance may be shifted due to a small rela-
tive velocity between the source and absorber. We make use
of the most popular Mössbauer isotope, 57Fe, incorporated
into a solid as an absorber. The appropriate � photon source
for 57Fe consists of 57Co nuclei, which decay via a two-
photon cascade. The source nucleus decays by electron cap-
ture to 57mFe with nuclear spin I=5 /2, which decays in turn
by emission of a 122 keV photon followed by a 14.4 keV
photon �competing with internal conversion� to the ground
state with nuclear spin I=1 /2. The decay scheme of 57Co is

shown in Fig. 8. For 57Co in Rh matrix at room temperature,
the 14.4 keV photon is the one that is emitted without recoil
about 75% of the time. We measure the transmission of the
14.4 keV photon through a resonant absorber. The transmit-
ted photons are counted in delayed coincidence with 122
keV photons. The time-domain spectrum of the transmitted
radiation gives information on the temporal aspects of the
emission and absorption processes involved, with well-
defined initial conditions. In this scheme, the formation of
the 14.4 keV nuclear state with spin I=3 /2 in the source is
announced by the detection of a 122 keV photon emitted in a
two-photon cascade of the decay of 57Co.

We make use of the conventional experimental setup for
time-differential Mössbauer spectroscopy. The schematic ar-
rangement of the source, absorber, detectors, and electronics
is shown in Fig. 9. The source, 57Co:Rh, is mounted on the
holder of the Mössbauer drive, which is used to Doppler shift
the frequency of the radiation of the source. The 122 keV �
photons are detected by a NaI�Tl� scintillator 25 mm in di-
ameter and 15 mm in length, coupled to an RCA 8575 pho-
tomultiplier. This detector is mounted about 50 mm away
from the source in a direction making an angle of 60° with

FIG. 8. Decay scheme of the source nucleus 57Co.
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FIG. 7. Time evolution of the transients bttr�z , t� for T=4 �solid
line� and T=8 �dots�. The doublet splitting is ��lft=3.27.

FIG. 9. Simplified scheme of the experimental setup. TAC is a time-to-amplitude converter. PHA is a pulse-height analyzer. TA is a
timing amplifier. SA is a spectroscopy amplifier. SCA is a single-channel analyzer. DFG-MD is the Mössbauer driving unit and function
generator. HV is a high-voltage supply.
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the forward direction, defined by the line from the source to
the 14.4 keV detector. The lower-energy radiation �14.4 keV�
is filtered out with a 0.1 mm copper foil placed in front of the
122 keV detector. The output from the fast dynode of the
photomultiplier is amplified with a timing filter amplifier
�2111, Canberra� and triggered by a constant fraction dis-
criminator �2121, Canberra�. This timing pulse was em-
ployed to produce a start signal for the time-to-amplitude
converter �TAC/SCA 2145, Canberra�. A second detector
with a NaI�Tl� scintillator, 25 mm in diameter and 0.1 mm
thick, is served as a detector for the 14.4 keV � photons. The
fast pulse is amplified by the Model 2111 timing filter am-
plifier and triggered by the Model 2121 constant fraction
discriminator to derive a time-pickoff signal, and then it is
fed through an adjustable delay line into the stop input of the
TAC. The slow pulses from the 14.4 keV detector are ampli-
fied with the spectroscopy amplifier. The timing single-
channel analyzer �AMP&TSCA, model 290A, Ortec� is uti-
lized to select the 14.4 keV � photons. These signals are used
as strobe signals to generate the TAC output pulses corre-
sponding to the time intervals between the 122 keV and suc-
cessive 14.4 keV � quanta. To avoid the undesirable effect of
scattered x-rays and Compton radiation �33�, the detectors
are shielded with lead plates. The output of the TAC consists
of pulses of various heights corresponding to different time
intervals between the 122 and 14.4 keV � rays. These pulses
are analyzed by two CMCA-550 data acquisition cards �Wis-
sel� in pulse-height mode �PHA�. The selection of the card to
store the signal is gated by the incoming signal from the
Mössbauer driver function generator, which defines the fre-
quency of the radiation of the source. When the source is
driven with a velocity corresponding to the central frequency
of the sample doublet, the time-domain spectrum is stored in
the memory of the first card. The second acquisition card is
used to store the time spectrum when the frequency of the
radiation of the source is far away from the doublet center.
The spectrometer �TAC and data acquisition card operating
in PHA mode� is calibrated with a Tektronix RM 181 time
marker and a Tektronix TDS 2022 oscilloscope.

A typical time spectrum of the decay of 14.4 keV state
�with no absorber� is shown in Fig. 10. A time resolution of
9.1�5� nsec is obtained by least squares fitting the lifetime
spectra with the convolution of the theoretical decay curve
and a Gaussian distribution originating from the time reso-
lution function of the experimental setup �see, for example,
Ref. �34� for details�. The curve obtained for a single line
source 57Co shows the single exponential decay with a mean
lifetime �lft=1 /2� of 140.�9� nsec, in good agreement with
the mean lifetime and the natural linewidth data for the 14.4
keV state of 57Fe. Here, for simplicity, we define a parameter
�0=2��, which is reciprocal to the inverse value of the life-
time of the 14.4 keV state and the full width at half-
maximum of the 14.4 keV emission line. We assume that it is
defined only by natural broadening caused by radiative decay
and internal conversion. The contribution of the latter is 93%
�17�.

The time-domain experiments with absorbers obviously
placed between the source and the detector, were performed
for absorbers with different splittings of the doublet structure
and different thickness. Among them are samples with natu-

ral 57Fe abundance �FeTiO3, FeC2O4·2H2O, and
Fe2�SO4�3 ·xH2O��, which are commercial products from
Alfa Aesar. The 57Fe-enriched ferric sulfate absorbers were
home made by the method described in Ref. �35�.

To determine the absorber parameters, such as doublet
splitting, effective thickness, and linewidth, we measured
their frequency-domain spectra. Mössbauer spectra of the
samples are shown in Fig. 11. To analyze in a consistent
manner the transmission profiles for the last three samples,
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FIG. 10. �Color online� The lifetime curve measured for the 14.4
keV radiation of 57Co �dots�. The solid line is the best fit using
exponential decay with 141 nsec mean lifetime. The dashed line
corresponds to the radiation with recoil. It is described by the con-
volution of the theoretical curve, Eq. �81�, with a Gaussian distri-
bution accounting for the experimental time resolution �
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level of 57Fe isotope. The solid curves are theoretical fits to Eq.
�79�.
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we have to accept that the profiles consist of quadrupole-split
doublets. Because of the isomer shift, the central frequencies
of these doublets are different from the position of the single
line 14.4 keV of the source 57Co:Rh. This shift is 0.31�1�
mm/sec for ferric sulfate �b�, 0.95�1� mm/sec for ilmenite �c�,
and 1.07�1� mm/sec for iron oxalate dihydrate �d�. The sepa-
ration between the absorption peaks 2�� for these samples is
5.5�3��0 �b�, 6.9�1��0 �c�, and 17.7�5��0 �d�, where �0
=0.097 mm /sec. Here, �0 is defined in units of the small
relative velocity v between the source and the absorber,
which produces a shift E0v /c, where E0 is photon energy and
c is the speed of light in vacuum. The Mössbauer spectra of
the absorbers were fitted using the transmission integral, ��v�
�36�,

��v� =
�0

2	
�

−�

+� 1 − fS + fSe−�+�E�−�−�E�

�E +
v
c

E0�2

+
�0

2

4

dE , �79�

���E� =
TA

2

�A
2

4

�E − E� � ���2 +
�A

2

4

, �80�

where TA is the effective thickness of the absorber, �A is the
full width of the absorption line of 57Fe in the absorber �in
energy units�, which includes also other broadening mecha-
nisms on top of the natural broadening, E� is the energy shift
in the center of the doublet, and fS is the recoilless fraction of
the source radiation. This fitting allows to derive the param-
eters E�, �A, and TA=n�0fA of the absorber, where n is the
number of 57Fe nuclei in the absorber per unit area, �0 is the
maximum resonant absorption cross section for the 14.4 keV
transition, and fA is the recoilless fraction of the � ray ab-
sorption in the absorber. We found that the linewidths of the
selected absorbers was close to the natural one. Meanwhile,
the linewidth of ferric sulfate is almost 25% broader than the
Mössbauer linewidth of the ilmenite and iron oxalate dihy-
drate.

To derive the value of the recoilless fraction, fS, for the
source, we use two methods. One is the “black” absorber
method �37�, where the photon count rates with and without
absorber, in resonance and far from resonance are compared.
The other method consists of time-domain experiments
where we measure the delayed-coincidence counts when a
single line filter �K4Fe�CN�6 ·3H2O� of known effective
thickness is placed before the detector, what is described in
Ref. �19�. A weighted average of both measurements yields
the fS value of 0.75�9�, which is in good agreement with that
reported in previous publications �see, for example, Ref.
�38��.

To simplify the analysis of the time-domain experimental
data for samples with a different separation between the lines
in the doublet, we selected the samples with almost the same
effective Mössbauer thickness, TA�5.7. The results of the
delayed-coincidence measurements of the 14.4 keV photon
transmission through these samples are shown in Fig. 12.
Another set of experimental data, when the splitting is con-

stant, 2��=5.5�3��0, and the effective thickness TA varies, is
shown in Fig. 13. In both figures, the background due to
accidental coincidences and the fraction of radiation with
recoil, which is nonresonant for the absorber, are subtracted.
The background is defined from the counting rate at times
preceding the fast front of the incident pulses. A contribution
from the radiation with recoil, nnr, is shown in Fig. 10 by the
dotted line. Its theoretical time dependence is

nnr = ��t��1 − fS�e−t/�lft. �81�

In Fig. 10, this function is convoluted with a Gaussian dis-
tribution accounting for the experimental time resolution.
The radiation with recoil passes through the absorber with no
change since it is not resonant for 57Fe nuclei. Therefore, this
radiation carries no information about the absorber and it can
be safely removed from the data.

We fitted the raw experimental data, with the background
subtracted, to the expression, which is derived as follows.
We calculate the transmitted radiation according to the for-
mula

n�t� = nnr + fSnr, �82�

where nr is the resonant fraction of the radiation, transmitted
through the absorber. This fraction is described by
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FIG. 12. �Color online� The delayed-coincidence spectra for
samples with various doublet splittings and the same effective
thickness TA�5.7 �dots�. The thick solid line �in red� shows the
theoretical fit. The thin solid line �in blue� shows the lifetime curve,
measured without absorber. It is scaled to take into account non-
resonant losses in the absorber. In plot �d�, the arrows indicate a
period, tosc, of oscillations with frequency 2�. The time scale is in
units of the lifetime �lft of the 14.4 keV state.
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nr = � �

	
�

−�

+� exp�− i�t − i�+��� − i�−����d�

� + i� �2

, �83�

where

����� =
TA

4

�A

2�

� � � + i
�A

2�

. �84�

We convolute n�t� with the Gaussian function

nexp�t� =
1

2	�
�

−�

+�

n�u�e−�t − u�2/2�2
du , �85�

where � is the standard deviation of the prompt coincidence
distribution, taken from the lifetime measurements. When
the best fit of the experimental data is obtained, we subtract
the fraction of radiation with recoil. Therefore, the plots in
Figs. 12 and 13 contain information only about the propaga-
tion of the resonant radiation through the absorber without
nonresonant losses. It is remarkable that all plots in Figs. 12
and 13, except in Fig. 13�d�, are perfectly described by the
approximation, given in Sec. IV, which takes into account
only four terms of the expansion, Eq. �11�.

VIII. DISCUSSION

As it is expected from the theoretical analysis, the experi-
mentally observed time evolution of the � photon, propagat-

ing through an absorber with two absorption lines, shows the
so-called speed-up effect of � decay and a revival of the
radiation field, the so-called dynamical beats, which follow
the fast decay.

Three stages of the photon evolution are clearly seen from
our data. In the first stage, close to t=0, the absorber trans-
mits almost all incident � radiation because the absorption by
the resonant medium cannot take place instantaneously. This
behavior is very similar to the Sommerfeld-Brillouin prompt
pulse known in optics �39�. In the second stage, the � photon
experiences destructive interference with the scattered radia-
tion because both are in antiphase. During this period of
time, the radiation is stored in the excited state nuclei. We
can consider such an excitation of the nuclei, participating in
the scattering process, as the formation of a subradiant �an-
tiphase� state. In the third stage, the scattered radiation
changes its phase due to the amplitude oscillation with fre-
quency �. The interference with the incoming radiation be-
comes constructive and the stored energy is emitted as a
bump whose amplitude exceeds the amplitude of the radia-
tion with no absorber. So, we have a superradiant state.

The bump in the photon probability is clearly seen in the
experimental time-spectra. According to our theoretical
analysis and experimental spectra, the phase of the collec-
tively scattered radiation is modulated with the frequency of
the doublet splitting �. For the absorber with no splitting
�see Fig. 12�a��, there is no bump because the doublet split-
ting frequency is zero and the expected moment of the bump
revival is pushed to infinity. An increase in the doublet split-
ting leads to the appearance of at least one well-defined
bump. In Fig. 12, where the effective thickness is kept con-
stant TA�5.7, we see that the bump position depends on
2��. With a splitting increase from 5.5�3��0 �b� to 6.9�1��0
�c� and then to 17.7�0 �d�, the oscillation period shortens.
For a large splitting, 2��=17.7�0, several bumps are ob-
served since the period of the phase oscillations becomes
shorter than the lifetime, �lft. The observed time separation
between successive bumps, tosc�100 nsec, indicated in Fig.
12�d� by arrows, is in good agreement with the doublet split-
ting �=0.86�1� mm /sec, which corresponds to 10.0�1�
MHz. We should mention that in Fig. 12�d�, the first bump
overlaps with the speedup, changing appreciably the initial
decay picture. The short prompt at t=0 is not clearly seen as
a sharp peak because of the convolution with a relatively
broad Gaussian function.

The delayed-coincidence spectra for Fe2�SO4�3 ·xH2O
samples with the same splitting 2��=5.5�3��0, but a differ-
ent thickness are shown in Fig. 13. The thicker the sample is,
the faster the speed-up effect is. Meanwhile, the position of
the bump is nearly the same for the samples with moderate
thickness, Figs. 13�a�–13�c�. For the sample with large thick-
ness, Fig. 13�d�, the bump amplitude reduces close to the
level defined by the photon probability with no absorber.
Thus, the amplitude of the bump grows with thickness in-
crease from TA=3 to TA=5.7 and TA=7.5, taking its maxi-
mum for the last two values, and then decreases when TA
=16.5. The position of the bump also changes, moving
slightly to longer times and then coming back with thickness
increase.

We conclude that there is a competition between the
thickness effect due to multiple scattering and the phase re-
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FIG. 13. �Color online� The delayed-coincidence spectra for the
Fe2�SO4�3 ·xH2O samples with different thickness �dots�. The split-
ting is 2��=5.5�3��0. The other notations are the same as in Fig.
12.
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versal of the scattered radiation due to oscillations with the
doublet splitting. Multiple scattering is an irreversible pro-
cess because the phase of the radiation changes at each scat-
tering event and when we have many scattering �rescattering�
events the radiation field consists of many components with
different phases. Their destructive interference results in ra-
diation damping, seen as speedup. The modulation of the
phase of the scattered radiation due to the doublet splitting is
reversible �dynamical� process, which is repeated with a
well-defined period. If the absorber is moderately thick, the
modulation can compete with the thickness effect and restore
the photon probability. Otherwise, even the phase reversal of
the scattered radiation as a whole does not help to restore the
radiation field.

We estimated the group velocity Vg of the propagation of
the pulsed radiation in an FeTiO3 sample with effective
thickness TA�5.7 and physical thickness z=107 micron
�Fig. 12�c��. According to Eq. �51�, we obtain Vg
=6.75 km /sec, which is 4.44·104 times smaller than the
speed of light in vacuum. Meanwhile, the delay of photon in
our samples is mostly defined by the transition of the
radiation-absorber compound system from a subradiant to a
superradiant state due to the dynamics of the doublet coher-
ence of the nuclei. The actual delay of the photon for the
FeTiO3 sample with effective thickness TA�5.7 is 10.3
times longer. If we define the effective group velocity, Veff,
of the pulsed radiation as the physical length of the sample
divided by the delay time �position of the bump from t=0�,
then Veff=660 m /sec, which is 4.5·105 times smaller than
the speed of light in vacuum.

Concluding this section, we have to clarify that the slow
photon is described in a group velocity concept by the ap-
proximate equation �50�, where the delay time td of the pho-
ton in an absorber of physical thickness z is related to the
group velocity Vg, Eq. �51�, as Vgtd=z. The delay time td is
short for moderately thick samples. For example, for the
sample with thickness TA�5.7 and splitting 2��=6.9�0, we
have td=15.8 nsec. In the idealized equation �50�, where
only the group velocity change is taken into account, the
probability amplitude of the photon has a sharp-rising lead-
ing edge at t= td and an exponentially decaying tail. Actually,
due to the frequency filtering effect �see Ref. �31� for de-
tails�, the probability amplitude of the slow photon part is
described by Eq. �53�. As a result, the leading edge of the
probability amplitude of a slow photon is smoothened and
spread in time, such that its maximum can take place at a
time before the bump or after it, depending on the effective
thickness �see, for example, Fig. 4�. For the sample, dis-
cussed above, this maximum takes place at the first mini-
mum before the bump of the photon probability, calculated
without approximations. This difference between the predic-
tions of the group velocity concept and the actual time be-
havior of the radiation field in the absorber is due to the
stepwise rise of the photon probability at time t=0 �see dis-
cussion in Sec. VI�.

IX. CONCLUSION

We found theoretically and experimentally an appreciable
delay of a � photon propagating in an absorber with two
resonances. This delay is comparable with the lifetime of the
excited state nuclei in the absorber. Storage and retrieval of �
radiation in the absorber is explained by the transition from a
subradiant to a superradiant state of the radiation-absorber
combined system. Initially, the radiation field, scattered by
the absorber is in antiphase with the incoming radiation field.
This results in destructive interference of both fields, seen as
an essential drop in intensity of the output radiation. Then,
due to the nuclear coherence oscillation with a frequency
corresponding to the doublet splitting, the scattered radiation
changes its phase such that both the incoming and scattered
radiation become in-phase and, hence, interfere construc-
tively. This is seen as a bump in the probability of the output
radiation, which exceeds the probability of the radiation with
no absorber.

To our knowledge, the interaction of a single photon with
a resonant medium has not yet been experimentally studied
in the optical domain. Instead, faint laser pulses or a radia-
tion field, which is produced in parametric down conversion
�this field contains not only photon pairs, but also four, eight,
etc. photons with much smaller probability� are used in op-
tical experiments to simulate single-photon sources. Until
now, Mössabuer spectroscopy is probably a unique tool to
study the interaction of a single photon with two- and three-
level particles. It has two major advantages. The first is the
high efficiency of � detectors since the energy of recoilless �
photons is ranged between 10 and 100 keV. The second ad-
vantage is the long coherence time of the source photons,
long enough to use simple electronics operating at frequen-
cies not higher than 100 MHz or in a time scale not shorter
than 1–10 nsec.

The findings of our paper may be applied in the optical
domain to filter single photons through a resonant medium of
moderate thickness. This filtering separates in time and space
the sharp �broadband� leading edge of the photon wave
packet, which produces precursors, from the smooth delayed
part of the photon. As has been shown in Ref. �31�, the
smooth part has a much higher probability to interact with a
resonant medium, which is proposed to serve as an optical
memory.
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