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Nonequilibrium stimulation of superfluidity in trapped Fermi gases is discussed by analogy to the work of
Eliashberg �Nonequilibrium Superconductivity, edited by D. N. Langenberg and A. I. Larkin �North-Holland,
New York, 1986�� on the microwave enhancement of superconductivity. Optical excitation of the fermions
balanced by heat loss due to thermal contact with a boson bath and/or evaporative cooling enables stationary
nonequilibrium states to exist. Such a state manifests as a shift of the quasiparticle spectrum to higher energies
and this effectively raises the pairing transition temperature. As an illustration, we calculate the effective
enhancement of Cooper pairing and superfluidity in both the normal and superfluid phases for a mixture of
87Rb and 6Li in the limit of small departure from equilibrium. It is argued that in experiment the desirable
effect is not limited to such small perturbations and the effective enhancement of the pairing temperature may
be quite large.
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I. INTRODUCTION

The difficulty of observing quantum coherent phases in
cold gases highlights the need to overcome low transition
temperatures. In addition to Bose-Einstein condensation,
there has also been recent interest in the generation of Fermi
superfluids through the Bardeen-Cooper-Schrieffer �BCS�
pairing mechanism �1�. This phenomenon is more difficult to
observe due to prohibitively low transition temperatures
�2,3� though the problem may be partially surmounted by use
of Feshbach resonances �1,4,5�. Nonequilibrium effects can
also be used to control and effectively cool such systems.
However, this is an unexplored area of research by compari-
son.

Since the 1960s, it was known that superconductivity
could be stimulated by radiation in microbridges �6�. In
1970, Eliashberg explained this effect as an amplification of
the gap parameter by means of a stationary nonequilibrium
shift in the quasiparticle spectrum to higher energies brought
on by the radiation �7,8�. Over the next decade, his theory
found experimental acceptance through the enhancement of
critical currents and temperatures in Josephson junctions �9�
and thin films �10�. At the same time, other nonequilibrium
stimulation methods were developed �11� with more recent
reports of enhancements of the superconducting critical tem-
perature by up to several times its equilibrium value �12,13�.
With the present interest in the application of the BCS model
of superconductivity to trapped atomic Fermi gases �13–15�,
nonequilibrium effects represent an attractive way to mag-
nify the quantum properties of these types of superfluids.

As in superconductors, the BCS order parameter �0 for
cold fermionic gases obeys a self-consistency equation
�5,16,17�,
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where �k=�k−�F is the quasiparticle dispersion centered on
the Fermi energy �F, �0 is the BCS gap, and nk is the qua-
siparticle distribution function. The constant � has the form

�=−4�a↑↓ /mF, where a↑↓ is the negative s-wave scattering
length for collisions between hyperfine states and mF is the
mass. At equilibrium, nk

�FD� is the Fermi-Dirac distribution
function, and the only way to increase �0 is either to increase
the interaction strength or to lower the temperature. How-
ever, there exists a wide class of stationary nonequilibrium
distributions, nk, such that Eq. �1� is still valid and has solu-
tions with enhanced order parameters. Indeed, if a quasista-
tionary nonequilibrium distribution is created that is different
from the canonical Fermi-Dirac function, �nk=nk−nk

�FD�,
then according to the weak-coupling BCS Eq. �1�, it effec-
tively renormalizes the pairing interaction and transition
temperature as follows:
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where here and below Ek=��k
2 +�0

2, ���F� is the density of
states at the Fermi level, Tc

�0�
�F exp�−1 / ����F���� is the
weak-coupling BCS transition temperature in equilibrium,
and we also introduced the dimensionless parameter
�=−�k�nk / ����F�Ek�. For many nonequilibrium distribu-
tions, �	0, and this yields an effective enhancement of Tc
and/or �. We note that even though our theory below and
that of Eliashberg are limited to small deviations from equi-
librium, with 
�

1, this does not imply a limitation in ex-
periment, where this parameter can be large. For such large
deviations from equilibrium, the weak-coupling BCS ap-
proach and Eqs. �1� and �2� may not be quantitatively appli-
cable, but the tendency to enhance pairing may remain.
Therefore the proposed underlying mechanism may lead to
substantial enhancement of fermion pairing and superfluidity.
We also emphasize here that cold atom systems offer more
control in creating and manipulating nonequilibrium many-
body quantum states than that available in solids. Specifi-
cally, we will show that while it was impossible to drive a
metal from the normal to the superconducting phase by irra-
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diation, it is indeed possible to drive the equivalent transition
in cold gas by utilizing this additional control.

In this paper, we propose a theory of nonequilibrium
stimulation of fermion pairing by considering the effect of
Bragg pulses �18,19� as shown schematically in Fig. 1 on a
harmonically trapped gas of fermions in the Thomas-Fermi
approximation �20�. The heating induced by the external per-
turbation is dumped into an isothermal bath of trapped
bosons via collisions, but this is not necessary in general.
The pairing enhancement is calculated for a typical mixture
of 87Rb and 6Li. It depends on the state of the gas at equi-
librium. In the superfluid phase, Eliashberg’s requirement
that the frequency of the perturbation be less than twice the
equilibrium gap ���
2�0� ensures that the pulse does not
effectively heat the system by producing more quasiparticles
with energies �
�0. Though this requirement cannot be sat-
isfied in the normal phase, where �0=0, the independent
tunability of both the momentum and energy of the Bragg
pulse allows us to protect the system from effective heating
through energy conservation. This avenue, which was not
available in the context of superconductors, effectively pro-
vides a means to “sharpen” the Fermi step �or even create a
discontinuity at a different momentum�, thereby enhancing
fermion pairing.

II. MODEL

In our problem, we assume optically trapped bosons in
thermal contact with fermions that occupy two hyperfine
states 
↑ � and 
↓ �. This system has a Hamiltonian of the form

Ĥ=Ĥ0+ĤI where the noninteracting part Ĥ0 is given by

Ĥ0 =� d3r�
p

�̂p
†�r��−

1

2mp
�2 − �� + V��r���̂p�r� ,

where for brevity, we introduced the subscript p=B ,F↑ ,F↓
which labels bosons �p=B� and fermions in the two hyper-
fine states: “up”�p=F↑� or “down” �p=F↓� and mF↑

=mF↓
	mF is the fermion mass and mB is the mass of the bosons.
We assume that fermions in either hyperfine state feel the
same trapping potential. Thus, Vp�r� is given by VF,B�r�

= 1
2mF,B�F,B

2 r2 where the subscript F �B� refers to fermions

�bosons�. There is also an interaction Hamiltonian ĤI which
has the form

ĤI =
1

2
� d3r �

p1,p2

gp1,p2
�̂p1

† �r��̂p1
�r��̂p2

† �r��̂p2
�r� ,

with gp1p2
being the strength for s-wave collisions between

the particles labeled by p1 , p2= �B ,F↑ ,F↓�. While Pauli ex-
clusion requires that gF↑F↑

=gF↓F↓
=0, an attractive coupling

gF↑F↓
	gF↓F↑


0 will lead to BCS pairing. A nonzero inter-
action gFB between bosons and fermions is required for ther-
malization between the two populations. We need put no
other restrictions on gp1p2

, but our desired effect will be
easier to observe experimentally with some other constraints.
For instance, requiring that gFB
0 will raise the BCS con-
densation temperature �21� while a larger gBB	0 facilitates
thermalization between bosons and fermions.

To proceed further we use the gap equation, Eq. �1�,
where we have nk=nk

�FD� at equilibrium. In the Thomas-
Fermi approximation, the transition temperature, Tc

�0�, is
given by �5�

kBTc
�0� �

8�Fe�−2

�
exp�−

�

2kF
a↑↓

� , �3�

where kF is the Fermi wave vector and ��0.577. . . is Euler’s
constant, the scattering length a↑↓ is a simple combination of
the coupling strengths gp1p2

.

A. Nonequilibrium enhancement

It is possible to create distributions that lead to larger
order parameter and effective condensation temperature by
weakly perturbing the trapped fermions. Specifically, we af-
fect a Bragg pulse �Fig. 1� by illuminating the fermions with
two lasers, which are both largely detuned from any fermi-
onic transition. In what follows, we assume the lasers to be
even further detuned from any bosonic transition such that
we may ignore the effect of the Bragg pulse on the bosons.
The interaction of the fermions with these lasers is described
by the addition of a term

Ĥbg =� d3r �
pf=F↑,F↓

�̂pf

† �r����bg cos�q · r − �t���̂pf
�r�

to the Hamiltonian where q and � represent the difference in
wave vectors and frequencies between the two lasers �18�.
Now, following Schmid �22� and the general argument in the
introduction �see, Eq. �2��, we introduce the function, �nk,
which describes departure from equilibrium. While Eliash-
berg assumed in �8� that the impurity concentration was high
enough in metals such that momentum relaxation happened
at a much faster rate than energy relaxation, we shall not
make this assumption. As such, �nk need not be isotropic
although this requirement is easily included in our model.
The corresponding term, � /���F� from Eq. �2�, is added to
the right side of the gap Eq. �1� and leads to a new solution,
�	�0, for the order parameter at the same temperature �note
that in the nonequilibrium situation, the notion of a tempera-

FIG. 1. �Color online� Bragg Potential: A moving lattice with
wave vector q=k2−k1 can be formed in the region of the Bose-
Fermi mixture through the interference of two lasers with differing
wave vectors and frequencies. By adjusting the parameters of this
nonequilibrium perturbation, one can achieve states with enhanced
superfluidity.
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ture of the Fermi system is undefined, and here by tempera-
ture we imply the original temperature and that of the Bose
bath�. For T−Tc

�0�
Tc
�0�, Eq. �1� can be cast in the form of a

Ginzburg-Landau equation, which, including the nonequilib-
rium term, becomes

�ln
T

Tc
�0� − ��� + b� 
�


Tc
�0��2

� = 0, �4�

where we assume that the coefficient in the cubic term of Eq.
�4� is only weakly affected by the perturbation and use its
standard BCS value ���z� is the Riemann zeta function� b
=7��3� / �8�2��0.107. . . �see also, Ref. �23��. Equation �4�
nominally leads to an exponential enhancement of the effec-
tive critical temperature: Tc

eff=e�Tc
�0�, if � is positive.

B. Kinetic equation

To calculate this enhancement for the Bose-Fermi mix-
ture, we shall balance the Boltzmann equation for nk in the
spirit of Eliashberg, including both a contribution due to col-
lisions and that from Bragg scattering,

ṅk = Icoll�nk� + IBragg�nk� . �5�

For small departures from equilibrium, we can linearize the
collision integral in �nk and use the 1 /�-approximation:
Icoll�n�=−�n /�0, where �0 is the quasiparticle lifetime. In our
system, this lifetime will be dominated by the inelastic col-
lision time between bosons and fermions. We may estimate
this time as in �24,25� by means of a 1 /�0=n�v approxima-
tion, where n is the boson density at the center of the trap, �
is the constant low-temperature cross section for boson-
fermion scattering, and v is the average relative velocity as-
sociated with the collisions between bosons and fermions.

Note that there exist other contributions to the collision
integral, in particular those coming from fermion collisions.
Our model assumes pointlike interactions between fermions:
Such interactions can be separated into interactions in the
reduced BCS channel, which involve particles with opposite
momenta that eventually form Cooper pairs and other types
of scattering events, which give rise to Fermi-liquid renor-
malizations on the high-temperature side and superconduct-
ing fluctuations on the BCS side. Note that dropping off the
latter terms would lead to an integrable �Richardson� model
that does not have any thermalization processes and therefore
the collision integral for its quasiparticles must vanish. In
thermodynamic limit this model is described by BCS mean-
field theory perfectly well and so we can say that the pairing
part of fermion interactions is already incorporated in our
theory. Of course, including fermion-boson collision and the
second type of fermion interaction processes break integra-
bility and lead to two types of effects: First, such interactions
lead to Fermi-liquid renormalizations of the effective mass
and the quasiparticle Z-factor. However, these effects are not
germane to the physics of interest, and we may assume that
all relevant corrections are already included and treat our
system as that consisting of Fermi-liquid quasiparticles.
However, there is of a course a second dissipative part com-
ing from interactions, such as those due to bosons already
included into �0 and quasiparticle scatterings and decay pro-

cesses due to non-BCS fermion-fermion collisions. Similarly
to the work of Eliashberg, we will assume that the latter
contribution to the collision integral is less significant than
�0

−1 due to the bosons. Fermi Liquid quasiparticles are ex-
actly defined precisely on the Fermi sphere, but they have a
finite lifetime due to decay processes elsewhere. By not in-
cluding the lifetime �k of a quasiparticle at momentum k in
our linearization of the Boltzmann equation, we have implic-
itly assumed that �k��0. Because 1

�k
� ��kBT�2+ ��k−�F�2 in

a Fermi Liquid �26�, there will always be an energy region
where this assumption will indeed be true for low tempera-
tures. The most important contribution to the integral in the
expression for � comes from states for which �k is within
kBT of �F. As such, if we require that T
TF and ��
�F,
then our linearization of the Boltzmann equation with respect
to �0 will be legitimate for the calculation of an enhancement
of superfluidity. Again, we stress the importance of recogniz-
ing that the aforementioned requirements are necessary only
for quantitative accuracy of our model. As with Eliashberg’s
enhancement of superconductivity, we expect our effect to be
observable far outside the constrained parameter space that is
necessary for strict validity of our simple model, which pro-
vides a proof of principle for using nonequilibrium perturba-
tions to enhance fermion pairing in cold atom systems.

With these caveats in mind, we shall tune the frequency of
our Bragg pulse such that ��0�1. This will ensure that any
nonstationary part of the distribution function will be small
�8�. Equivalently, we may think of this requirement as the
statement that the Bragg pulse pumps the system out of equi-
librium must faster than the system relaxes. We may note
here that the aforementioned assumption that �n is small also
implies that �
1, thereby diminishing the desired effect,
Tc

eff= �1+��Tc
�0�
Tc

�0�. Again, this approximation greatly sim-
plifies our theoretical problem by allowing us to expand the
Boltzmann equation, but it is only a mathematical conve-
nience that represents no impediment to an experimentalist
looking for striking enhancements of Tc

�0�.
Equation �5� can now be solved for �n to yield

�nk = �0IBragg�nk
�FD���1 − e−t/�0� , �6�

which shows that a stationary nonequilibrium state is formed
in a characteristic time �0. The Bragg part in Eq. �5�,
IBragg�n�, now depends only on nk

�FD� and can be computed
with Fermi’s golden rule. When the wavelength of the Bragg
pulse is much larger than the DeBroglie wavelength of the
fermions and the reciprocal frequency of the pulse is much
smaller than the relaxation time ��F
q

1 and ��0�1�,
Fermi’s golden rule yields

IBragg�nk
�FD�� =

2�

�
�bg

2 �nk−q
�FD��1 − nk

�FD�����k − �k−q − ���

− nk
�FD��1 − nk+q

�FD�����k+q − �k − ���� .

The determination of IBragg�nk
F� allows us to find � and ulti-

mately Tc
�eff�. The optimal parameters depend on whether the

fermionic gas is in the superfluid or normal phase at the time
the Bragg pulse is applied. In the former case, the energy gap
in the quasiparticle density of states protects a Bragg pulse
with ��
2�0 from producing new quasiparticles that will
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hinder superfluidity. However, in the normal phase, the en-
ergy conservation requirement that �k+q−�k= ��� and an
independent control of q and � allow us to engineer a pulse
that ensures that only “thermal” quasiparticles with energies
�	�F are pushed to even higher energies, while the fermions
below �F are not affected.

Thus far, we have assumed that heat is being dissipated
from the fermions into the bosons through collisions. Be-
cause Bose-Einstein condensation inhibits collisions with
fermions and severely reduces thermalization between the
two populations, our simple analysis depends on the bosons
being at a constant temperature T greater than their Bose-
Einstein condensation temperature TBEC�0.94��BNB

1/3 �27�.
Condensation can be prevented at temperatures close to the
BCS transition temperature by having �B
�F and mB
�mF. Treating the bosons classically, we expect their tem-
perature to increase no faster than dT

dt = 1
C�bg�, which is the

energy pumping rate due to the Bragg pulse for a specific
heat C. For a harmonically confined classical gas, we use a
specific heat given by C=3kBNB. If tBragg is the time over
which the Bragg pulse is turned on, then so long as tBragg

dT
dt is

much less than the temperature of the bosons, we may con-
sider the bosonic population to be an isothermal bath. This
may be accomplished by having a large number of bosons at
low density. One may be able to avoid the assumption of a
bosonic population altogether when driving the transition
from normal to superfluid at temperatures above Tc

�0� by al-
lowing energetic particles to leave the trap as in evaporative
cooling. We shall show later that this is possible because the
Bragg pulse may be tuned to couple only to particles with
energies above a threshold energy depending on � and q. For
concreteness however, we shall keep the bosonic population
throughout the following section.

III. NUMERICAL RESULTS

As an example, we calculate the nonequilibrium enhance-
ment of Tc for a trapped mixture of 87Rb and 6Li under the
aforementioned assumptions with �n
1. We assume a cloud
of 105 lithium atoms and 107 rubidium atoms in traps of
frequencies �F=200�B=3 kHz correspondingly. We use
scattering lengths aBB=109a0, aFF=−2160a0, aFB=−100a0
�21� and a typical collision time �0�136 ns as estimated via
the 1 /�0=n�v approximation from above. With these param-
eters, the equilibrium BCS and BEC condensation tempera-
tures are Tc

�0��0.15 TF=291 nK and TBEC�23.2 nK. The
quasiparticle lifetime �k for the normal fluid is estimated as
�k�3 �s for 
�k−�F
��� via the methods in Refs. �26,28�.

A. Superfluid at equilibrium

Let us assume that the system is initially in the superfluid
phase at equilibrium with a low enough temperature T

Tc

�0� such that 2�	��=0.15�F. Using Eq. �6�, we may
calculate the stationary distribution function �Fig. 2� for
Bragg parameters �bg=70�F and 
q
=0.1kF. Some com-
ments on the form of �nk are necessary. As shown in Fig.
2�a�, the first-order approximation to nk has unphysical sin-
gularities at E=� and E=�+�. These are due to first-order

transitions to E=�+� from E=� where the quasiparticle
density of states diverges for a superfluid at equilibrium. The
exact distribution function, schematically drawn in Fig. 2�b�,
has no infinities. Higher orders in the expansion of the Bolt-
zmann equation are necessary to curtail the singularities at
�=�0+n� �n=0,1 ,2. . .�. However, so long as these singu-
larities are localized on energy intervals that are much
smaller than �, the approximate �nk calculated from Eq. �6�
will be suitable for the calculation of both the enhanced or-
der parameter via Eqs. �1� and �2� as well as the value of � in
the Ginzburg-Landau equation �Eq. �4�� �8�. As expected
from the analogy to Eliashberg’s work, our singularities have
energy widths of about ��2��0�bg

2 /�F�6NF�1/3�. Hence, we
may consider the inequality �

� �2��0�bg
2 /�F�6NF�1/3�
1 as a

further requirement for the validity of our linearization of the
Boltzmann equation for the calculation of � in the superfluid
case. We may also note that due to the fact that ��
2�0, no
new quasiparticles are excited from the lower branch by pair
breaking. Hence, the quasiparticle number is conserved in
this first-order approximation ��k�nk=0�. The quasiparticles
are simply redistributed from the gap edge to higher ener-
gies. Substituting �nk into Eq. �2�, we find that at T�0.13 TF
we calculate an increase in � by a factor of 1/10. So long as
T
Tc

�0�, the relative enhancement increases with temperature
because there are more particles to redistribute and the pulse
does not have enough energy to break Cooper pairs. Unlike
in the normal fluid where �0=0 at equilibrium, the enhance-
ment � depends on the initial value of the gap. In Fig. 3, we
plot the temperature dependence of the enhanced nonequilib-
rium gap with a slightly stronger pulse given by �bg
=110�F, ��=0.15�F, and 
q
=0.1 kF. Note that after the

0.0 0.1 0.2 0.3 0.4
E � ΕF

0.1
0.2
0.3
0.4
n�E�

�0��Ω �0�2�Ω

0.0 0.1 0.2 0.3 0.4
E � ΕF

0.1
0.2
0.3
0.4
n�E�

(b)(a)

FIG. 2. �a� The first-order approximation to the quasiparticle
occupation as a function of E=��2+�0

2 for parameters �bg

=70 �F, 
q
=0.1kF, and ��=0.15�F. The unphysical singularities
at E=�0 and E=�0+�� are not included in the calculation of �.
See text for details. The equilibrium values for this system are T
=0.14TF and �0=0.08�F. �b� The exact distribution function sche-
matically drawn for the same parameters with �0 and �� in units of
�F. The thick dashed lines represent the occupation at equilibrium.

�Ω�2ΕF

TBCS

0.13 0.14 0.15
T�TF

0.05
0.1

0.15

��ΕF

FIG. 3. �Color online� The order parameter � as function of the
temperature which solves the nonequilibrium gap equation for pa-
rameters �bg=110�F, 
q
=0.1kF, and ��=0.15�F. The black
dashed line is the equilibrium dependence while the red dashed line
gives the nonequilibrium transition temperature TBCS	TBCS

�0� . We
have constrained �0	�� /2 to avoid pair breaking.
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pulse is applied at equilibrium, the temperature of the bath
may be increased above Tc

�0� while maintaining a nonzero
gap. This temperature dependence is exactly what would be
expected from the analogous plot in Ref. �8�. The new BCS
transition temperature Tc is given by the maximum of the
nonequilibrium plot where the inequality ��
2�0 is satu-
rated. If the temperature is further increased, � discontinu-
ously vanishes again. For these parameters we calculate a
small 3% increase in the transition temperature as expected
from our requirement that nonlinear effects �even gap en-
hancing effects� be ignored in the Boltzmann equation. The
temperatures we have considered are sufficiently close to the
equilibrium transition temperature such that the approxima-
tion TBCS�TBCS

�0� �1+�� is justified. For small �0 a crude
order-of-magnitude estimate of � may be given by �

�2���bg

2 �0 /�F�n0��0�n0��0+���.

B. Normal at equilibrium

For contrast, let us now assume that we start in the normal
phase at equilibrium. The initial distribution function is sim-
ply the Fermi-Dirac function for the noninteracting quasipar-
ticles of Fermi Liquid theory. We have �0=0, so Eliashberg’s
requirement that ��
2�0 cannot be satisfied. However, we
can guarantee that particles are not excited from below the
Fermi level by choosing � and q such that the constraint
4�q�F� ���−�q�2 is enforced. Because of this requirement,
momentum and energy conservation cannot be simulta-
neously achieved for particles with energies less than �F. As
such, only particles outside the Fermi sphere can undergo
transitions. The lower equilibrium occupation number and
higher density of states at high energies ensures that quasi-
particles just outside the Fermi sphere are excited to higher
energies.

Although in our system we have particle conservation just
as in the superfluid case, we comment here that if these ex-
cited particles are allowed to leave the trap, then we have
effectively cooled the fermions by sharpening the Fermi step,
and the boson bath is unnecessary. Substituting �nk into Eq.
�2�, we see that the depression of the population at the Fermi
level shown in Fig. 4 allows for a nonzero � above TBCS

�0� . As
the temperature is increased, the nonequilibrium gap en-
hancement is overpowered by thermal smearing of the dis-
tribution function. There are more quasiparticles at energies
near �F where they most strongly hinder superfluidity. This
contrasts with the superfluid situation wherein the enhance-

ment increases with temperature so long as T
TBCS
�0� . This

effect can be seen in Fig. 5, where we find an enhancement
of TBCS by about 30% for parameters �bg=110�F, 
q

=0.1kF, and ��=0.21�F. This increase is much more drastic
than the enhancement in the superfluid phase because the
requirements that �nk
nk

�FD� and ��
�F are much less

stringent than the superfluid requirements �

�

2��0�bg
2

�F�6NF�1/3 
1 and
����. Thus, we may use a stronger pulse while still linear-
izing the Boltzmann equation legitimately. As such, fermi-
onic superfluidity is expected to appear at temperatures as
high as T�1.3Tc

�0�.

IV. SUMMARY

To conclude, we have shown that perturbing a system of
trapped fermions creating a stationary quasiparticle distribu-
tion can be an effective way to stimulate fermion pairing and
superfluidity. To demonstrate this, we calculate enhance-
ments of the BCS order parameter and the transition tem-
perature for a mixture of 87Rb and 6Li that is pushed out of
equilibrium by a Bragg pulse. The mechanism by which fer-
mions within the Fermi sphere are not excited differs de-
pending on initial conditions. If the gas is a superfluid at
equilibrium, these excitations are precluded by keeping ��

2�0. In the normal phase, the parameters of the pulse can
be chosen such that fermions below a certain energy cannot
simultaneously satisfy momentum and energy conservation.
Thus, they are not excited. In both cases, the enhancements
that we calculate are small, but this is a consequence of our
perturbative treatment rather than a physical constraint. This
is evidenced by the strong effects reported from experiments
on superconductors �12,13�, which are based on the same
underlying mechanism. Finally, we suggest that by enhanc-
ing or creating a discontinuity in the quasistationary strongly
nonequilibrium distribution of fermions �not necessarily at
the Fermi momentum� via the technique proposed in this
paper, one may achieve effective BCS pairing at nominally
very high temperatures of the bath.
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