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We present an analytical solution for the vortex lattice in a rapidly rotating trapped Bose-Einstein condensate
in the lowest Landau level and discuss deviations from the Thomas-Fermi density profile. This solution is exact
in the limit of a large number of vortices and is obtained for the cases of circularly symmetric and narrow
channel geometries. The latter is realized when the trapping frequencies in the plane perpendicular to the
rotation axis are different from each other and the rotation frequency is equal to the smallest of them. This
leads to the cancellation of the trapping potential in the direction of the weaker confinement and makes the
system infinitely elongated in this direction. For this case we calculate the phase diagram as a function of the
interaction strength and rotation frequency and identify the order of quantum phase transitions between the
states with a different number of vortex rows.
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I. INTRODUCTION

Rapidly rotating Bose-condensed gases constitute a class
of many-body systems where the ground-state properties are
governed by a collective behavior of nucleated vortices �1,2�.
A harmonically trapped dilute Bose-Einstein condensate
�BEC� strongly confined in the z direction, is essentially two-
dimensional in the �x ,y� plane. When the rotation frequency
along the z axis becomes close to the trapping frequencies in
the x and y directions, the BEC gas can be described as a
system of interacting bosons in the lowest Landau level. The
single-particle Hamiltonian is similar to that of a charged
particle in a strong magnetic field, and the regime of fast
rotation of neutral bosons presents an analogy with quantum
Hall effect. Due to the presence of remaining harmonic trap-
ping, the lowest Landau level �LLL� is not degenerate. How-
ever, analytic properties of the LLL wave functions generate
an effective long-range interaction between the bosons,
which results in an interesting physics.

If the rotation frequency is not very close to the trap fre-
quency, then the number of vortices is much smaller than the
number of particles. Under these conditions the system is in
the so-called mean-field quantum Hall regime and can be
described by a macroscopic wave function ��r� in the low-
est Landau level. In this limit the vortices generically arrange
themselves in a lattice. An increase in the rotation frequency
increases the number of vortices and eventually it becomes
comparable with the number of particles. This leads to melt-
ing of the vortex lattice and to the appearance of strongly
correlated states �1,2�. The “mean-field quantum Hall re-
gime” for trapped bosons has been introduced by Ho �3� and
studied in a number of papers where the vortex lattice struc-
tures have been obtained numerically in the case of a circu-
larly symmetric trapping potential �4–7�.

In this paper we consider a rotating BEC in the lowest
Landau level in the mean-field regime and obtain an analyti-
cal solution for the vortex lattice of the harmonically trapped
symmetric two-dimensional �2D� gas. This solution is exact

in the limit of a large number of vortices, and we discuss
deviations from the Thomas-Fermi density profile. We then
turn to the case of the “narrow channel” geometry, which is
realized when the confining frequencies in the x and y direc-
tions are different, and the rotation frequency is equal to the
smallest of them. Then, in the rotating frame, the gas be-
comes extremely elongated in the direction of the smaller
frequency, as has been demonstrated in the ENS experiment
with thermal bosons �8�. This is an extreme case of a rapidly
rotating 2D gas in an asymmetric harmonic potential, dis-
cussed in relation to the density profile of the gas and the
density of vortices in Ref. �9�. Some vortex structures of the
asymmetric rapidly rotating BEC have been discussed and
calculated in Refs. �10–13�. In the narrow channel geometry,
the excitation spectrum of a weakly interacting BEC without
vortices exhibits a “roton-maxon” structure �14�. The phase
transition to the state with a vortex row occurs when the
roton energy reaches zero under an increase in the rotation
frequency or in the strength of interaction between the
bosons. A further increase of these quantities increases the
number of vortex rows through a set of quantum phase tran-
sitions �14,15�. We classify these transitions and find an ana-
lytical solution for the vortex lattice in the narrow channel,
which is exact in the limit of a large number of vortex rows.

II. GROSS-PITAEVSKII EQUATION IN THE LOWEST
LANDAU LEVEL: SOLUTION FOR A SYMMETRIC

HARMONIC POTENTIAL

Consider a system of bosonic neutral atoms strongly con-
fined in the z direction by an external trapping potential with
frequency �z such that the bosons are in the ground state of
the �z harmonic well and become essentially two-
dimensional in the �x ,y� plane. The bosons are confined in
this plane by a harmonic trapping potential V�r�, with
r= �x ,y�, and the trap is rotating around the z axis with fre-
quency �. In the mean-field quantum Hall limit, we assume
to zero order that all particles are in the same macroscopic
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quantum state described by the wave function ��r�. In the
rotating frame the Gross-Pitaevskii equation for ��r� reads,

p̂2

2m
� + g���2� + V�r�� − �L̂z� = �� , �1�

where p̂ is the momentum operator, m is the particle mass, L̂z
is the operator of the orbital angular momentum, � is the
chemical potential, and � is normalized to the total number
of particles N. Equation �1� is obtained for a short-range
interaction between particles, and the 2D coupling constant g
can be expressed through the three-dimensional �3D� scatter-
ing length as. If the harmonic oscillator length in the z direc-
tion, lz=�� /m�z, is much larger than �as� and the character-
istic radius of interparticle interaction, then we have �16�,

g =
2�2��2as

mlz
. �2�

We will study Eq. �1� projected onto the lowest Landau level.
A general procedure of obtaining the projected equation is
described in the Appendix, and here we outline the method.

The single-particle Hamiltonian for rotating neutral atoms
is equivalent to the Hamiltonian of a charged particle in a
uniform magnetic field B along the z axis. The field is such
that half the cyclotron frequency �c=B /2m �in units of
charge divided by the light velocity� is identified with the
rotation frequency �, and the vector potential in the symmet-
ric gauge is A= �B�r� /2=m���r�. In the case of a sym-
metric external harmonic potential V�r�=m�2r2 /2 the single-
particle Hamiltonian reads,

H =
p̂2

2m
− �L̂z +

1

2
m�2r2 =

1

2m
�p̂ − eA/c�2 +

1

2
m��2 − �2�r2.

�3�

At the critical rotation frequency �=� the residual confining
potential vanishes, and the harmonic oscillator length
l= �� /m��1/2 of the initial trapping potential V�r� coincides
with the “magnetic length” �� /m��1/2. One then has an “in-
finite plane” geometry actively studied with respect to the
ground state of interacting bosons �17–21�.

Below the critical rotation frequency, �	� and
��−��
�, the energy eigenstates are associated with the
Landau levels of a charged particle in the uniform magnetic
field, and the presence of the residual confining potential lifts
the LLL degeneracy. A complete set of LLL eigenfunctions is
given by

�n�z, z̄� =
zn

l��n!
exp	−

zz̄

2

 , �4�

with z , z̄= �x� iy� / l, and n being a non-negative integer. An
arbitrary function in the LLL can be written as a linear su-
perposition of the LLL eigenstates and represented in the
form,

��z, z̄� =
f�z�

l
exp	−

zz̄

2

 , �5�

where f�z� is an analytic function of z. The projection opera-
tor onto the LLL is written as

P̂ = �
n

�n�n� , �6�

where z �n�=�n�z , z̄� is given by Eq. �4�. Acting

with the operator P̂ on an arbitrary function ��z , z̄�
= �f�z , z̄� / l�exp�−zz̄ /2� one obtains,

P̂��z, z̄� = �
n=0

 � �n�z, z̄��n
��z�, z̄����z�, z̄��dz�dz̄�

= � f̃�z�/l�exp�− zz̄/2� , �7�

with dz�dz̄�=dx�dy� / l2, and an analytic function f̃�z� which
is given by

f̃�z� =
1

�
� dz�dz�̄f�z�,z�̄�exp�zz̄� − z�z�̄� . �8�

This formalism was introduced by Bargmann �22� and devel-
oped by Girvin and Jach �23� in relation to quantum Hall
physics.

In the case of interacting bosons one can still project the
many-body Hamiltonian onto the lowest Landau level pro-
vided that the interactions are much smaller than the cyclo-
tron gap, i.e., n2Dg
2��, where n2D is the two-dimensional

particle density �1,2�. Acting with the LLL projector P̂ onto
the Gross-Pitaevskii equation �1� results in the projected
equation �see Refs. �5,12� and Appendix�,

��� − ��z�zf�z� +
Ng

�l2� dz�dz�̄�f�z���2f�z��exp�zz̄� − 2z�z̄��

= �̃f�z� , �9�

where �̃=�−��, and the function �f�z� / l�exp�−zz̄ /2� is nor-
malized to unity. Equation �9� has a simple solution

fn�z� =
zn

��n!
, �10�

which corresponds to the chemical potential and energy per
particle given by

�n = ��� − ��n +
Ng

2�l2

�2n�!
�n!�222n , �11�

En

N
= ��� − ��n +

Ng

4�l2

�2n�!
�n!�222n . �12�

For n=0, Eq. �12� describes the ground state without vorti-
ces, and for n�0 it gives excited states with a �multi-
charged� vortex at the origin. The LLL approximation is
valid when En
��N. The spectrum En Eq. �12� has a roton
shape with a local minimum at a certain value of n. In the
limit of large n we have n ! ��2�n�n /e�n, and Eq. �12� is
reduced to
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En

N
= ��� − ��n +

Ng

4�l2

1
��n

. �13�

The local energy minimum is obtained for

n = n0 =
1

4�
� Ng

��� − ���
2/3

, �14�

and from Eq. �13� we find

En0

N
=

3

4�
�Ng

l2 �2/3
���� − ���1/3. �15�

The giant vortex state at n=n0 has a higher energy than the
single vortex �En0

�E1 for all g, ��. It is a metastable state
and it can have a relatively long lifetime. One can think of
creating this state in dynamical studies and identifying it
through the measurement of the density profile �24�. The
giant vortex state becomes the ground state and can be ob-
served in a system with an anharmonic trap �25�.

For Ng / l2����−�� the ground state represents a vortex
lattice. At the critical rotation frequency �=�, one finds an
exact solution describing this lattice. Consider the function

f0�z� =
�2v�1/4

�S
�1��z/b1,��exp��z2/2vc� , �16�

where S is the surface area, and �1 is the Jacobi theta func-
tion �26� given by

�1��,�� =
1

i
�

n=−



�− 1�nexp�i���n + 1/2�2 + 2i��n + 1/2�� .

�17�

Real �u� and imaginary �v� parts of the quasiperiod
�=u+ iv will be fixed below. Note that for �→� we have
S→ and N→, so that the condensate density N /S re-
mains finite. The Jacobi theta functions are analytic in the
complex plane and have zeros at the points �=n�+m��,
where n, m are integers. The function f0�z� vanishes at the
lattice sites nb1+mb2, with b2=b1�. These points correspond
to the vortex locations. The parameter b1 can always be cho-
sen real so that the area of the unit cell is vc=b1

2v. Using the
property of the Theta function,

��1��z/b1,��� = G�x,y�exp	�y2

vc

 ,

where 0�G�x ,y���2�0,�� is a periodic oscillating func-
tion, so that the envelope �f0�z�� is polar symmetric

�f0�z�� � exp	��x2 + y2�
2vc


 . �18�

For any lattice with a fixed elementary cell area one has
vc=�, and the normalization coefficient in Eq. �16� is chosen
such that the function �f0�z� / l�exp�−zz̄ /2� is normalized to
unity. The function f0�z� is an exact solution of Eq. �9� for
�=�. It has a constant envelope and a periodic vortex struc-
ture. The minimum energy is obtained for the triangular lat-
tice, where �=exp 2�i /3, v=�3 /2, and b1

2=2� /�3. The
chemical potential is then given by

� =
�Ng

l2 ,

with �= �31/4 /2��b,c�−1�mp exp�−�2�b2+c2� /4b1
2�=1.1596,

and b=2m, c=2p being even integers.
In the case of ���, a general solution of Eq. �9� can be

represented as

f�z� = �2v�1/4 �
n=−



�− 1�nĝ�a�q̃a2
exp	 i�

b1
az +

z2

2

 , �19�

where a=2n+1 are odd integers, q̃=exp�i�� /4�, and ĝ�a� is
a differential operator acting on a. For ĝ�a��1 one recovers
the solution �16�. Substituting the trial function �19� into Eq.
�9� for a triangularlike lattice �the lattice that becomes ex-
actly triangular for �=�� we obtain

���� − Â†Â�ĝ�a� −
31/4�

�2
�
b,c

ĝ�a − b�

�ĝ�a − c�ĝ�a − b − c� exp	−
�2

4b1
2 �b2 + c2�
�− 1�mp�

� q̃a2
exp	 i�

b1
az
 = 0. �20�

Here �=Ng / �l2���−���, ��= �̃ /���−��, and we intro-
duced the operators

Â,Â† =
�

2b1
a �

b1

�

�

�a
.

For large � we have ���1 and an approximate solution for
ĝ�a�, which describes the vortex structure with a high accu-
racy, turns out to be

ĝ�a� =
1

���
�R2 − Â†Â��R2 − Â†Â� , �21�

where � is the Heaviside theta function, R=���, and we will
see below that it is the radius of the condensate cloud in units
of l. Substituting the solution �21� into Eq. �19� we obtain
after some algebra,

f�z� =
�2v�1/4

���
�

n=−



�
k=0

�R2�

�− 1��n�n−1�/2��R2 − k
�iz�k

2k/2k!

�Hk���v
2

�2n + 1��exp�− �v�2n + 1�2/4� ,

�22�

where Hk�w� are Hermite polynomials.
Equation �21� is obtained taking into account that the

leading contribution to the sum over b and c in Eq. �20�
comes from small values of m and p, since already the con-
tributions of terms with �m��2 or �p��2 are exponentially
small. Provided that the dependence ĝ�a� is smooth, which is
the case for large R, we may consider large a and omit b and
c in the arguments of the ĝ operators in Eq. �20�. This im-
mediately gives Eq. �21�. From the condition that the func-
tion �f�z� / l�exp�−zz̄� is normalized to unity we find a relation
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R= �2�� /��1/4, in agreement with Refs. �5,12,27,28�.
For the angular-averaged particle density, i.e., the density

averaged over the azimuthal angle � �z=r exp i�� we then
have

n̄�r� = N� ���z, z̄��2
d�

2�

= n̄2D�2v�1/2�
k=0

�R2�

�
n,m=−

 �1 −
k

R2��− 1����n�n−1�+m�m−1��/2��

�
r2k

2k�k!�2Hk���v
2

�2n + 1��Hk���v
2

�2m + 1��
�exp�− �v�2n + 1�2/4 − �v�2m + 1�2/4�exp�− r2� ,

�23�

where n̄2D=2N /�l2R2 is a characteristic 2D density in the
central part of the cloud. The angular-averaged density cal-
culated from Eq. �23� for R=11 is shown in Fig. 1. In the
entire region of r it coincides with the numerical result ob-
tained by expanding the condensate wave function in terms
of the single-particle LLL states �Eq. �4�� and using a varia-
tional approach for finding the coefficients of the expansion.
This demonstrates a very high accuracy of our analytic solu-
tion. The structure of the vortex lattice for R=11 is shown in
Fig. 2.

The angular-averaged density represents oscillations on a
length scale of the magnetic length l, on top of a slowly
varying envelope. Averaging the density over the oscilla-
tions, that is averaging n̄�r� �or just the density n�r�� over a
distance scale much larger than l, gives the coarse grained
density,

n̄cg�x,y� =
1

L2�
0

L

d�x�
0

L

d�yn�x + �x,y + �y�

� �f�z + �z��2 exp�− �z + �z��z̄ + �z̄�� , �24�

where R�L�1. Using the function f�z� of Eq. �19� we have

ncg�x,y� �
1

L2�
0

L

d�x�
0

L

d�y �
n,m=−



�− 1�n+mĝ�an�ĝ�am�

�exp� i��an
2

4
−

i���am
2

4
+

i�

b1
�x + �x��an − am�

−
�

b1
�y + �y��an + am� − 2�y + �y�2� , �25�

with an= �2n+1�, and am= �2m+1�. Integration over d�x
gives n=m and transforms the y-dependent part of Eq. �25�
to

1

L� d�y �
n=−



exp�− 	�2�y + �y� +
��2n + 1�

�2b1

2� .

One then clearly sees that the integration over d�y /L is
equivalent to replacing the summation over n by integration.
Thus, in order to obtain the coarse grained density from Eq.
�23� we have to put n=m and integrate over dn. This yields

n̄cg�r� = n̄2D�
k=0

�R2� �1 −
k

R2� r2k

k!
exp�− r2�

= n̄2D�1 −
r2

R2���R2,r2�
��R2�

+
r2R2

exp�− r2�
R2��R2�

, �26�

where ��R2� and ��R2 ,r2� are the Gamma function and in-
complete Gamma function, respectively.

For r	R and �R−r��1 we may put ��R2 ,r2����R2� in
the right hand side of Eq. �26� and omit the second term
which gives a correction of the order of 1 /R or smaller. This
leads to the expected Thomas-Fermi density profile,

n̄cg�r� = n̄2D�1 −
r2

R2���R − r� . �27�

For r�R and �r−R��1 we have at large R,

0 5 10
0

0.5

1

r

n̄(r)

FIG. 1. Angular-averaged density n̄�r� in units of n2D versus r
�in units of l� for R=11. The solid curve shows the result of Eq.
�23�, and filled circles the results of the variational calculation �see
text�.

−10 −5 0 5 10

−10

−5

0

5

10

Y

X

FIG. 2. �Color online� Condensate wave function ���x ,y��2 for
R=11. Coordinates x �horizontal line� and y �vertical line� are given
in units of l.

MATVEENKO et al. PHYSICAL REVIEW A 80, 063621 �2009�

063621-4



��R2,r2� = � 1

r2 − R2 −
r2

�r2 − R2�3��r2�R2
exp�− r2� .

Then, using an asymptotic expression ��R2�
=�2� /R2�R2�R2

exp�−R2�, we obtain that the density decays
exponentially,

n̄cg�r� =
n̄2D

�2�R2

exp�− 2�r − R�2�
4�r − R�2 ; at R1/3 � �r − R� � 1,

�28�

and is practically zero for r−R�R1/3. The coarse grained
density versus r at R=11 is displayed in Fig. 3. At the
Thomas-Fermi border, r=R, we have n̄cg= n̄2D /�2�R2. The
validity of the Thomas-Fermi inverted-parabola shape, in
general, requires the inequality �R−r��1. Nevertheless, in
Fig. 3 we see that for R=11 the Thomas-Fermi formula
works well already for r�10.

Deviations from the Thomas-Fermi density profile of
n̄cg�r� have been studied in Ref. �5� by using the variational
procedure. Here we present an analytic solution and show
that it describes very well the density profile, including the
non-Thomas-Fermi part. The hydrodynamic approach to the
vortices in spatially inhomogeneous rapidly rotating super-
fluids was used in �27,28�, where a Thomas-Fermi profile
was obtained sufficiently far from the edge of condensate.

III. NARROW CHANNEL GEOMETRY

Let us now consider an anisotropic confining potential
V�r�=m��x

2x2+�y
2y2� /2, with �y 	�x. At the critical rotation

frequency �=�y, the centrifugal force cancels the confining
potential in the y direction. One then has a quasi-one-
dimensional system in the rotating frame, which is usually
referred to as the narrow channel geometry. The system is
infinitely elongated in the y direction and is confined by a
residual transverse potential m��x

2−�2�x2 /2 in the x direc-
tion �14�.

After the transformation to the Landau gauge,
�→� exp�im�xy /��, a complete set of eigenfunctions of
noninteracting particles in the lowest Landau level of the
narrow channel is given by

�n = � 2

��1/4 1

L1/2l̃
exp�ikn�

�

�̃
�exp�− ỹ2 −

kn
2�2

4�̃2 � ,

�29�

where L is the length of the system in the y direction in units

of l̃= �� /m�̃�1/2, �̃2= ��x
2+3�2� /4, kn=2�n /L with n being

an integer, and we introduced dimensionless coordinates

x̃ = −
�̃y

�l̃
; ỹ =

x

l̃
; � = x̃ + iỹ . �30�

Thus, the wave function of any state in the LLL can be
written in the form,

� = �f���/l̃�exp�− ỹ2� . �31�

The projection operator onto the LLL is given by Eq. �6�, and
acting with this operator on an arbitrary function

��� , �̄�= �f�� , �̄� / l̃�exp�−ỹ2� we obtain an analog of Eqs. �7�
and �8�,

P̂���, �̄� = �
n

�

�̃
� �n��, �̄��n

����, �̄������, �̄��dx�dy�

= � f̃���/l�exp�− ỹ2�; �32�

f̃��� =
1

�
� d��d�̄�f���, �̄��exp���̄� + ��2/2 − ���̄� − �2/2� ,

�33�

where d��d�̄�= ��̃ /��dx�dy� / l̃2.
The Gross-Pitavevskii equation projected onto the

lowest Landau level in the narrow channel has the form
�see Appendix for details�,

− ��0f���� +
Ng

�l̃2
� d��d�̄��f�����2f����

�exp�− 2���̄� + ��̄� + ��2 +
�̄�2

2
−

�2

2
� = �̃f��� ,

�34�

with �0=�̃��̃2−�2� / �2�2�
� being proportional
to the frequency of the remaining confinement in the
x direction, �̃=�−��, and the condensate wave function

�f��� / l̃�exp�−ỹ2� being normalized to unity. In analogy with
Eq. �19� let us again search for the solution of the form

f��� =
�2v�1/4

�L
�

n=−



�− 1�ng�2n + 1�

�exp�i��
�2n + 1�2

4
+

i���2n + 1�
b1

� , �35�

where b1
2=2� /�3, v=�3 /2, and �=exp�2�i /3�. Equation

�35� describes the structure with odd number of vortex rows,
with the central row at y=0. Using �4 instead of �1 in Eq.
�35�, which corresponds to the replacement �2n+1�→2n, we

2 4 6 8 10 12 r

0.2

0.4

0.6

0.8

1.0

ncg

FIG. 3. �Color online� The coarse grained density in units of n̄2D

versus r, calculated from Eq. �26� for R=11. The dashed curve
shows the Thomas-Fermi inverted-parabola shape �Eq. �27��, and r
is given in units of l.
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obtain structures with an even number of vortex rows. Sub-
stituting Eq. �35� into Eq. �34� yields

g�a���� −
�2a2

b1
2 �

= 31/4�2��̃�
b,c

g�a − b�g�a − c�g�a − b − c�

�exp	−
�2

4b1
2 �b2 + c2�
�− 1�mp, �36�

where �̃=Ng /2����0Ll̃2, ��= �̃ /��0, a=2n+1, b=2m, and
c=2p are odd and even integers, respectively. As well as in

the symmetric case, at large �̃ we find an approximate solu-
tion for g�a�, which describes the vortex structure with a
high accuracy,

g�a� = � 1

2����̃
�1/2

�

b1

�4R̃2/�v − a2�	 2R̃
��v

− a
 ,

�37�

where we put ��=4R̃2, and it will be seen below that R̃ is the

half-size of the cloud in the x direction �in units of l̃�. From
the condition that the condensate wave function is normal-
ized to unity we obtain

R̃ � �3����̃/8�1/3. �38�

Equation �37� is obtained by putting the arguments of the g
functions equal to a in the sum over b, c in Eq. �36�. Simi-
larly to the symmetric case, the contribution of terms with
high b and c in this sum ��m��2 or �p��2� is very small,

except for n very close to the border value b1R̃ /�. The rela-
tive contribution of such n to the sum in Eq. �35� decreases

with increasing R̃. Thus, the solution �35� in which the func-
tion g�2n+1� is given by Eq. �37� becomes exact in the limit
of �→. The structure of the vortex lattice for �=50 is

displayed in Fig. 4. For very large �̃ the number of rows for
a triangularlike lattice is approximately equal to

2R̃ / ��3b1 /2���̃1/3 �see next section�. Then, our results lead
to the Thomas-Fermi density profile in the x direction for the
major part of the cloud, as explained below. Using Eqs. �35�
and �37� we define the line-averaged density n̄�ỹ�, i.e., the
density averaged over the direction y of vortex lines,

n̄�ỹ� =
N

L
� ���x̃, ỹ��2dx̃ =

31/4�3/2

2��̃b1
2

�
−nmax

nmax �4R̃2

�v
− �2n + 1�2�

� exp�− 2	y +
��v

2
�2n + 1�
2� , �39�

with �2nmax+1��2b1R̃ /�. In Fig. 5 we compare the result of
Eq. �39� with the result obtained by expanding the conden-
sate wave function in terms of the single-particle LLL states
�Eq. �29�� and using a variational approach for finding the
coefficients of the expansion. The comparison shows a very
high accuracy of the found analytic solution.

The line-averaged density n̄�ỹ� shows oscillations on a

length scale �l̃, on top of a slowly varying envelope. Aver-
aging the density over the oscillations, i.e., averaging n̄�ỹ�
over a distance scale much larger than l̃, gives the coarse
grained density. The averaging procedure is equivalent to
replacing the summation over n in Eq. �39� by integration,
and we obtain the following expression for the coarse
grained density,

ncg�ỹ� = n2D	� 2

�

1

R̃2
�

−R̃

R̃
dw�R̃2 − w2�exp�− 2�y + w�2�


= n2D� 2

�

1

R̃2
	 R̃2 − ỹ2 − 1/4

2
��

2
�erf��2�ỹ + R̃��

− erf��2�ỹ − R̃���
	+
R̃ − ỹ

4
exp�− 2�ỹ + R̃�2�

+
R̃ + ỹ

4
exp�− 2�ỹ − R̃�2�
 , �40�
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FIG. 4. �Color online� Density profile ���x ,y��2 for �̃�50. Co-

ordinates x and y are given in units of l̃, and ���2 in arbitrary units.
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FIG. 5. Line-averaged density n̄�y� in units of n2D versus

ỹ=x / l̃ for a condensate in the narrow channel for �=900,

R̃=8.8397. The solid curve shows the result of Eq. �39�, the filled
circles indicate the results of the variational calculation �see text�,
and the dashed curve the Thomas-Fermi inverted-parabola density
profile.
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where n2D=3n1D /4R̃l̃ is a characteristic 2D density, and

n1D=N /Ll̃ is the one-dimensional density in the narrow

channel. The coarse grained density versus ỹ for R̃=8.9 is

displayed in Fig. 6. For �R̃− �ỹ���1, Eq. �40� immediately
gives the expected Thomas-Fermi density profile,

ncg�ỹ� = n2D�1 −
ỹ2

R̃2� , �41�

and for ỹ= R̃ we have ncg=1 /�2�R̃2. As well as in the
symmetric case, the inverted-parabola formula already
works well not very far from the Thomas-Fermi boarder.

In Fig. 6 one sees that for R̃=8.9 this is the case for

�ỹ��8. If �ỹ�� R̃ and ��ỹ�− R̃��1, then the density decays
exponentially,

ncg�ỹ� = n2D� 1

2�R̃2

1

4��ỹ� − R̃�2
exp�− 2��ỹ� − R̃�2� .

�42�

The melting of the vortex lattice occurs when the number of
vortices Nv becomes of the order of the number of atoms.

The number of vortex rows at large �̃ increases as �̃1/3, and

the spacing between the vortices is �l̃. Thus, the number of

vortices is ��̃1/3L, and the melting transition occurs at the

one-dimensional density n1D= �N /Ll̃�� �̃1/3 / l̃.

IV. PHASE DIAGRAM FOR A CONDENSATE IN THE
NARROW CHANNEL

In this section we calculate the phase diagram for a rap-
idly rotating Bose-Einstein condensate in the narrow channel
geometry. The phase diagram is obtained by numerical mini-
mization of the energy functional

E/��0 = �
k

k2�ak�2 + �̃ �
k,k�,q

ak+q
� ak�−q

� ak�ak

�exp	−
1

4
��k − k� + q�2 + q2�
 , �43�

where we impose periodic boundary conditions along the y
axis and omit the index n for momenta kn. The energy is
measured in units of ��0 and depends only on a single di-

mensionless parameter �̃. The functional �43� is obtained by
substituting the condensate wave function

��x,y� = �
k

ak�k�x̃, ỹ� , �44�

with �k�x̃ , ỹ� given by Eq. �29�, into the Hamiltonian for
interacting bosons in the Landau gauge and integrating over
dx̃ and dỹ �14�.

The coefficients ak were calculated by minimizing E �Eq.
�43�� using a simulated annealing algorithm �29�. In general,
there is an infinite number of coefficients ak in the variational
wave function �44�, but the ones corresponding to large mo-
menta are strongly suppressed due to the presence of the
“kinetic energy” term in the energy functional. The normal-
ization condition for the condensate wave function leads to
the constraint �k �ak

2=1.

At �̃=0 the energy is minimized by setting all coefficients
ak with k�0 equal to zero and a0=1. This corresponds to the

2 4 6 8 10 12
y�

0.2
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0.6

0.8

1.0

ncg

FIG. 6. �Color online� The coarse grained density in units of n2D

versus ỹ=x / l̃, calculated from Eq. �40� for R̃=8.9. The dashed
curve shows the Thomas-Fermi shape.
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condensate density profile shown on Fig. 7�a�, which is a
Gaussian with the half-width l̃ in the x direction and is uni-
form along the y axis. This state remains the ground state for
�̃	4.9, and for �̃=4.9 it transforms via a second order quan-
tum phase transition into the state displayed in Fig. 7�b�. In
this state two extra components, k0 and −k0, develop and the

ordering wave vector k0 has the value k0�2.25 for �̃�5.2.
The three main components of this state are accompanied by
nonzero, but much smaller components with higher k which

are multiples of k0. The critical value of �̃ for this phase
transition can be obtained analytically by minimizing the en-
ergy of the three-component wave function �44�, with k=0
and k= �k0 �14�. In this case the emerging state is seen as
two rows of vortices �14�, although including small compo-
nents with higher k it becomes a sort of corrugated state and
can also be identified as a density wave.

At �̃�5.4, there is a first-order phase transition from the
density-wave state �b� into the state with one vortex row
�Fig. 7�c��. In this state the central component vanishes
�a0=0� and the wave function is characterized by two main

nonzero components a�k0
�1 /�2. At �̃�10 the ordering

wave vector is equal to k0�1.51. The energy of the purely
two-component state is larger by a small amount than the
energy of the state �c�, which is especially visible near the
phase transitions.

Close to �̃=18.9, the state �c� transforms into the state
shown in Fig. 7�d� and representing a density wave of vorti-
ces. This looks like the first-order transition �see Ref. �15��.
However, the state �d� becomes the ground state only for

�̃�18.88, whereas the state �c� is the ground state for

�̃	18.85. In the narrow interval 18.85	�̃	18.88 our cal-
culations yield a dynamically unstable corrugated state �d�,
which is signaled by a negative sign of the compressibility.

This is likely to mean that in this narrow range of �̃ the
system undergoes the phase separation.

The state �d� has five main components, including the
central component at k=0 and has the ordering wave vector

which is equal to k0�1.74 at �̃�19.2. This state turns into
the state with two vortex rows �Fig. 8�e�� via a first-order

phase transition at �̃�19.8.

For larger �̃, there are phase transitions at �̃�47.7 to the

state with three vortex rows �Fig. 8�f��, and at �̃�94 to the
state with four vortex rows �Fig. 8�g��. These transitions
seem to be of the first order. The physical explanation for the
possible absence of intermediate corrugated or density-wave
states near the first-order phase transitions into the states
with a larger number of vortices could be that starting from
two vortex rows the system becomes rigid to corrugations in

the transverse direction. So, increasing �̃ we observe an in-
crease in the number of vortex rows through first-order tran-

sitions. For �̃�164 there is a transition to the state with five

vortex rows, for �̃�260 to the state with six vortex rows,

and for �̃�385 to the state with seven rows, etc. �see Figs. 9
and 10�. Already for the state with eight vortex rows, which

emerges at �̃�550, the composition of the rows looks like a
triangular lattice �see Fig. 11�. For a large number j of the
vortex rows, the Thomas-Fermi size of the cloud in the x

direction, 2R̃, satisfies the asymptotic relation �38� and is

proportional to �̃1/3. It is equal to the distance between the

rows multiplied by �j+1�. Thus, the value of �̃ correspond-
ing to the transition from �j−1� to j vortex rows obeys the

relation �̃ j = �̃ j−1��j+1� / j�3. It works with a high accuracy,
which is better than 0.5% for j�8.
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The narrow channel geometry for rotating Bose gases was
first considered in Ref. �14�, where the roton-maxon struc-
ture of the excitations of the BEC without vortices has been
found, and the phase diagram was presented with an empha-
sis on the first two transitions which can be calculated ana-
lytically. A numerical study of the related problem was done
in Ref. �15�, where corrugated states were discussed. How-
ever the analysis of quantum transitions in Ref. �15� stops at
the appearance of the state with two vortex rows, although
the states with up to four rows of vortices have also been
observed. Here, we present a complete phase diagram and
identify the nature of quantum phase transitions. The chemi-

cal potential as a function of �̃ for �̃	50 is shown in Fig.
12, indicating three first-order transitions, one second-order
transition, and the above described peculiar transition be-
tween the states �c� and �d�.

The extension of the condensate wave function in the x
direction increases with increasing the interaction strength,
and the two-dimensional density decreases. This decreases
the average filling factor defined as �=N /Nv. The Gross-
Pitaevskii equation gives a good description in the limit of
large filling factors and we expect our picture to break down

at very large �̃. Eventually, when the number of particles
becomes of the order of the number of vortices Nv, the vor-
tex lattice melts through the phase transition to a strongly

correlated state. The limiting case of extremely large �̃ cor-
responds to the Laughlin state with �=1 /2, and it was dis-
cussed for the narrow channel with periodic boundary con-
ditions in the x direction in Ref. �30�.

V. CONCLUSION

In conclusion, we found an analytical solution for the vor-
tex lattice in a rapidly rotating BEC in the LLL. This solution
is asymptotically exact in the limit of a very large number of
vortices, and we discuss non-Thomas-Fermi effects in the
density profile. The results are obtained for two limiting
cases, circularly symmetric BEC and narrow channel geom-
etry. In the latter case we present a complete phase diagram
and identify the order of quantum phase transitions occurring
under an increase in the interaction strength or rotation fre-
quency and resulting in an increase in the number of vortex
rows.

ACKNOWLEDGMENTS

We are grateful to N. R. Cooper for helpful discussions.
S.M. and S.O. acknowledge discussions with A. Aftalion, X.
Blanc and F. Nier. This work was supported by ANR �Grants
No. ANR-07-BLAN-0238 and No. ANR-08-BLAN-0165�,
by the IFRAF Institute, and by the Dutch Foundation FOM.
G.S. wishes to thank the Aspen Center for Physics and the
Institute for Nuclear Theory of the University of Washington
for their hospitality and support during the workshop “Quan-
tum Simulation or Computation with Cold Atoms and Mol-
ecules” and the workshop “From Femptoscience to Nano-
science: Nuclei, Quantum Dots, and Nanostructures,” where
part of the present work has been done. D.K. acknowledges
support from EPSRC Grant No. EP/D066379/1. LPTMS is a
mixed research unit No. 8626 of CNRS and Université Paris
Sud.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

β̃

3210

a) b) c) d) e) f) g) h) k)

385

4 5 6

260164944.9 5.4 19.8 47.718.9

FIG. 10. Zero temperature phase diagram for a rapidly rotating
condensate in the narrow channel. Solid vertical lines indicate the
points of first-order transitions, and the dashed line the point of the
second order transition. The bold solid line shows the transition
between the states �c� and �d� �see text�. The numbers from 0 to 6

stand for the number of vortex rows in a given range of �̃, and the
filled areas correspond to corrugated or density-wave states. The
letters from �a� to �k� indicate the figure in which a given vortex
state is shown.

−10 −5 0 5 10

−10

−5

0

5

10

0.01

0.03

0.05

0.07

0.09

FIG. 11. �Color online� The same as in Fig. 7 for: �=600 �see
text�.

0 10 20 30 40 50
0

2.5

5

7.5

10

12.5

15

β̃

µ
/
�
ω

0

4.5 4.7 4.9 5.1 5.3
2.2

2.3

2.4

2.5

2.6

µ
/�

ω
0

β̃

18 18.5 19 19.5
5.6

5.8

6

6.2

β̃

µ
/
�
ω

0

FIG. 12. Chemical potential in units of ��0 as a function of �̃.
The dotted line indicates the transition between the states �c� and

�d� �see text�. The insets show the dependence �̃��̃� in the vicinity

of the quantum transitions at �̃=4.9 �upper inset� and at �̃�18.9
�lower inset�. The dashed lines in the insets indicate the derivative

��̃ /��̃ in arbitrary units.

VORTEX STRUCTURES IN ROTATING BOSE-EINSTEIN… PHYSICAL REVIEW A 80, 063621 �2009�

063621-9



APPENDIX

Let us give a detailed derivation of the projection of the
Gross-Pitaevskii equation for a rapidly rotating Bose-
condensed gas onto the lowest Landau level �31�. The gas is
confined in an asymmetric harmonic potential
V�r�=m��x

2x2+�y
2y2� /2, and we assume without loss of

generality that �y 	�x.
In the symmetric gauge the single-particle Hamiltonian is

similar to that of Eq. �3�,

H =
1

2
�p̂ − �� � r��2 +

1

2
��x

2 − �2�x2 +
1

2
��y

2 − �2�y2,

�A1�

where we put �=m=1. Drawing an analogy with a charged
particle in a uniform magnetic field B, the rotation frequency
� is identified with half the cyclotron frequency �c, and
putting the particle charge and light velocity equal to unity
we have �=�c=B /2. In complex coordinates the Hamil-
tonian �A1� rewrites as

H�z, z̄� = − 2 � �̄ + �c�z̄�̄ − z�� +
1

2
�t

2zz̄ +
1

8
��x

2 − �y
2��z2 + z̄2� ,

�A2�

where �t
2= ��x

2+�y
2� /2 and can be rewritten as

�t
2=�c

2+ ��̃x
2+ �̃y

2� /2, with �̃x
2=�x

2−�c
2 and �̃y

2=�y
2−�c

2.

Introducing the frequencies �t
�=��c

2+ �
�̃x��̃y

2 �2 and the

dimensionless parameter �2=���t
−+�c���t

++�c�
��t

−−�c���t
+−�c�

, the un-
normalized ground-state wave function is

z, z̄��0� = e−�1/2��t
+zz̄e−�1/2��az2+bz̄2�, �A3�

where a= 1
2�2��t

−−�c�, b= 1
2 ��t

−+�c� /�2, and H��0�
=�t

+��0�.
The lowest Landau level in the asymmetric well is ob-

tained by redefining ���= ��o�̃� and requiring the Hamil-

tonian H̃ which acts on �̃� to depend only on a single vari-
able representing a linear combination of z and z̄,

u = z −
1

�2 z̄ . �A4�

The eigenvalue equation acting on ��̃� then reads

�E − �t
+��̃ =

2

�2�̃� + ��t
+ − �t

−�u�̃�. �A5�

Let us define a dimensionless variable u�= i �
2
��t

+−�t
−u so

that the eigenvalue Eq. �A5� becomes

�E − �t
+��̃ =

�t
+ − �t

−

2
�− �̃� + 2u��̃�� . �A6�

This is a Hermite equation ��t
+��t

−� with eigenfunctions

�̃n�u��=Hn�u�� such that

z, z̄��n� = NnHn�u���0�z, z̄�

with eigenvalues

En = n��t
+ − �t

−� + �t
+.

Introducing the quantity �,

cosh � =
�t

−

�c
���t

+ − �c���t
+ + �c�

��t
+ − �t

−���t
+ + �t

−�
,

sinh � =
�t

+

�c
���t

− − �c���t
− + �c�

��t
+ − �t

−���t
+ + �t

−�
,

so that

�o�z, z̄�z, z̄��o� = esinh 2��−u�ū�+�1/2�tanh ��u�2+ū�2��,

and using the relation

� du�dū�

�
e−u�ū�+�1/2�tanh ��u�2+ū�2�

�Hl� u�
�sinh 2�

�Hk� ū�
�sinh 2�

�
= cosh �

l!

� tanh �

2
�l�k,l,

the normalization factor Nn is found to be

Nn = �− i�n 1
��n!

� tanh �

2
�n/2��t

+�t
−

�c

1

cosh �
.

The projector onto the LLL of an asymmetric harmonic well,
PLLL=�n�0��n��n�, is

z1, z̄1�PLLL�z2, z̄2�

=
�t

+�t
−

��c cosh �
e−�1/2��az1

2+bz̄1
2+�t

+z1z̄1�e−�1/2��az̄2
2+bz2

2+�t
+z2z̄2�

��
n�0

� tanh �

2
�n 1

n!
Hn�u1��Hn�ū2�� . �A7�

Using the relation

Hn�u�� =
2n

��
�

−



�u� + it�ne−t2dt ,

one obtains

z1, z̄1�PLLL�z2, z̄2� =
�t

+�t
−

��c
e−�1/2��az1

2+bz̄1
2+�t

+z1z̄1�

�e−�1/2��az̄2
2+bz2

2+�t
+z2z̄2�

�e−sinh2 ��u1�
2+ū2�

2�+sinh 2�u1�ū2�. �A8�

Any state ��LLL�= PLLL��� in the LLL is a linear combina-
tion of LLL eigenstates,

z, z̄��LLL� = �
n=0



cnz, z̄��n� = f�u��e−�1/2��az2+bz̄2+�t
+zz̄�

where f�u�� is an analytic function.
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Consider now the Hamiltonian �A2� to which we add a
scalar potential V�z , z̄�,

H�z, z̄� = − 2 � �̄ + �c�z̄�̄ − z�� +
1

2
�t

2zz̄

+
1

8
��x

2 − �y
2��z2 + z̄2� + V�z, z̄� . �A9�

Projecting the eigenvalue equation H���=E��� onto the
LLL amounts to z1 , z̄1�PLLLHPLLL���=Ez1 , z̄1�PLLL���.
This gives

�t
+�t

−

��c
� dz2dz̄2e−�1/2��az̄2

2+bz2
2+�t

+z2z̄2�e−�1/2��az2
2+bz̄2

2+�t
+z2z̄2�

�e−sinh2 ��u1�
2+ū2�

2�+sinh 2�u1�ū2�H�z2, z̄2�f�u2�� = Ef�u1�� .

�A10�

Writing explicitly H�z2 , z̄2� and changing the integration vari-
ables to u2� , ū2�, we have

sinh 2�

�
e−sinh2 �u1�

2� du2�dū2�e
sinh2 �u2�

2
esinh 2��u1�ū2�−u2�ū2��

���t
+ − �t

−

2
�− f��u2�� + 2u2�f��u2��� + �t

+f�u2��

+ V�u2�, ū2��f�u2��� = Ef�u1�� . �A11�

Using the Bargman identity

sinh 2�

�
� du2�dū2�e

sinh 2��ū2�u1�−u2�ū2��f�u2�� = f�u1�� ,

one finally obtains

�E − �t
+�f�u��

=
�t

+ − �t
−

2
�− f��u�� + 2u�f��u���

+ e−sinh2 �u�2
:V�u�,

1

sinh 2�
�u��:esinh2 �u�2

f�u�� ,

where the notation :V�u� , 1
sinh 2��u��: means that in V�u� , ū��

the variable ū� has been replaced by the operator 1
sinh 2��u�

and the normal ordering has been made. In the case of the
Gross-Pitaevskii equation the scalar potential is replaced by
the nonlinear term

g�LLL��LLL� = gf�u��f�ū��e−sinh 2�u�ū�+sinh2 ��u�2+ū�2�

so that Eq. �A11� becomes

�E − �t
+�f�u1�� =

�t
+ − �t

−

2
�− f��u1�� + 2u1�f��u1��� + g

sinh 2�

�

�e−sinh2 �u1�
2� du2�dū2�e

2 sinh2 �u2�
2+sinh2 �ū2�

2

�e2 sinh 2��ū2�u1�/2−u2�ū2��f2�u2��f�ū2�� . �A12�

Equation �A12� is a general form of the nonlinear Gross-

Pitaevskii equation projected onto the LLL of an asymmetric
harmonic trap.

Let us now concentrate on the two cases of interest, cir-
cularly symmetric geometry and narrow channel geometry.
In the symmetric geometry we have �x=�y =�=�t, and
�t

+−�t
−→�t−�c,

sinh � →
�t

2�c
��2 − �c

2
��̃x − �̃y� → 0, cosh � → 1,

− 2iu� → ��t − �c�z ,

� → 2� ��c

��t − �c���̃x − �̃y�
→ 

so that

u� → i� ��c

�̃x − �̃y

z .

Changing variables, u�→z, Eq. �A12� reduces to

��t − �c�z1f��z1� + g
�t

�
� dz2dz̄2e2�t�z̄2z1/2−z2z̄2�f2�z2�f�z̄2�

= �E − �t�f�z1� . �A13�

Finally, when �→� �critical rotation�, i.e., �t→�c, Eq. �13�
becomes

g
�c

�
� dz2dz̄2e2�c�z̄2z1/2−z2z̄2�f2�z2�f�z̄2� = �E − �c�f�z1� .

�A14�

Putting �t=�, �c=�, �E−�t�= �̃, and f → ��N / l̃�f in Eq.
�A13�, we obtain Eq. �9�.

In the narrow channel geometry �̃y→0, and
�t

+−�t
−→ �̃x�̃y / �2�c�

sinh � = cosh � →��t���t�
2 − �c

2�
�c�̃x�̃y

, − 2iu� →��̃x�̃y

2�c
�u ,

� →��t� + �c

�t� − �c

where �t�=��c
2+

�̃x
2

4 . Changing variables, u�→u=z− z̄ /�2,
Eq. �A12� reduces to

2
�t� − �c

�t� + �c

f��u1� + g
�t�

�
e�t�u1

2/2� du2dū2e−�t��u2
2+ū2

2/2�

�e2�t��ū2u1/2−ū2u2�f2�u2�f�ū2� = �E − �t��f�u1� ,

�A15�

where �t�=�t��
�t�+�c

2�c
�2. Turning to the variable �= i��t�u2,

putting �c=�, and noticing that �t�=�̃ where �̃ was defined
in Sec. III, we have 2�t���t�−�c� / ��t�+�c�=�0, with �0 in-
troduced in Eq. �34�. Then, after rescaling the function f as

f → ��N / l̃�f , Eq. �A15� transforms into Eq. �34�.
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