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I. INTRODUCTION

Most of the theoretical efforts in the field of strongly cor-
related quantum systems over the past few decades have fo-
cused on understanding the equilibrium properties of these
fascinating systems. For instance, achieving a complete un-
derstanding of the phase diagram of rather “simple” models
such as the two-dimensional fermionic Hubbard model still
remains a huge challenge. Nevertheless, however important
these endeavors are, understanding the phase diagram and
the equilibrium properties of the phases of strongly corre-
lated systems will not certainly exhaust the possibilities for
finding new and surprising phenomena in these complex sys-
tems, especially out of equilibrium.

In classical systems, the existence of steady states out of
equilibrium is well known. Very often, however, the proper-
ties of such states have very little to do with the equilibrium
properties of the systems where they occur. Moreover, also
very often their existence cannot be inferred from any previ-
ous knowledge about the equilibrium phase diagram: they
are emergent phenomena.

One good example of a classical nonequilibrium steady
state is provided by the appearance of Rayleigh-Bénard con-
vection cells when a fluid layer is driven out of equilibrium
by a temperature gradient. Indeed, it is known that dissipa-
tion plays an important role in the formation of these classi-
cal nonequilibrium states. However, different from classical
systems, dissipation in quantum systems causes decoherence,
which usually destroys any interesting quantum interference
effects. Thus, although one may also wonder if nonequilib-
rium steady states can also appear when quantum systems
are driven out of equilibrium, the study of nonequilibrium
phenomena in quantum many-body systems has been re-
garded, until very recently, as a subject of mostly academic
interest. The reason for this may be decoherence due to cou-
pling with the environment, which is always present in most
experimental realizations of large quantum many-body sys-

tems and which prevents the observation of coherent quan-
tum evolution for long times.

However, the recent availability of highly controllable
systems of ultracold atomic gases has finally provided the
largely lacking experimental motivation for the study of non-
equilibrium phenomena, leading to an explosion of theoreti-
cal activity �1–39�. Ultracold atomic gases are especially in-
teresting because they are very weakly coupled to the
environment, thus remaining fully quantum coherent for
fairly long times �compared to the typical duration of an
experiment�. At the same time, it is relatively easy to mea-
sure the coherent evolution in time of observables such as
the density or the momentum distribution. Thus, theorists can
now begin to pose questions such as: assuming that a many-
body system is prepared in a given initial state that is not an
eigenstate of the Hamiltonian, how will it evolve in time?
And, more specifically, will it reach a stationary or quasista-
tionary state? If so, what will be the properties of such a
state? How much memory will the system retain of its initial
conditions?

From another point of view, the problem described in the
previous paragraph can be formulated as the study of the
response of a system to a sudden perturbation in which the
Hamiltonian is changed over a time scale much shorter than
any other characteristic time scales of the system. In what
follows, we shall refer to this type of experiment as a quan-
tum quench. Quantum quenches are also of particular interest
to the “quantum engineering” program for ultracold atomic
gases �40�. The reason is that, if we intend to use these
highly tunable and controllable systems as quantum simula-
tors of models of many-body physics �such as the two-
dimensional �2D� fermionic Hubbard model mentioned
above�, it is utterly important to understand to what extent
the final state of the quantum simulator depends on the state
in which it was initially prepared. In particular, one is inter-
ested in finding out whether the observables in the final state
can be obtained from a standard statistical ensemble �say, the
microcanonical or the canonical ensemble at an effective
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temperature�. If this is so, one would speak of thermaliza-
tion. If this does not happen, then how much memory does
the system retain about its initial state beyond the average
energy E= �H�?

We would like to emphasize that the above questions are
not merely academic. Indeed, ultracold atomic systems allow
for the study of nonadiabatic dynamics when the system is
driven between two quantum phases such as a superfluid and
a Mott insulator �41,42�. Also, in a recent experiment �43�, it
has been shown that a faithful realization of the Lieb-Liniger
model �44� exhibits absence of thermalization. In other
words, when prepared in an nonequilibrium state, the experi-
mental system reached a steady state that cannot be de-
scribed by any of the ”standard” ensembles of statistical me-
chanics. This absence of thermalization seems to be a
consequence of the integrability of the Lieb-Liniger model,
that is, the existence of an infinite number of independently
conserved quantities. This conclusion was backed by the the-
oretical analysis of Rigol and co-workers �10�, who noticed
that the nonequilibrium dynamics of an integrable system is
highly constrained. Thus, based on numerical simulations for
the Tonks-Girardeau limit of the Lieb-Liniger model, these
authors conjectured that the long-time values of some ob-
servables should converge to those obtained from a general-
ized Gibbs ensemble, which can be constructed using the
maximum �von Neumann-� entropy principle �10,45,46�. The
conjecture was first analytically confirmed by analyzing an
interaction quench in the Luttinger model by one of us �9�.
Later, it has been also found true in other integrable models:
Calabrese and Cardy studied a quench in a Harmonic chain
�15� and Eckstein and Kollar analyzed the Falikov-Kimball
model in infinite dimensions �18� and the 1 /r Hubbard
model in one dimension �19�. Moeckel and Kehrein �20�
studied an interaction quench in the Hubbard model in infi-
nite dimensions by a flow equation method and found that
the system reaches an intermediate nonthermal state. Finally,
recent numerical studies also have suggested that lack of
thermalization may even persist in the absence of integrabil-
ity in one-dimensional �1D� systems �14� or that it may occur
only certain parameter regimes of nonintegrable models �16�.

However, it can be expected that �26� for a rather general
choice of the initial state, along with a situation where there
are few conserved quantities, the system will lose memory of
most of the details of the initial state and after it reaches a
steady state, the expectation of many experimentally acces-
sible observables such as the particle density or the momen-
tum distribution will look essentially identical to those ob-
tained from a standard thermal ensemble.1 Indeed, this is
what seems to be observed in the vast majority of the experi-
ments with ultracold atomic gases. However, for experimen-
tal many-body systems in general, it is hard to quantify
whether this will be always the case. We should take into

account that �except perhaps in the case of ultracold atomic
gases� the exact form of the quantum Hamiltonian is fre-
quently not known with accuracy. And even when it is
known, it is not always possible to tell a priori whether the
system is integrable or even if it has other conserved quan-
tities besides the ones assumed by the standard thermody-
namic ensembles. As a possible experimental check, we can
say that, provided the final result is largely independent of
the particular details of the preparation of the initial state and
that the observations agree with those obtained from a ther-
mal ensemble, we can say that thermalization has occurred.
Indeed, some recent numerical evidences �23�, supplemented
by the extension to many-particle systems of a conjecture
known as “eigenstate thermalization hypothesis” �first intro-
duced in the context of quantum chaos �47��, seem to indi-
cate that lack of integrability will in general lead to thermal-
ization �in the sense defined above�. Indeed, Reimann �26�
recently analytically demonstrated that, under realistic ex-
perimental conditions, equilibration will be observed in an
isolated system that has been initially prepared in an non-
equilibrium mixed state. Nevertheless, even if the issue of
thermalization for nonintegrable systems may have been
settled, other questions such as the details of the transition
from the integrable case �which thermalizes to a generalized
Gibbs ensemble� to the nonintegrable case �which thermal-
izes to the standard microcanonical or Gibbs ensemble for
large enough systems� are questions that are still far from
being completely understood.2

In this paper, we will not try to answer the difficult ques-
tions posed in the previous paragraph. Instead, we focus on
analyzing the quench dynamics of a relatively well-known
one-dimensional model, namely, the Luttinger model �LM�.
A brief account of the results in this paper has been already
published elsewhere �9�. In a future publication, we shall
also deal with another closely related model: the sine-
Gordon model �48�.

The LM Hamiltonian can be represented as a quadratic
form of creation and destruction operators. The long-time
behavior following a quench for Hamiltonians of this form
was recently considered by Barthel and Schollwöck �49�.
These authors provided some general conditions for the ap-
pearance of dephasing and steady nonthermal states. This
question was also taken up recently by Kollar and Eckstein
�19�. However, since the Luttinger model may be relevant to
experiments using ultracold atomic gases �see Sec. IV� or
numerical simulations, it is important to obtain analytical
results. The simplicity of this model also allows us to test in
detail a number of general results �12,49�.

The rest of this paper is organized as follows. In Sec. II,
we discuss the evolution of some simple correlation func-
tions of the Luttinger model. We consider the case where the
interaction between the fermions is suddenly switched on
and the reverse situation, that is, when the interaction in sud-
denly switched off. In Sec. III, we discuss how the infinite-1Implicit in this discussion, it is the fact we are attempting at a

description of the system as a whole, not separating its degrees of
freedom into a “system” and a “reservoir.” We believe that this
point of view is more appropriate when discussing ultracold atomic
systems, given that they are very weakly coupled to the
environment.

2This question is also related to the problems concerning the ap-
plicability of the maximum entropy approach �45,46� to statistical
mechanics. See for instance the critique by Ma in Ref. �64�. How-
ever, the maximum entropy approach is advocated by Balian �59�.
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time behavior of some of the correlation functions following
a quantum quench can be obtained from a generalized Gibbs
ensemble. We also discuss some observables for which this
conjecture fails. The experimental relevance of our results is
briefly discussed in Sec. IV, along with other conclusions of
this work. Finally, the details of some of the lengthier calcu-
lations are provided in Appendixes A to C.

II. LUTTINGER MODEL

The LM describes a 1D system of interacting fermions
with linear dispersion. It was first introduced by Luttinger
�50� but its complete solution was only later obtained by
Mattis and Lieb �51�, who showed that the elementary exci-
tations of the system are not fermionic quasiparticles. In-
stead, Mattis and Lieb introduced a set of bosonic fields de-
scribing collective density modes �phonons� of the system,
which are the true elementary low-energy excitations of the
LM. The methods of Mattis and Lieb bear strong resem-
blance to the early work of Tomonaga �52� on the one-
dimensional electron gas. Extending the work of Tomonaga,
as well as that of Mattis and Lieb, Luther and Peschel �53�
computed the one- and two-particle correlation functions in
equilibrium, thus showing that correlations exhibit �at zero
temperature and long distances� a nonuniversal power-law
behavior signaling the absence of long-range order. Later,
Haldane �54–56� conjectured that these properties �i.e., col-
lective elementary excitations exhausting the low-energy part
of the spectrum as well as power-law correlations� are dis-
tinctive features of a large class of gapless interacting one-
dimensional systems that he termed �Tomonaga-� “Luttinger
liquids.” Using the modern language of critical phenomena,
the LM can be understood as a fixed point of the renormal-
ization group for a large class of gapless many-body systems
in one dimension: the equilibrium properties at low tempera-
tures of many 1D systems are universal in the sense that they
can be accurately described by the LM. However, in this
work, we shall be concerned with nonequilibrium properties
of the LM and because the latter can involve highly excited
states, we shall make no claim for universality. The precise
conditions under which the results obtained here apply to
real systems that are in the Tomonaga-Luttinger class should
be investigated carefully in each particular instance �see dis-
cussion in Sec. IV�.

The Hamiltonian of the LM can be written as follows:

HLM = H0 + H2 + H4, �1�

H0 = �
p,�=r,l

�vFp:��
†�p����p�: , �2�

H2 =
2��

L
�

q

g2�q�:Jr�q�Jl�q�: , �3�

H4 =
��

L
�

q,�=r,l
g4�q�:J��q�J��− q�: . �4�

Here, ���p� and ��
†�p� are fermion creation and annihilation

operators at some momentum p and J��q�=�p:��
†�p

+q����p�:. The index �=r , l refers to the chirality of the
fermion species, which can be either right �r� or left �l� mov-
ing; the symbol :…: stands for normal-ordering prescription
for fermionic operators. This is needed to remove from the
expectation values the infinite contributions arising from the
fact that the ground state is a Dirac sea �55�, namely, a state
where all single-particle fermion levels with p�0 are occu-
pied for both chiralities. This defines a stable ground state �at
the noninteracting level�, which in what follows will be de-
noted by �0�.

A. Bosonization solution of the LM

In this section, we briefly review the solution of the LM.
The Hamiltonian in Eqs. �1�–�4� can be written as a quadratic
Hamiltonian in terms of a set of bosonic operators �51�. First,
we note that the density operators J��q�=�p:��

†�p
+q����p�: obey the following commutation rules:

�J��q�,J��q��� = 	 qL

2�

�q+q�,0���, �5�

which can be transformed into the Heisenberg algebra of the
familiar bosonic operators by introducing

b�q� = − i	 2�

�q�L

1/2

���q�Jr�− q� − ��− q�Jl�q�� , �6�

where ��q� is the step function. Note that the q=0 compo-
nents �known as “zero modes”� require a separate treatment
since J��0�=N� is the deviation, relative to the ground state,
in the number of fermions of chirality �=r , l. However,
rather than working with Nr and Nl, it is convenient to intro-
duce

N = Nr + Nl J = Nr − Nl, �7�

which, since Nr and Nl are integers, must obey the following
selection rule �−1�N= �−1�J when the Fermi fields obey
antiperiodic boundary conditions ���x+L�=−���x� �L
is the length of the system�. Therefore ���x�
=L−1/2�pe−a0�p�eis�px���p�, being sr=−sl=+1 and p=2�n
− 1

2 �� /L, where n is an integer and a0→0+ �55�.
The Hamiltonian HLM can be expressed in terms of the

bosonic operators introduced in Eq. �6�,

H0 = �
q�0

�vF�q�b†�q�b�q� +
��vF

2L
�N2 + J2� , �8�

H2 =
1

2 �
q�0

g2�q��q��b�q�b�− q� + b†�q�b†�− q��

+
��g2�0�

2L
�N2 − J2� , �9�

H4 = �
q�0

�g4�q��q�b†�q�b�q� +
��g4�0�

2L
�N2 + J2� . �10�

Ignoring the zero-mode part, the above Hamiltonian has
the form of Eq. �A1�, with the following identifications:
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	0�q�=vF�q�, m�q , t�=g4�q��q�, and g�q , t�=g2�q��q�, and it
can be therefore be brought into diagonal form by means of
the canonical transformation of Eq. �A3�. Hence, the Hamil-
tonian takes the form of Eq. �A5� with 	�q�=v�q��q�, being
v�q�= ��vF+g4�q��2− �g2�q��2�1/2 and q�0. As to the zero-
mode contribution,

HZM =
��vN

2L
N2 +

��vJ

2L
J2, �11�

where vN=vF+g4�0�+g2�0� and vJ=vF+g4�0�−g2�0�. This
defines the equilibrium solution of the LM. In the following
sections, we shall be concerned with the quench dynamics of
this model.

B. Suddenly turning on the interactions

Although it is possible to solve the general quench prob-
lem between two interacting versions of the Luttinger model,
we shall focus here on the cases where the interactions de-
scribed by H2 and H4 �cf. Eqs. �3� and �4�� are suddenly
switched on �this section� and switched off �next section�.
Thus, in this section, we shall assume that we have made the
replacements g2,4�q�→g2,4�q , t�=g2,4�q�
�t� in Eqs. �3� and
�4�. The Hamiltonian at times t�0 is therefore the interact-
ing LM. In other words, using the notation introduced in
Appendix A, Hf =H0+H2+H4=HLM, whereas the initial
Hamiltonian �for t�0� is Hi=H0. However, we note that,
since both zero modes, J and N, are conserved by Hi=H0 and
Hf =HLM, their dynamics factors out and we shall assume
henceforth that we work within the sector of the Hilbert
space where J=N=0 �this sector contains the noninteracting
ground state, �0��. Therefore, from now on, we shall omit
HZM in all discussions.

As to the initial state, we shall consider that, within the
spirit of the sudden approximation, at t=0, the system is
prepared in a Boltzmann ensemble at a temperature T de-
scribed by


0 
 
�t = 0� = Z0
−1e−Hi/T, �12�

where Z0=Tr e−Hi/T. We shall further assume that the contact
with the reservoir is removed at t=0 and that, after the
quench, the system undergoes a unitary as it is in isolation
from the rest of the universe.

Equation �A7� describes the solution to the interaction
quench in terms of the modes that annihilate the initial
ground state �0�; the solution itself is not particularly illumi-
nating. To gain some insight into the properties of the system
following the quench, let us compute a few observables.
Among them, we first turn our attention to the instantaneous
momentum distribution, which is the Fourier transform of
the one-particle density matrix

C�r
�x,t� = �eiHft/��r

†�x��r�0�e−iHft/��0, �13�

where �¯ �0 means that the expectation value is taken over
the ensemble described by 
0 �cf. Eq. �12��. The time depen-
dence of the operators is dictated by Hf, as described in
Appendix A. Notice that, since in general �Hf ,
0��0, time
translation invariance is broken and the above correlation
function is explicitly time dependent.

The time evolution of ���x� can be obtained using the
bosonization formula for the field operator �53,55,57�

���x� =
��

�2�a
eis����x�, �14�

being �r ,�l two Majorana operators �also known as Klein
factors� obeying ��� ,���=2���, which ensures the anticom-
mutation of the left- and right-moving Fermi fields �recall
that s�=+1 for �=r and s�=−1 for �= l�. The bosonic fields

���x� = s��0� +
2�x

L
N� + ��

†�x� + ���x� , �15�

where �N� ,�0��= i��,� and, in terms of Fourier modes,

���x� = lim
a0→0+

�
q�0

	2�

qL

1/2

e−qa0/2eis�qxb�s�q� . �16�

The details of the calculations of C�r
�x , t� have been rel-

egated to the Appendix B. In this section, we will mainly
describe the results. However, a number of remarks about
how the calculations were performed are in order before pro-
ceeding any further. We first note that interactions in the LM
are assumed to be long ranged �50,51,55�. This can be made
explicit in the interaction couplings by writing g2,4�q�
=g2,4�qR0�, where the length scale R0�L is the interaction
range. Thus, just like system size L plays the role of a cutoff
for “infrared” �that is, long wavelength� divergences, the in-
teraction range R0 plays the role of an ”ultraviolet” cutoff
that regulates the short-distance divergences of the model.
The results given below were derived assuming a particular
form of the interaction �or regularization scheme� where the
Bogoliubov parameter �cf. Eq. �A4�� is chosen such that
sinh 2��q�=�e−�qR0�/2. Furthermore, we replaced v�q� by v
=v�0�. Indeed, these approximations are fairly similar to the
ones used to compute the time-dependent correlation func-
tions in equilibrium �53�, given that the expressions that we
obtain for the out-equilibrium correlators are fairly similar to
those of the equilibrium correlations �53�. This regularization
scheme greatly simplifies the calculations while not altering
in a significant way the asymptotic behavior of the correla-
tors for distances much larger than R0.3

Returning to the one-particle density matrix �cf. Eq. �13��,
we note that it can be written as the product of two factors:

C�r
�x,t� = C�r

�0��x�hr�x,t� , �17�

where C�r

�0��x� is the noninteracting one-particle density ma-
trix and thus hr�x , t� accounts for deviations due to the inter-
actions. Hence, this factorization allows us to obtain the in-
stantaneous momentum distribution function as the
convolution

3An exception are pathological cases, such as the Coulomb inter-
action, where both v�q� / �q� and sinh 2��q� are singular for q=0.
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f�p,t� = �
−�

� dk

2�
f �0��p − k�hr�k,t� , �18�

where f �0��p�= �e�vFp/T+1�−1 is the Fermi-Dirac distribution
and

hr�k,t� = �
−�

+�

dxeipxhr�x,t� . �19�

Before presenting the results for the expression of the
one-particle density matrix as well as the momentum distri-
bution at finite temperatures, it is worth considering the
much simpler-looking zero-temperature expression. We first
discuss finite-size effects. For a system of size L, we obtain
�9�

C�r
�x�L� = C�r

�0��x�L�

�� R0

d�x�L�
��2�d�x − 2vt�L�d�x + 2vt�L�

d�2vt�L�d�− 2vt�L�
��2/2

,

�20�

where d�z �L�=L�sin��z /L�� is the cord function and
C�r

�0��x �L�= i�2L sin���x+ ia0� /L��−1 �a0→0+� the noninter-
acting one-particle density matrix. Notice that this result is
valid only asymptotically, that is, for d�x �L� ,d�x�2vt�
�R0. Thus, we see that C�r

�x , t �L� is a periodic function of
time with period equal to �0=L /2v. This is in agreement
with the general expectation that correlations in finite-size
systems exhibit time recurrences because the energy spec-
trum is discrete. Although the recurrence time generally de-
pends on the details of the energy spectrum, in the LM, the
spectrum is linear 	�q��v�q� and therefore the energy spac-
ing between �nondegenerate� many-body states is �0
�2��v /L. Hence, the recurrence time �0�2� /�0 follows
�the extra factor of 1

2 is explained by the so-called light-cone
effect, see further below�. The recurrent behavior exhibited
by the one-particle density matrix �13� implies that, after the
quench, the system does not reach a time-independent sta-
tionary state as time grows. A similar conclusion is reached
by analyzing other correlations such as, e.g., the finite-size
version of the density-correlation function �9�,

CJr
�x,t�L� = �eiHft/�Jr�x�Jr�0�e−iHft/��0

= −
�1 + �2�/4�2

�d�x�L��2 +
�2/8�2

�d�x − 2vt�L��2

+
�2/8�2

�d�x + 2vt�L��2 , �21�

where

Jr�x� = �
q

eiqx

L
Jr�q� ¬ �r

†�x��r�x� ¬
1

2�
�x�r�x� �22�

is the density �also referred to as “current”� operator in real
space.

In the thermodynamic limit, L→�, the recurrence time
�0=L /2v→+� and the system does indeed reach a time-
independent steady state. In this limit, d�x �L�→ �x� and the
single-particle density matrix becomes �9�

C�r
�x,t � 0� = Gr

�0��x��R0

x
��2� x2 − �2vt�2

�2vt�2 ��2/2

. �23�

Hence,

hr�x,t� = �R0

x
��2� x2 − �2vt�2

�2vt�2 ��2/2

. �24�

In order to understand the evolution of the momentum dis-
tribution, without actually having to compute it, it is useful
to consider the various limits of the above expression, Eq.
�23�. First of all, for short times such that 2vt� �x�, the func-
tion hr�x , t� is asymptotically just a time-dependent factor �9�

hr�x,t� � Z�t� = 	 R0

2vt

�2

, �25�

which can be interpreted as a time-dependent “Landau qua-
siparticle” weight in an effective �time-dependent� Fermi-
liquid description of the system. In other words, as time
evolves after the quench, we could imagine that the quasi-
particle weight at the Fermi level is reduced from its initial
value, Z�t=0�=1, to Z�t�0��1. At zero temperature, this
time-dependent renormalization of the quasiparticle weight
reflects itself in a reduction of the discontinuity of the mo-
mentum distribution f�p , t� at the Fermi level �which is lo-
cated at p=0 in our convention�. Therefore, at any finite
time, the system behaves as if it was a Fermi liquid and
therefore it keeps memory of the initial state, that is, a non-
interacting Fermi gas.

Yet, for t→+�, hr�x , t� becomes a power law �9�

lim
t→�

hr�x,t� = �R0

x
��2

, �26�

and also does the momentum distribution. The behavior of
the momentum distribution at different times is depicted in
Fig. 1. Interestingly, this time-dependent reduction of the
quasiparticle weight after being quenched into the interacting
state has been also found in Ref. �20� when studying an
interaction quench in the Hubbard model in the limit of in-
finite dimensions. In this case, however, the discontinuity
remains finite even for t→+�, which is different from the
behavior of the LM, which is known to be a non-Fermi liq-
uid at equilibrium. Some of these non-Fermi-liquid features
also persist in the quench dynamics.

The result of Eq. �26� is similar to the zero-temperature
result in equilibrium. However, the exponent of C�r

�x , t
→�� is equal to 1+�2 and, even for an infinitesimal inter-
action �i.e., ��1�, it is always larger than the one that gov-
erns the ground state �i.e., equilibrium� correlations �53,55�:
�2=sinh2 2��0���eq

2 =2 sinh2 ��0�. The reason for the
larger exponent can be qualitatively understood from the fol-
lowing facts: �i� Because of the variational theorem, the ini-
tial state �i.e., the ground state of the noninteracting Hamil-
tonian Hi=H0� is a complicated excited state of the final
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Hamiltonian Hf =HLM. �ii� Both Hi and Hf are critical �i.e.,
scale free, apart from the cutoff R0�, thus, the system is likely
to remain critical. To end the present discussion, we note
that, in the literature on Tomonaga-Luttinger liquids, it is
customary to introduce the dimensionless parameter K
=e−2��0� in terms of which �2= �K−K−1�2 /4, which needs to
be compared to the equilibrium exponent resulting from
�eq= �K+K−1−2� /2. We shall use the parameter K in other
expressions below.

It is worth emphasizing that the particular evolution of the
asymptotic correlations from Fermi-liquid-like at short times
to non-Fermi-liquid-like at infinite time exhibited by the one-
particle density matrix is also found in other correlation
functions. However, the idea that the system “looks like” an
interacting Fermi liquid at any finite t should not be taken too
far. In this regard, we should note that for �x��2vt, the pref-
actor of the term ��2�x�−2 of the density-correlation func-
tion �cf. Eq. �21��, which in equilibrium is proportional to the
system compressibility �57�, remains equal to �minus� unity,
which is the value that corresponds to a noninteracting Fermi
gas �in an interacting Fermi liquid, it would deviate from
one�. For t→+�, the same prefactor becomes �1+�2��1,
which does not relate easily to a non-Fermi-liquid-like be-
havior. However, other correlation functions exhibit a similar
behavior to the one-particle density matrix. For instance, let
us consider the following correlators:

C�
m�x,t� = �e2im��x,t�e−2im��0,t�� , �27�

C

n�x,t� = �ein
�x,t�e−in
�0,t�� , �28�

where ��x�= 1
2 ��r�x�+�l�x�� and 
�x�= 1

2 ��r�x�−�l�x�� and
the spatial derivatives of � and 
 are related to the �total�
density and current-density fluctuations, respectively.4 Using
exactly the same methods as above, we find �for L→��

C�
m�x,t�

C�
�0,m��x�

= �	 R0

2vt

2x2 − �2vt�2

x2 �m2�K2−1�/2

, �29�

C�
n �x,t�

C�
�0,n��x�

= �	 R0

2vt

2x2 − �2vt�2

x2 �n2�K−2−1�/8

, �30�

where C�0,m��x�=Am
��R0 /x�2m2

and C�0,n��x�=An

�R0 /x�n

2/2 are
the noninteracting correlation functions �where Am

� and An



are nonuniversal prefactors�. We note that the usual duality
relation where �→
 and K→K−1, which one encounters
when studying equilibrium correlation functions �57�, still
holds for these nonequilibrium correlators. Let us next ana-
lyze their asymptotic properties. We consider only C�

m�x , t�,
as identical conclusions also apply to C


n�x , t� by virtue of the
duality relation. For �x��2vt, we have

C�
m�x,t� = C�0,m��x�	 R0

2vt

m2�K2−1�

. �31�

Thus, up to the time-dependent prefactor, correlations take
the form of a noninteracting system of Fermions, C�0,m��x�.
However, in the opposite limit ��x��2vt�, this correlator ex-
hibits a nontrivial power law

C

m�x,t� � �R0

x
�m2�K2+1�

. �32�

Notice that this expression also describes the infinite-time
behavior, which is controlled by an exponent equal to
m2�K2+1�, being again different from the exponent exhibited
by the same correlator in equilibrium, which equals
2m2�cosh 2��0�−sinh 2��0��=2m2K.

In order to understand why the behavior found for t→�
in Eqs. �26� and �32� also holds for �x��2vt, let us consider
the initial state at zero temperature, 
0= �0��0� �12,15�. As
mentioned above, this is a rather complicated excited state of
the Hamiltonian that performs the time evolution, Hf =HLM.

4In a Luttinger liquid, the C�
m correlator describes the fluctuations

of wave number close to 2mkF �where kF is the Fermi momentum�
of the density-correlation function �55,57�. In the presence of a
periodic potential of periodicity equal to 2mkF, the system may
become an insulator �57�. The power-law behavior exhibited at zero
temperature �and in the thermodynamic limit� is a consequence of
the gapless spectrum and the absence of long-range order in the
density. In the insulating �i.e., gapped� phase, this correlation func-
tion decays to a nonzero constant at long distances, which is a
consequence of the existence of long-ranged order in the density at
wave number 2mkF. Similarly, in equilibrium, C


n measures the
phase fluctuations and exhibits a power law, reflecting the absence
of long-range order in the phase. However, in the Luttinger model
of interest for us here, terms with m�0 are absent from the density
operator, which is given by 
�x�=Jr�x�+Jl�x� �55�.

Z=0

Z(t)

(b)

(c)

(a)

Z=1

FIG. 1. �Color online� Schematic time evolution of the momen-
tum distribution f�p , t� at zero temperature. �a� At t=0, the momen-
tum distribution is that of noninteracting fermions, with a disconti-
nuity at the Fermi level �p=0� Z=1. �b� At t�0, the discontinuity is
reduced in a power-law fashion Z�t�� t−�2

. �c� For t→+�, the dis-
continuity disappears and the momentum distribution exhibits a
power-law singularity close to the Fermi level p=0, f�p , t→+��
= 1

2 −const�p��
2
. However, the exponent characterizing the singular-

ity is not the equilibrium exponent.
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This means that, initially, there are a large number of exci-
tations of Hf, namely, phonons with dispersion 	�q�
=v�q��q�. The distribution of the phonons �b†�q�b�q��0
=sinh2 ��q� is time independent and peaked at q=0. Thus,
within the approximation where v�q��v�0�=v, the excita-
tions propagate between two given points with velocity v.
Thus, if we consider the correlations at two points A and B
separated by a distance �x�, the nature of the correlation at a
given time t depends on whether the excitations found ini-
tially at, say, point A, have been able to reach point B or not.
This is not the case if �x��2vt and thus correlations retain
essentially the properties they had in the initial state. Thus,
up to a time-dependent prefactor, C�r

�x , t��C�r

�0��x�. How-
ever, if the two points have been able to ”talk to each other”
through the excitations present in the initial state, then cor-
relations will be qualitatively different. This happens for a
time t= t0 when the excitations propagating from A meet the
excitations propagating from B, that is, for x−vt0=vt0 or t0
=x /2v �we assume x�0 without loss of generality�. Thus,
for given separation x and time t, there is a length scale 2vt,
which marks the transition between two different regimes in
the correlations. In the instantaneous momentum distribu-
tion, this reflects itself in a crossover as a function of time
from a momentum distribution n�p� exhibiting a discontinu-
ous Fermi-liquid-like behavior, which is valid, i.e., for �p�
� �2vt�−1 to a power-law behavior of the form
��pR0��

2
sgn�p�, which applies for �p�� �2vt�−1 but �p�

�R0
−1 �for �p��R0

−1, we recover the free-particle behavior
corresponding to the Fermi-Dirac distribution function at T
=0�. In the t→� limit, by using the regularization scheme
described above, the asymptotic momentum distribution at
zero temperature can be obtained with the help of tables �58�.
The resulting formula behaves as the noninteracting Fermi-
Dirac distribution for �p��R0

−1, whereas for �p��R0
−1, it de-

scribes a non-Fermi-liquid-like steady state

f�p,t → + �� =
1

2
−

pR0

2
�K�2−1/2��pR0��L�2−3/2��pR0��

+ K�2−3/2��pR0��L�2−1/2��pR0��� , �33�

where K��z� and L��z� are the modified Bessel and
Struve functions �58�, respectively. This expression yields
a power law for �pR0��1, where n�p , t→+��� 1

2

−const��pR0���2
sgn�p�. Note that the momentum distribution

n�p=0, t�= 1
2 , which is given by the invariance of the LM

under particle-hole symmetry ���p�→��
†�−p�.

Let us finally present the generalization of the above re-
sults for the one-particle density matrix to finite tempera-
tures, T�0. For T��vFR0 �but T��0=2��v /L, so that we
can neglect finite-size effects and effectively take the ther-
modynamic limit� C�r

�x , t� takes the following asymptotic
form:

C�r
�x,t � 0�T� = C�r

�0��x�T�

�� �R0/�
dh�x�T�

��2�dh�x − 2vt�T�dh�x + 2vt�T�
dh�2vt�T�dh�− 2vt�T�

��2/2

,

�34�

where C�r

�0��x �T� and dh�x �T� can be obtained from C�r

�0��x �L�

and d�x �L� by replacing L sin��x /L� /� by � sinh��x /��,
where �=�vF /T is the thermal correlation length. At long
times, hr�x , t �T� reduces to

hr�x� = � �R0/�
sinh��x/��

��2

. �35�

Therefore, we again find that C�r
�x , t→� �T� has a form

similar to the equilibrium correlation function at finite tem-
perature with a different exponent controlling the asymptotic
exponential decay of correlations. Notice that the exponen-
tial decay in the correlations for t�0 is a direct consequence
of the fact that the initial state has a characteristic correlation
length, the thermal correlation length �=�vF /T.5 The expo-
nential decay of correlations at finite T implies that the
steady state will be reached exponentially rapidly in a time
of the order of � /T. It is also worth noting, however, that the
above expression depends parametrically on the thermal cor-
relation length � and the Fermi velocity, vF, which enters in
the expression for �=�vF /T, instead of the �renormalized�
phonon velocity which enters in the thermal length �eq
=�v /T, characterizing equilibrium correlations. Thus, since
the velocity appears only through the definition of the ther-
mal correlation length � or, in other words, in combination
with the temperature, the change from v to vF can be also
understood as an change in the temperature scale. Further-
more, in a system with Galilean symmetry �57�, we have that
vK=vF and thus the parameter that controls the temperature
scale now is the Luttinger parameter K, so that the
asymptotic correlations at t→� can be regarded as the equi-
librium correlations with a different exponent and an effec-
tive temperature, Teff=T /K. Thus, for repulsive interactions
�i.e., K�1� we could say that, besides modifying the expo-
nent, the interaction quench increases the effective tempera-
ture, whereas for attractive interactions �i.e., K�1�, the ef-
fective temperature is reduced after the quench. This effect
has an impact on the momentum distribution at finite tem-
peratures because it compensates the effect of the larger non-
equilibrium exponent on the momentum distribution at finite
T. To show this, we need to obtain the Fourier transform of
hr�x�. This can be done by relating it to an integral represen-
tation of the associated Legendre function P�

� �z� �58� and
thus the Fourier transform of hr�x� can be written as

hr�p� =
�

��
	�R0

�

��2+1�/2��	�2

2
+

i�p

2�

�2

�� �2

2 �

�Pi�p/2�−1/2
−�2/2+1/2 �− cos	2�R0

�

� . �36�

Hence, the momentum distribution can be obtained by nu-
merically evaluating the convolution with the Fermi-Dirac

5A similar situation is found when analyzing quenches at T=0
from a noncritical �that is, gapped� into a critical �that is, gapless�
state. In that case, the role of � will be played by the correlation
length of the system that is determined by the �inverse of the� en-
ergy gap in the initial state �12,48�.
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distribution function �cf. Eq. �18�� of the above expression,
Eq. �36�. In Figs. 2 and 3, the momentum distribution of the
interacting system for t�� /T is displayed for a noninteract-
ing LM that undergoes an interaction quench with repulsive
�corresponding to K=0.6� and attractive �corresponding to
K=1.7� interactions, respectively.

C. Suddenly turning off the interactions

Next, we briefly consider the opposite situation to the one
analyzed above, namely, the case where interaction between
the fermions in the initial state suddenly disappears. The fact
that the initial state is a highly complicated state of the
Hamiltonian that performs the time evolution �in this case
Hf =H0, cf. Eq. �1��, implies that we cannot expect that a
Fermi liquid will emerge asymptotically at long times after
the quench. Indeed, at zero temperature, a thermodynami-
cally large system approaches a steady state exhibiting equal-
time correlations that decay algebraically in space. However,
the exponents differ again from the �noninteracting� equilib-
rium ones. This can be illustrated by, e.g., computing the
following correlation functions:

C�
m�x,t� = �e2im
�x,t�e−2im
�0,t��

= I�
m�x�	 R0

2vFt

m2�K−1−K�� x2 − �2vFt�2

x2 �m2�K−1−K�/2

,

�37�

C

n�x,t� = �ein��x,t�e−in��0,t��

= I

n�x�	 R0

2vFt

n2�K−K−1�/2� x2 − �2vFt�2

x2 �n2�K−K−1�/4

,

�38�

where

I�
m�x� = �R0

x
�2m2K

, �39�

I

n�x� = �R0

x
�n2/2K

�40�

are the correlation functions in the initial �interacting�
ground state �A
/� are nonuniversal prefactors�. We note
again that the duality 
→� and K→K−1 also holds in this
case. The correlations in the stationary state that is asymp-
totically approached at long times read

lim
t→+�

C

m�x,t� = A
�R0

x
�m2�K−1+K�

, �41�

lim
t→+�

C�
n �x,t� = A��R0

x
�n2�K−1+K�/2

. �42�

However, at short times, t� �x� /2vF, correlations look like
those of in the initial state up to a time-dependent prefactor

C

m�x,t � �x�/2vF� = 	 R0

2vFt

m2�K−1−K�

I

m�x� , �43�

C�
n �x,t � �x�/2vF� = 	 R0

2vFt

n2�K−K−1�/2

I�
n �x� . �44�

In this case, the time-dependent prefactor has also a power-
law form.

III. LONG-TIME DYNAMICS AND THE GENERALIZED
GIBBS ENSEMBLE

Recently, Rigol and co-workers �10� observed that, at
least for observables such as the momentum distribution or
the ground-state density, their long-time behavior following a
quantum quench in an integrable system can described by
adopting the maximum entropy �also called “subjective”� ap-
proach to statistical mechanics pioneered by Jaynes
�45,46,59�. Within this approach, the equilibrium state of a
system is described by a density matrix that extremizes the
von Neumann entropy, S=−Tr 
 ln 
, subject to the con-
straints provided by a certain set of integrals of motion of the
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FIG. 2. �Color online� Infinite time limit of the momentum dis-
tribution vs �p ��=�vF /T is the thermal correlation length in the
initial state� for a noninteracting Luttinger model at finite tempera-
ture T that is quenched into an interacting state with repulsive in-
teractions �corresponding to a Luttinger parameter K=0.6�.
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FIG. 3. �Color online� Infinite time limit of the momentum dis-
tribution vs �p ��=�vF /T is the thermal correlation length in the
initial state� for a noninteracting Luttinger model at finite tempera-
ture T that is quenched into an interacting state with attractive in-
teractions �corresponding to a Luttinger parameter K=1.7�.
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system. In the case of an integrable system, if �Im� is a set of
certain �but not all of the possible� independent integrals of
motion of the system, this procedure leads to a “generalized”
Gibbs ensemble, described by the following density matrix:


gG =
1

ZgG
exp�− �m

�mIm� , �45�

where ZgG=Tr exp�−�m�mIm�. The values of the Lagrange
multipliers �m must be determined from the condition that

�Im�gG = Tr�
0Im� = �Im� , �46�

where 
0 describes the initial state of the system and �¯ �gG
stands for the average taken over the generalized Gibbs en-
semble, Eq. �45�. Although 
i= ���t=0�����t=0�� in the case
of a pure state, as was first used in Ref. �10�, nothing pre-
vents us from taking 
0 to be an arbitrary mixed state and in
particular a thermal state characterized by an absolute tem-
perature T. In such a case, the Lagrange multipliers will de-
pend on T or any other parameter that defines the initial state.

Rigol and co-workers tested numerically the above con-
jecture by studying the quench dynamics of a 1D lattice gas
of hard-core bosons �see Refs. �10,13� for more details�. The
question that naturally arises then is whether correlations of
the LM also relax in agreement with the above conjecture. In
other words, does the average �O��t� at long times relax to
the value �O�gG=Tr 
gGO for any of the correlation functions
considered previously? We shall first discuss an observable
for which the generalized Gibbs ensemble fails to reproduce
their expectation values. Moreover, by considering the cor-
relation function of the current operators �i.e., O=Jr�x�, cf.
Eq. �22��, we will illustrate why it works in the LM. Calcu-
lations of other observables can be found in Appendixes A
and C.

Let us define the generalized Gibbs ensemble for the LM.
Since the final Hamiltonian �in the N=0 and J=0 sectors� is
diagonal in the b boson operator basis, i.e., HLM
=�q�0�v�q��q�b†�q�b�q�, a natural choice for the set of inte-
grals of motion is Im→ I�q�=n�q�=b†�q�b�q� for all q�0 �a
more complete version of the ensemble should also include
N and J, but this will not be necessary as we work in the
thermodynamic limit�. Thus, for the quench from the nonin-
teracting to the interacting state �cf. Sec. II B�, where the
initial state is ���t=0��= �0�, the Lagrange multipliers are
determined by Eq. �46�, which yields

�I�q��gG = �n�q��gG = sinh2 ��q� =
1

e��q� − 1
. �47�

Indeed, this result can be quickly established by realizing
that 
gG has the same form as the density matrix of a peculiar
canonical ensemble where the temperature on each eigen-
mode of the final Hamiltonian depends on the wave-vector q,
that is, T�q�=�v�q��q� /��q�. Alternatively, one can also re-
gard it as an ensemble where the effective Hamiltonian that
defines the Boltzmann weight is given by Heff /Teff
=�q�0��q�n�q�. However, it is worth noting that 
gG is diag-
onal in n�q� and therefore it does not capture the correlations
existing in the initial state between the q and −q modes.
Mathematically,

�n�q�n�− q�� = sinh2 ��q�cosh 2��q� � �n�q�n�− q��gG

= �n�q��gG�n�− q��gG = sinh4 ��q� . �48�

As matter of fact, since n�q�n�−q� commutes with H, we
conclude from the above that �n�q�n�−q�� does not relax to
the value predicted by 
gG. Although this defect of 
gG can
be fixed by enlarging the set of integrals of motion to include
the set I��q�=n�q�n�−q� as well, and the corresponding
Lagrange multipliers, we shall show below that this is not
needed. The reason is that the correlations missing in the
generalized Gibbs ensemble as defined above yield a vanish-
ing contribution in the thermodynamic limit to the simplest
correlation functions. However, before discussing this point,
it is worth mentioning one important exception to the class
of observables that relax according to the generalized Gibbs
ensemble, namely, the squared fluctuations of the energy

�2 = �H2� − �H�2

= �
p,q

�	�p��	�q���n�p�n�q�� − �n�p���n�q��� , �49�

which yields �2=2�gG
2 =�qsinh2 2��q��2	�q�2. Again, since

the operator H2 is conserved, �2 violates the relaxation hy-
pothesis. However, it is tempting to argue since �2 �like �H��
is a nonuniversal property of the LM model, this violation is
less problematic than a violation in the asymptotic behavior
of the correlation functions would be, as the latter tends to be
more universal.

In order to proceed with the discussion of the validity of
the generalized Gibbs ensemble, let us consider, for the sake
of simplicity, the correlations the current operator. In particu-
lar, we shall study the following two-time correlation func-
tion �no time ordering is implied�:

CJr
�x,t,�� = �Jr�x,t + �/2�Jr�0,t − �/2��T, �50�

where � . . . �T stands for average over the initial thermal en-
semble described by 
i=e−Hi/T /Z0, with Hi=H0 �cf. Eq. �1��.
Using Eqs. �15� and �16�, we obtain

CJr
�x,t,�� =

1

�2��2 �
q�0

	2�q

L

e−qa0

��eiqxf�q,t + �/2�f��q,t − �/2��1 + nB�q,T��

+ eiqxg��q,t + �/2�g�q,t − �/2�nB�q,T�

+ e−iqxf��q,t + �/2�f�q,t − �/2�nB�q,T�

+ e−iqxg�q,t + �/2�g��q,t − �/2��1 + nB�q,T��� ,

�51�

being nB�q ,T�= �a†�q�a�q��= �e−�	0�q�/T−1�−1 �	0�q�=vF�q��
the initial Bose distribution of modes and where f and g are
defined in Eqs. �A8� and �A9�. In the following, we shall
argue that, in the limit t→+� the above expression reduces
to the following correlator in the generalized Gibbs en-
semble:

CJr

gG�x,�� = Tr�
gG�T�Jr�x,��Jr�0,0�� , �52�

where 
gG�T� is the extension to an initial thermal state of the
generalized Gibbs ensemble introduced above �notice that
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since �Hf , I�q��=0 and therefore �Hf ,
gG�=0, it is in prin-
ciple possible to define time-dependent correlation functions
on this ensemble, just as they are defined in the equilibrium
ensembles�. For this �thermal� initial condition �46� fixes the
values of ��q ,T�, which now depend on ��q� and on the
temperature T,

sinh2 ��q��1 + nB�q,T�� + cosh2 ��q�nB�q,T� =
1

e��q,T� − 1
.

�53�

Introducing this result into the mode expansion for Eq. �52�,
we arrive at

CJr

gG�x,�� =
1

�2��2 �
q�0

	2�q

L

e−qa0�eiq�x−v�� cosh2 ��q��1

+ �n�q��� + eiq�x+v�� sinh2 ��q��n�q��

+ e−iq�x−v�� cosh2 ��q��n�q���

+ e−iq�x+v�� sinh2 ��q��1 + �n�q��� . �54�

Using the expressions for f�q , t� and g�q , t� given in Appen-
dix A, it can be shown that, in the limit t→+� of Eq. �51�,
the rapidly oscillating terms that depend only on t can be
dropped and therefore Eqs. �51� and �54� become the same.
Thus, the above current correlation function relaxes accord-
ing to the generalized Gibbs ensemble.

Let us close this section with a digression of higher-order
current correlation functions. In principle, these correlations
depend on correlations between n�q� and n�−q� �i.e., on
�n�q�n�−q���, which exist in the initial state. These are not
captured by the above simple-minded generalized Gibbs dis-
tribution, which only contains information about the expec-
tation value of n�q� in the initial state. However, a simple
argument based on momentum conservation and counting
powers of L �the system size� shows that the contribution of
these correlations vanishes in the thermodynamic limit, as
mentioned above. To illustrate this point, let us consider
computing the four-point current correlation function,
�Jr�x1 , t1�Jr�x2 , t2�Jr�x3 , t3�Jr�x2 , t4��T. Upon using the mode
expansion for the current operator Jr�x , t�=��r�x , t� /2�, the
correlation function can be expressed as a sum over expec-
tation values of the mode creation and destruction operators,
the b operators. However, it is important that, since each of
these mode expansions of the current operator carries a fac-
tor of 1

�L
, the four-point correlation function is thus propor-

tional to L−2. Upon applying the standard Wick’s theorem to
the expectation value of the b operators, momentum conser-
vation requires that at least two of the four momenta being
summed over must be equal. In general, the two independent
momenta are not equal and therefore we get a finite contri-
bution in the limit L→�, which involves only a product of
expectation values of the operator n�q�. However, when two
independent momenta being summed over coincide, the ex-
pectation value becomes �n�q�n�−q�� and thus, in the ther-
modynamic limit, the sum turns out to be of order 1

L , there-
fore vanishing as L→�. This argument can be extended to
higher-order correlations of the current operator. In a sense,
it also justifies the use of Wick’s theorem when computing

higher-order correlations �in the thermodynamic limit� using
the above simple-minded generalized Gibbs ensemble.

IV. RELEVANCE TO EXPERIMENTS

As we described in Sec. I, ultracold atom systems are the
ideal arena to study quench dynamics. This is because they
are, to a good approximation, isolated systems. Furthermore,
as far as one-dimensional systems are concerned, there are
already a number of experimental realizations, including ex-
periments where quench dynamics has been already studied
�43,60,61�. Thus, in this section, we would like to discuss the
possible experimental relevance of the results obtained in
previous sections. As mentioned above, this must be done
with great care because our results have been obtained using
a field theory model, namely, the Luttinger model �LM�,
which can be regarded as “caricature” of the Hamiltonians
describing real systems of ultracold atoms confined to one
dimension. We must emphasize that the situation in the case
of quantum quenches in particular, and of nonequilibrium
dynamics in general, is very different from the analysis of
low-temperature phenomena in equilibrium. In the latter
case, the experimental relevance of models such as the LM is
well established by using renormalization-group arguments.
This has been put to test over the years using a large variety
of numerical and also �when possible� analytical methods.
By contrast, in the case of nonequilibrium dynamics, we
travel through a largely uncharted land and much needs to be
understood in order to achieve a similar level of rigor as in
the equilibrium case. Thus, it is convenient to regard models
as the LM as “toys,” which can provide us valuable lessons
and insights into nonequilibrium dynamics of strongly corre-
lated systems. With these cautionary remarks, we can pro-
ceed to discuss some experimental systems for which the
above results could be of some relevance.

As mentioned in Sec. II, the LM is the exactly solvable
model describing the renormalization-group fixed point of a
general class of interacting one-dimensional models �55�,
known as Tomonaga-Luttinger liquids. This class includes
systems such as the one-dimensional Bose gas interacting via
a Dirac-delta potential �which is solvable via the Bethe an-
satz �44�� as well as many other systems of interacting Bose
gases with repulsive interactions �such as dipolar� or Fermi
gases with both attractive and repulsive interactions. With
the caveats of the previous section, it would be interesting to
test the results obtained using the LM in one of these sys-
tems. However, the dynamics may be strongly modified by
the fact that higher-energy states will be also excited follow-
ing a quantum quench. Such higher-energy states are not, in
general, correctly described by the LM. The most unfavor-
able situation may be expected in the case of a system where
interactions are short ranged because, at least from a pertur-
bative point of view, an interaction quench will couple ex-
cited states with the same strength. Thus, one possible way
around this problem when trying to compare to results for
the LM model would be to study experimentally �or numeri-
cally� interaction quenches in systems with long-range inter-
actions. This system provides us with a much more faithful
realization of the LM, which involves long-range interac-
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tions. Furthermore, the sudden connection of interactions is
likely not to scatter particles to high-energy states because
interaction decreases with the momentum exchanged be-
tween the colliding particles. One system satisfying this re-
quirement is a single-species dipolar 1D Fermi gas confined
to one dimension by a strongly anisotropic trapping poten-
tial. Since for a single species Fermi gas contact interactions
in the p-wave channel are weak away from a p-wave Fesh-
bach resonance, the dominant interaction is the long-ranged
dipolar interaction when the dipoles are all aligned by an
external field �electric or magnetic, depending on whether
the dipole is electric, such as in heteronuclear molecules, or
magnetic, such as in chromium�. When confined to a one-
dimensional trap, the dipolar interaction between the atoms
can be approximated by the potential

Vdip�x,
� =
1

4� 0

D2��
�
�x2 + R0

2�3/2 , �55�

where D is the dipolar momentum of the atoms, 
 is the
angle subtended by the direction of the atomic motion and
the polarizing field, and ��
�= �1–3 cos 
�. Since in this case
g2�q�=g4�q����
�, a sudden change in the interactions can
be produced by a sudden change in alignment of the field
with the direction of motion, that is, a change in 
. In par-
ticular, a change in 
 away from the value 
m=cos−1� 1

3 �
would lead to suddenly switching on the interactions be-
tween the fermions �9�. At zero temperature, the momentum
distribution f�p , t� �which can be probed by time-of-flight
measurements� following the quench into the interacting sys-
tem would evolve as described in Sec. II B �cf. Fig. 1�, with
the discontinuity at the Fermi level dying out as t−�2

. How-
ever, currently, atomic gases are produced at temperatures
T�10%–20% of the Fermi energy and this would compli-
cate the observation of this effect. If much lower tempera-
tures could be reached in experiments, so that the application
of the LM becomes much more reliable, we expect that in a
time of the order of � /T, the quenched dipolar gas reaches a
stationary state characterized by a momentum distribution
that differs from the thermal one. However, the calculations
of f�p , t� presented in Sec. II B �cf. Figs. 2 and 3� show that
the differences between the nonequilibrium and equilibrium
results in the stationary state may be well below the current
experimental resolution. Alternatively, instead of measuring
the momentum distribution, one can try to determine the
nonequilibrium exponents by measuring noise correlations in
the time-of-flight images �62� or through interferometry �63�.

To sum up, we have studied correlations in the LM fol-
lowing an interaction quench. By studying the situations
where the interactions are suddenly turned on and off, we
have shown that the correlation dynamics is dominated by
the initial state correlations at short times. However, in the
thermodynamic limit, the LM reaches a nonequilibrium
steady state characterized by a set of nonequilibrium expo-
nents that differ from the exponents that describe the decay
of the same correlations in equilibrium. This behavior can be
obtained from a simple-minded generalized Gibbs ensemble
�9,10,45,46�. The correlations also exhibit a “light-cone ef-
fect,” which was previously observed in correlations follow-

ing a quantum quench from a gapped to a critical state
�12,15�. Finally, we have discussed the relevance of our re-
sults for the LM for experiments with ultracold atomic gases
confined in highly elongated �one-dimensional� traps. We
have argued that the most appropriate scenario for the obser-
vation of the effects described here may be a one-
dimensional dipolar Fermi gas.

ACKNOWLEDGMENTS

We thank T. Giamarchi and A. Muramatsu for useful dis-
cussions. A.I. gratefully acknowledges financial support from
the Swiss National Science Foundation under MaNEP and
Division II, CONICET, UNLP, and hospitality of DIPC,
where part of this work was done. M.A.C. thanks M. Ueda
for his kind hospitality at the University of Tokyo during his
visit at the Ueda ERATO Macroscopic Quantum Control
Project of JST �Japan�, during which parts of this paper were
completed. M.A.C. also gratefully acknowledges financial
support of the Spanish MEC through Grant No. FIS2007-
66711-C02-02 and CSIC through Grant No. PIE 200760/007.

APPENDIX A: QUADRATIC HAMILTONIANS

In this appendix, we study the case of a quantum quench
in a model described by a quadratic Hamiltonian

H�t� = �
q

��	0�q� + m�q,t��b†�q�b�q�

+
1

2�
q

�g�q,t��b�q�b�− q� + b†�q�b†�− q�� ,

�A1�

where �b�q� ,b†�q���=�q,q�, commuting otherwise. We will
assume that the quench takes place at t=0, so that, within the
sudden approximation, the system is described by Hi=H�t
�0� for t�0 and by Hf =H�t�0� for t�0. Furthermore, in
order to simplify the analysis, we assume that m�q , t�0�
=g�q , t�0�=0, m�q , t�0�=m�q�, and g�q , t�=g�q�. Notice
that the initial Hamiltonian is diagonal in the b operators

Hi = H0 
 �
q

�	0�q�b†�q�b�q� . �A2�

In order to obtain the time evolution of operators O
=O��b†�q� ,b�q��� after the quench, we recall that, in the
Heisenberg picture, O�t�0�=exp�iHft /��O exp�−iHft /��
=O��b�q , t� ,b†�q , t��� and therefore all that is needed to
solve the above quench problem is to obtain the time evolu-
tion of b�q� for t�0. For Hamiltonians such as Eq. �A1�, this
can be done exactly because Hf =H�t�0� can be diagonal-
ized by means of the canonical Bogoliubov �“squeezing”�
transformation

a�q� = cosh ��q�b�q� + sinh ��q�b†�− q� . �A3�

Upon choosing

tanh 2��q� =
g�q�

	0�q� + m�q�
, �A4�

the Hamiltonian at t�0 is rendered diagonal
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Hf = H 
 E0 + �
q

�	�q�a†�q�a�q� , �A5�

where E0 is the energy of the ground state of H �relative to
the ground-state energy of H0� and

	�q� = ��	0�q� + m�q��2 − �g�q��2 �A6�

is the dispersion of the excitations about the ground state of
Hf. The evolution of the a�q� is given by a�q , t�
=exp�iHft /��a�q�exp�−iHft /��=e−i	�q�ta�q�. By application
of a direct and reverse Bogoliubov transformation, one can
obtain the time evolution of b�q�,

b�q,t� = f�q,t�b�q� + g��q,t�b†�− q� , �A7�

where

f�q,t� = cos 	�q�t − i sin 	�q�t cosh 2��q� , �A8�

g�q,t� = i sin 	�q�t sinh 2��q� . �A9�

It is easy to check that Eq. �A7� obeys the initial condition,
b�q , t=0�=b�q�, and also respects the equal-time commuta-
tion rules

�b�q,t�,b�q�,t�� = �f�q,t�g��q,t� − g��q,t�f�q,t���q,−q = 0,

�A10�

�b�q,t�,b†�q�,t�� = ��f�q,t��2 − �g�q,t��2��q,q� = �q,q�.

�A11�

Thus, a quantum quench described by a quadratic Hamil-
tonian can be solved by means of a time-dependent canonical
transformation.

When the quench is reversed, i.e., when the case with
m�q , t!0�=g�q , t!0�=0, and m�q , t�0�=m�q� and g�q , t

�0�=g�q� is considered, the roles played by the initial and
final Hamiltonians are also reversed: the final Hamiltonian is
now diagonal in the b’s, Hf =H0, whereas the transformation
of Eq. �A3� renders diagonal the initial Hamiltonian, Hi=H.
Therefore, in this case, the evolution of the b operators is
trivial, Hf :b�q , t�=exp�−i	0�q�t�, whereas the evolution of
the a’s is given by

a�q,t� = f0�q,t�a�q� + g0
��q,t�a†�− q� , �A12�

where

f0�q,t� = cos 	0�q�t − i sin 	0�q�t cosh 2��q� , �A13�

g0�q,t� = − i sin 	0�q�t sinh 2��q� . �A14�

APPENDIX B: DETAILS OF THE CALCULATION OF THE
ONE-PARTICLE DENSITY MATRIX IN THE

LUTTINGER MODEL

In this appendix, we shall provide the details of the cal-
culation of nonequilibrium one-particle density matrix

C�r
�x,t� = �exp�iHft/���r

†�x��r�0�exp�− iHft/��� . �B1�

To this end, formula �14� is used. In normal ordered form,

���x� =
exp�− is��x/L�

�L
:exp�is����x��: , �B2�

where the normal order is defined as

:exp�is����x�� ª exp�i���exp�2�is�xN��exp�is���
†�x��exp�is����x�� . �B3�

The boson field ���x� is given by Eq. �16�. Hence,

:exp�− i�r�x��::exp�+ i�r�0�� ª exp�− 2�ixNr/L�exp��r�x�,�r
†�0��:exp�− i��r�x� − �r�0���: , �B4�

where we have used the identity eAeB=e�A,B�eBeA, which
holds provided �A ,B� is a c number. Using that �a0→0+ is
the short-distance cutoff�

��r�x�,�r
†�0�� = �

q�0
	2�

qL

exp�− qa0�exp�iqx� �B5�

=− ln�1 − exp�− 2�a0/L�exp�2i�x/L�� , �B6�

we arrive at the following expression for C�r
�x , t�:

C�r
�x,t� = Gr

�0��x��exp�− iFr
†�x,t��exp�− iFr�x,t��� ,

�B7�

where

Gr
�0��x� =

i

2L

1

sin��

L
�x + ia�� , �B8�

Fr�x,t� = eiHt/���r�x� − �r�0��exp�− iHft/�� �B9�
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= �
q�0

	2�

qL

1/2

�eiqx − 1� �B10�

��f�q,t�b�q� + g��q,t�b†�− q�� . �B11�

To derive the last expression, we have used Eq. �A7�. Em-
ploying the identities eAeB=e�A,B�/2eA+B �provided �A ,B� is a
c number� and that �eD�=e�D�+1/2��D − �D��2�, we obtain

C�r
�x,t� = Gr

�0��x�exp�− �Fr
†�x,t�Fr�x,t��� , �B12�

where we have used that ��Fr
†�x , t��2�= �Fr

2�x , t��=0 because
��b†�q��2�= ��b�q��2�= �b†�−q�b�q��=0, and since the com-
mutator �Fr

†�x , t� ,Fr�x , t�� is a c number, it can be safely
replaced by ��Fr

†�x , t� ,Fr�x , t���. Note that for t=0, Fr�x , t
=0� contains only b�q� and thus the average
�Fr

†�x , t�Fr�x , t��=0 at T=0. In Eq. �B12�, the exponent can
be expanded to yield

�Fr
†�x,t�Fr�x,t�� = �

q�0
	2�

qL

e−qa0�eiqx − 1�2��f�q,t��2nB�q�

+ �g�q,t��2�nB�q� + 1�� , �B13�

being nB�q�= �a†�q�a�q��= �e−��q�−1�−1 the distribution of To-
monaga bosons in the initial state �which has been assumed
to be a mixed thermal state� and �=�vF /T is the thermal
correlation length. We next evaluate explicitly the above re-
sult in several limiting cases.

1. Zero temperature and finite length

Let us now consider the T=0 limit of the above correlator,
where nB�q�=0, and thus, using Eqs. �A8� and �A9�, Eq.
�B13� simplifies to

�Fr
†�x,t�Fr�x,t��T=0 = �

q�0
	2�

qL

e−qa0 sinh2�2��q���1 − cos qx�

��1 − cos 2v�q��q�t� . �B14�

To make further progress, we assume that sinh 2��q�
=�e−�qR0�/2, where R0 is the range of the interaction. Further-
more, we replace v�q� by v=v�0�,6 which allows us to safely
take the limit a0→0+. Next, in order to simplify the compu-
tation, we introduce the quantity

Er�z� = �
q�0

	2�

qL

exp�− qR0� cos qz , �B15�

which can be readily computed to give

Er�z� = − ln��

L
d�z + iR0�L�� +

�R0

L
− ln 2, �B16�

where d�z �L�=L�sin��z /L�� /� is the cord function. Using
this result into Eq. �B14� yields the following expression for
the one-particle density matrix:

C�r
�x,t � 0�L� = Gr

�0��x�L�� d�iR0�L�
d�x + iR0�L�

��2

��d�x + 2vt + iR0�L�d�x − 2vt + iR0�L�
d�2vt + iR0�L�d�− 2vt + iR0�L�

��2/2

.

�B17�

Taking into account that R0 /L�1, we obtain the result
quoted in the main text, Eq. �20�, in the scaling limit.

2. Thermodynamic limit and finite temperature

We next consider Eq. �B12� for L→� and finite tempera-
ture, T. Equation �B13� can be recast as

�Fr
†�x,t�Fr�x,t��T = �Fr�x,t�Fr�x,t��T=0 + H�x� + G�x,t� ,

�B18�

where we have introduced the following functions:

H�x� = 2�
0

� dq

q
e−qa�1 − cos qx�nB�q� , �B19�

G�x,t� = 2�2�
0

� dq

q
exp�− qR0��1 − cos qx� , �B20�

�1 − cos�2vqt��nB�q� , �B21�

which hold in the thermodynamic limit and upon replacing
v�q� by v=v�q=0� and sinh 2��q�=�exp�−�qR0� /2� as we
did in the previous section. We next define the function

g�u;r� = 2�
0

+� dq

q
e−qr �1 − cos qu�

e�p − 1
, �B22�

which can be evaluated to yield �58�

g�u;r� = 2 ln� ��1 + �−1r�
��1 + �−1�r + iu��

� , �B23�

where ��z� is the gamma function. In the limit where r�u
and using that �58� ��z���1−z�=� /sin��z�, the above ex-
pression reduces to

g�u;r� = − ln� dh�ir�T�
dh�u + ir�T�

� − ln�u + ir

r
� . �B24�

In the previous expression, we have defined

dh�z�T� =
�

�
�sinh���−1z�� . �B25�

Combining this result with Eqs. �B18�–�B21� and �B12�, it is
seen that the second term in Eq. �B24� exactly cancels the
contributions from G�0��x �L� and �Fr�x , t�Fr�x , t��T=0 in the
thermodynamic limit and therefore

6We assume implicitly that both ��q� and v�q� are not singular at
q=0.

QUANTUM QUENCH DYNAMICS OF THE LUTTINGER MODEL PHYSICAL REVIEW A 80, 063619 �2009�

063619-13



C�r
�x,t�T� = Gr

�0��x�T�� dh�iR0�T�
dh�x + iR0�T���2

��dh�x + 2vt + iR0�T�dh�x − 2vt + iR0�T�
dh�2vt + iR0�T�dh�− 2vt + iR0�T� ��2/2

,

�B26�

where

Gr
�0��x�T� =

i

2�

��−1

sinh���−1�x + ia0��
. �B27�

We note that the result of Eq. �B26� can be obtained from Eq.
�B17� upon making the replacement L sin��L−1x� /� by
� sinh���−1x�. Taking into account that R0 /L�1, we re-
trieve the result quoted in the main text, Eq. �34�, in the
scaling limit.

APPENDIX C: ONE-BODY DENSITY MATRIX OF THE
LUTTINGER MODEL IN THE GENERALIZED

GIBBS ENSEMBLE

Next we take up the calculation of the one-body density
matrix in the generalized Gibbs ensemble for the Luttinger
model discussed in Sec. III. That is, we shall evaluate the
expression at T=0,

C�r

gG�x� = Tr�
gG�r
†�x��r�0�� . �C1�

Using the bosonization identity, Eq. �14�, we can write the
expression as follows:

C�r

gG�x� = Gr
�0��x��:exp�− i��r�x� − �r�0���:�gG �C2�

=Gr
�0��x��exp�− iF̃r

†�x��exp�− iF̃r�x���gG. �C3�

Taking into account that

F̃r�x� = �r�x� − �r�0� �C4�

= �
q�0

	2�

qL

1/2

e−qa/2�eiqx − 1� �C5�

��cosh ��q�a�q� − sinh ��q�a†�− q�� . �C6�

The expression for C�r

gG�x� can be easily computed by using
the trick of regarding 
gG as a canonical ensemble with
q-dependent temperature. Thus, following the same steps as
in the previous section, we arrive at

C�r

gG�x� = Gr
�0��x�exp�− �F̃r

†�x�F̃r�x��gG� . �C7�

Given that

�F̃r
†�x�F̃r�x��gG = sinh2 2��Dr�0� − Dr�x�� , �C8�

where

Dr�x� = Re��
q�0

	2�

qL

e−qR0eiqx� �C9�

=− ln�sin
�

L
�x + iR0�� − ln 2 −

�R0

L
. �C10�

Hence, taking the thermodynamic limit

C�r

gG�x� =
i

2��x + ia�
�R0

x
��2

. �C11�

Thus we see that one recovers the same results as
limt→+� C�r

�x , t�, Eq. �23�.
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