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We demonstrate that exterior complex scaling �ECS� can be used to impose outgoing wave boundary
conditions exactly on solutions of the time-dependent Schrödinger equation for atoms in intense electromag-
netic pulses using finite grid methods. The procedure is formally exact when applied in the appropriate gauge
and is demonstrated in a calculation of high-harmonic generation in which multiphoton resonances are seen for
long pulse durations. However, we also demonstrate that while the application of ECS in this way is formally
exact, numerical error can appear for long-time propagations that can only be controlled by extending the finite
grid. A mathematical analysis of the origins of that numerical error, illustrated with an analytically solvable
model, is also given.
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I. INTRODUCTION

In the calculation of electron scattering or photoionization
amplitudes using the time-independent Schrödinger equa-
tion, physical boundary conditions must be applied to ensure
that the scattered solutions contain only outgoing scattered
waves. For example, these “purely outgoing” boundary
conditions can be expressed for the case of a single
electron with energy �2k2 /2m in the familiar form
�sc→ f�� ,��exp�ikr� /r as the radial coordinate of the elec-
tron, r, goes to infinity. Applying such boundary conditions
to the solution of the Schrödinger equation on a finite grid
generally requires matching the solution to the asymptotic
form. The idea of complex coordinate scaling is to exploit
the analytic properties of the exact solution when viewed
along a complex contour in the r plane, and thus replace
those explicit boundary conditions with the formally equiva-
lent, but much simpler, condition �sc→0 along a properly
chosen contour.

This idea has been known for decades �1–5�, including its
generalization to the exterior complex scaling �ECS� contour
�6,7�. The exterior complex scaling idea, in which the coor-
dinates are made complex only for large values of the coor-
dinates, has recently been exploited with great success in
electron impact ionization and double photoionization of at-
oms and molecules �8–12�, where the appropriate boundary
conditions are those for two outgoing electrons, and the com-
plex scaling approach is one of the few ways to apply them
in a time-independent calculation without approximating the
boundary conditions themselves.

The same ideas can be applied to the time-dependent de-
scription of photoionization or electron impact ionization,
whether involving one or more than one electron �13–15�.
However, in the solution of the time-dependent Schrödinger
equation, it has also been possible to make use of the easier,
albeit approximate, alternative of complex absorbing poten-
tials or masking functions applied near the end of the nu-
merical grid at each time step. Complex absorbing potentials
have been applied with particular success for heavy particles

�16–18� and also for electrons where, as Riss and Meyer �19�
have carefully analyzed, the longer wavelengths involved
complicate the practical application of the idea but not its
formal basis. Masking functions �20� have also been used
successfully for treating ionization by an intense field.

The application of exterior complex scaling was proposed
in the early 1990s �13� as a method for applying outgoing
boundary conditions on a finite grid solution of the time-
dependent Schrödinger equation and formally avoiding re-
flections from the edge of the grid. The ECS idea, which we
write here for the case of a single electron moving in one
dimension for simplicity, is to scale the coordinate of the
electron, z, on �−� ,+�� according to the transformation

C�z� = �Z0 + �z − Z0�ei�, z � Z0

z , − Z0 	 z 	 Z0

− Z0 + �z + Z0�ei�, z 
 − Z0
� �1�

as shown in Fig. 1. At the end of the complex domain, in Z1,
homogeneous Dirichlet boundary conditions are enforced.
The effect of this transformation on the exact solution of the
time-dependent Schrödinger equation for an electron in a
field expressed in the velocity gauge is also shown in that
figure, and its behavior gives the essence of the application
of the ECS idea to particles in a field. When viewed along
the complex contour, the wavepacket falls off exponentially
with increasing z, and the wave function goes to zero along
the contour for any time at which we examine it. Thus, the
complex part of the grid need only extend beyond the exte-
rior scaling point, Z0, a sufficient distance so that the wave-
packet is effectively zero at its end. In the region where the
coordinates remain real, the wavepacket has the same value
as the solution of the unscaled Schrödinger equation, and no
approximation has been made except for the discretization
error in representing the solution on a grid.

McCurdy et al. �13� pointed out that while the application
of ECS to the time-dependent Schrödinger equation is com-
pletely straightforward and rigorous for potentials that vanish
as the interacting particles move apart, the interaction of
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electrons with electromagnetic fields do not fall into that
category. If we represent the interaction of an electron with
the electromagnetic field in the length �or so-called electric
field� gauge, Vint=eE�t� ·r, for a time-varying electric field
E�t�, the magnitude of interaction potential increases with
the particle’s coordinates. Therefore, the application of the
ECS transformation leads to pathological behavior of the so-
lutions. On the other hand, those authors pointed out that in
the velocity �or radiation� gauge the behavior of the solution
of the time-dependent Schrödinger equation is entirely dif-
ferent, and thus the ECS approach can be applied in that
gauge instead.

He et al. �21� recently revisited this problem and, based
on numerical experiments, concluded that the formal argu-
ments of Ref. �13� were incorrect. As a remedy for the nu-
merical instabilities they encountered, they proposed the
ad hoc procedure of applying ECS only to the kinetic energy
operator and leaving all other parts of the Hamiltonian un-
scaled. We demonstrate here that He et al. were mistaken in
their conclusions and that the difficulties they encountered
were due largely to an inappropriate choice of Z0, coupled
with an ECS grid whose complex portion was prematurely
truncated. We also demonstrate that their proposed remedy of
scaling only part of the Hamiltonian can produce stable, but
physically incorrect results. We show that for any length of
propagation for an atom in an ionizing electromagnetic field,
it is always possible to pick the ECS contour in Eq. �1�, so
that the solution vanishes at its ends. The subjects we treat
here are important because the advent of ultrafast laser meth-
ods, and especially studies of high-harmonic generation by
intense short optical pulses, has made it necessary to be able
to solve the problem of an atom or molecule in an intense
field in a benchmark level calculation without making any
approximations that cannot be controlled simply by making
the grid representation itself more accurate. A careful analy-

sis of the numerical stability of this approach does show,
however, that for any particular contour there is a numerical
instability that ultimately appears at long times so that the
solution cannot be propagated to arbitrary times. In the
absence of an electromagnetic field, no such difficulties
appear.

In electromagnetic and acoustic scattering, the ECS con-
tour is known as a perfectly matched layer �PML� and was
introduced independently by Berenger in 1994 �22�. It has
been shown by Chew and Weedon �23� to be equivalent to
complex stretching. These methods have found widespread
application. However, numerical instabilities have also been
observed in simulations with a flow and in anistropic mate-
rials. Bécache et al. �24� formulated some conditions on the
group velocities such that numerical instabilities are avoided.

The outline of the remainder of this paper is as follows. In
the following section, we will discuss the behavior of solu-
tions of the time-dependent Schrödinger equation, in the ve-
locity gauge, in the presence of an electromagnetic field in
the dipole approximation and describe the model problem
that He et al. �21� used in their numerical experiments. In
Sec. III, we will present the results of numerical calculations
that show how the proper choice of the ECS contour elimi-
nates the numerical problems they alleged. In Sec. IV, we
will discuss the origins of numerical instabilities for very
long integration times. An application to high-harmonic gen-
eration will be given in Sec. V, and some concluding remarks
will be made in Sec. VI.

II. WAVEPACKETS ON THE ECS CONTOUR

The analytic properties of the time-dependent Schrödinger
equation under the ECS transformation can be illustrated
with a one-dimensional example, and remain formally the
same in three dimensions as well as for more than one par-
ticle. In treatments of atoms or molecules in optical fields,
the interaction with the electromagnetic field can generally
treated in the dipole approximation, and that is the only case
we discuss here. We will treat a one-dimensional model of
the hydrogen atom, with a soft Coulomb potential, V0�z�.
Depending on the gauge chosen for the representation of the
field, the time-dependent Schrödinger equation is �atomic
units, me=�=e=1, will be used throughout�

i
�

�t
��z,t� = �−

1

2

�2

�z2 + Vint�z,t� + V0�z����z,t� . �2�

In the electric field �length� gauge, the interaction potential is
Vint�z , t�=zE�t�, where E�t� is the electric field amplitude. In
this gauge, it is well-known that the time-independent prob-
lem is not dilation analytic �25,26�, and the fact that the
application of ECS to the time-dependent Schrödinger equa-
tion leads to divergent results �13� is therefore no surprise.

In the radiation �velocity� gauge, the situation is quite
different, however. In this gauge the momentum operator for
an electron in the radiation field becomes p̂z+A�t� /c and we
have
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FIG. 1. �Color online� Upper: example exterior complex scaling
contour C�z� for one-dimensional problem with z in bohr. Lower:
propagation of a Volkov packet with mass of an electron and an
initial drift momentum to the right as it oscillates across the ECS
boundary at Z0=60 bohr. Solid lines: modulus squared of wave-
packet �bohr−1� on real portion of contour at three successive times,
moving to the right, to the left, and again to the right. Dashed lines:
wavepacket on complex portion of contour, plotted for real z.
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Vint�z,t� = −
i

c
A�t�

�

�z
+

A�t�2

2c2 , �3�

The soft Coulomb potential used by He et al. and that we use
here in numerical demonstrations is

V0�z� = −
1

	1 + z2
. �4�

We can understand some of the analytic properties of ��z , t�,
at least asymptotically, from a semiclassical solution of Eq.
�2�. Following the procedure of Heller �27�, we can write a
Gaussian wavepacket corresponding to a locally quadratic
approximation to V0�z� around the central position of the
wavepacket, which gives a semiclassical approximation to
the exact solution

��z,t� = exp�i�t�z − zt�2 + ipt�z − zt� + i�t� , �5�

with the parameters of the packet satisfying the equations of
motion

ṗt = − V0��zt� �6�

żt = pt + A�t�/c �7�

�̇t = − 2�t
2 − V0��zt�/2 �8�

�̇t = ptżt − pt
2/2 + i�t − V0�zt� − A�t�pt/c − A�t�2/�2c2� , �9�

where V0��zt� and V0��zt� denote the derivatives of V0. The
solution of these equations depends on the potential of
course, and we treat two cases here to explore the analytic
properties suggested by the Gaussian approximation and nu-
merically verify those properties for the exact solutions.

A. Analytic properties of �(z , t) for Volkov states

In the case of V�z , t�=0 with a vector potential of the
simple form A�t�=A0 cos�
t�, Eqs. �6�–�9� can be solved ex-
actly and the resulting wavepacket is an exact solution of the
time-dependent Schrödinger equation.

pt = p0 �10�

zt = z0 + p0t +
A0


c
sin�
t� �11�

�t =
�0

2�0t + 1
�12�

�t = �0 +
p0

2

2
t +

i

2
ln�2�0t + 1� −

A0
2

2c2� t

2
+

sin 2
t

4

� ,

�13�

where we can choose �0 to be pure imaginary for simplicity.
This wavepacket is a special case of a Volkov packet describ-
ing a free electron in a field �28,29�.

The analytic properties of this wave function on the con-
tour are determined by the parameters �t and pt. McCurdy

et al. �13� pointed out that when pt is nonzero, the factor
exp�ipt�C�z�−zt�� controls the behavior of the packet on the
complex part of the contour as zt increases past Z0. As the
packet passes Z0 in the positive z direction, for example, this
factor dies off exponentially if pt�0, and that behavior per-
sists for all time because in this gauge, pt does not change
sign �even though zt is oscillating with the field�. This prop-
erty is exhibited by the Volkov state plotted in Fig. 1. On the
other hand, in the electric field �length� gauge pt oscillates,
and as it changes sign, the momentum alternately points in-
ward and outward along the contour, therefore generating
locally large values of �(C�z� , t) for ranges of z beyond Z0.

However, in the case that the initial momentum is zero,
the quadratic term in the exponent of Eq. �5� solely deter-
mines the behavior on the contour. In that case, there are
locally large values of ��C�z� , t� on the contour if the scal-
ing points �Z0 are chosen within the classical quiver radius
of the electron, A0 /
c.

To demonstrate that these analytic properties persist for
numerical solutions of Eq. �2� for this case, we have solved
the problem using the finite element method in the discrete
variable representation �FEM/DVR�, and those results for
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FIG. 2. Modulus squared of Volkov packet on ECS contour as a
function of position, z, in bohr and time in atomic time units
�24.19�10−18 s�. Left column: ECS contour with Z0=15, Right
column: Z0=40. Top row: results from method of He et al. �Ref.
�21��. Middle row: correct ECS propagation. Bottom row: analytic
solution of time-dependent Schrödinger equation. Quiver radius is
35.1 bohr.
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��C�z� , t�
2 are shown in Fig. 2. In all cases, the length of
the finite elements was either 5 or 10 bohr, the order of the
DVR was 15, and the scaling angle, � was 20°. No depen-
dence on the scaling angle is visible on scale of the figures
was observed. The distance from �Z0 to the end of the ECS
contour in each direction was 80 bohr, and at the ends of the
grid, the wave function is set to zero by the omission of the
last DVR interpolating function from the basis. Crank-
Nicolson propagation was used in all the calculations we
report here.

The field strength was chosen as A0 /c=2 and 
=0.057,
corresponding to the field of an intense Ti:sapphire laser and
a quiver radius of 35.1 bohr. When Z0 is chosen to be less
than half the quiver radius, as it is for the results shown in
the left column panels of Fig. 2, locally large values of the
wavepacket appear on the complex part of the contour just
past Z0, both in the numerical �middle� and analytical �bot-
tom� calculations, which yield identical results. Simply mov-
ing the scaling point, Z0 out to 40 bohr completely eliminates
that behavior, and the numerical and analytical solutions are
again identical as shown in the middle and bottom panels of
the right column of that figure, but with no large values on
the complex part of the ECS contour. Note that in all cases,
the values of the numerically propagated wavepacket and the
exact solution on the real portion of the grid are identical.

For the numerical implementation of ECS to work prop-
erly, it is critical that the complex portion of the grid be
chosen long enough to absorb the propagating wavepacket.
This is especially critical when Z0 lies inside the quiver ra-
dius. He et al. noted, in their low-frequency calculations, an
exponential increase in the wavepacket when it entered the
complex portion of their grid. They concluded that there was
an intrinsic numerical problem with ECS, which they pro-
posed to solve by not analytically continuing the operator
describing the interaction with the field, Vint�z , t�, onto the
exterior scaling contour. In fact, the numerical behavior they
observed was a caused by choosing Z0 smaller than the
quiver radius and using too short �12.5 bohr� a complex tail
for the grid. In the top row of Fig. 2, we plot results obtained
using the modified ECS procedure proposed by He et al. and
it can be seen that they are quite different from the correct
solutions of Eq. �2�. The reason for this difference is that by
analytically continuing only part of the Hamiltonian, this
procedure does not produce an approximation to the analyti-
cally continued solution of the original Schrödinger equa-
tion. As we will see below, this approach produces similarly
spurious results in the presence of a Coulomb potential.

We note in passing that the implementation of ECS in the
FEM/DVR and in B-splines has been discussed previously in
detail �11�, and an important point in these numerical imple-
mentations is the treatment of the point z=Z0. The sharp
changes in slope in Fig. 1 might suggest that numerical er-
rors could result from this behavior. That is not the case,
however, because in these implementations, the underlying
polynomial basis functions are correctly analytically contin-
ued into the complex plane at this point, and the discontinu-
ity in their derivatives is built into these representations ana-
lytically �11,30�. Thus, the behavior seen in Fig. 2 when Z0 is
chosen inside the quiver radius for a packet with initial zero
momentum has nothing to do with local numerical error and

is only a reflection of the analytic properties of the exact
solution.

B. Behavior of �(z , t) on the ECS contour
for the soft Coulomb potential

In the presence of a Coulomb potential, the solutions of
the time-dependent Schrödinger equation on the ECS con-
tour behave in a precisely analogous manner. We can get an
indication of the reason by returning to the equations of mo-
tion in Eqs. �6�–�9�. For the Gaussian approximation to the
wavepacket, there are now terms involving V0�z� and its first
and second derivatives at the center of the packet. For short
times, before the center of the semiclassical packet has
reached sufficiently far from the origin for these terms to be
small, the analytic behavior of this approximation to the so-
lution can differ from that discussed above. However, as
those terms approach their asymptotic values, the analytic
behavior of the approximate solution in the presence of V0�z�
becomes that of the Volkov packet.

In Fig. 3, we demonstrate the solution of the time-
dependent Schrödinger equation with the potential of Eq. �4�
and compare it with numerical solutions obtained using the
procedure of He et al. in which only part of the Hamiltonian
is continued onto the ECS contour. We use the same param-
eters appearing in Ref. �21�, where the electric field was
specified as

E�t� = E0 sin2��

T
t�cos�
0t� , �14�

with E0=0.1 and 
0=0.057, and T=330, and therefore we
employed the corresponding vector potential A�t� related by
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2 as a function of time for soft coulomb
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propagation with Z0=25 bohr. Quiver radius is 30.8 bohr. Bottom
left: correct ECS propagation with Z0=60 bohr. Bottom right:
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E�t�=−�1 /c�dA�t� /dt. The corresponding maximum quiver
radius is E0 /
2=30.8 bohr. The initial wavepacket is the
ground state of the field-free Hamiltonian with the potential
of Eq. �4�, which has an energy of −0.66978 hartrees. We can
see that with a value of Z0 greater than the quiver radius plus
the approximate spatial extent of the initial packet, the value
of the solution on the ECS contour remains small and be-
comes exponentially small by the end of the contour.

For all the numerical calculations in Fig. 3, the distance
from Z0 to the end of the ECS contour was 80 bohr. Com-
paring the top left panel of that figure, which shows results
using the method of He et al., with the bottom left panel,
which shows ECS propagation with Z0=60, we see notable
differences on the real part of the grid. The ECS propagation
agrees perfectly with the calculation shown in the bottom
right panel using a completely real grid extended to
�300 bohr to avoid reflections from the ends of the grid.

One has to conclude from these comparisons that the ana-
lytic properties of the wave function on the ECS contour are
numerically benign, and that the ad hoc modification of the
Hamiltonian that analytically continues only part of it does
not provide a solution to the original problem, although it
may resemble it for sufficiently short times.

III. NUMERICAL PROPAGATION TO VERY LONG TIMES
ON THE ECS CONTOUR

In the absence of an electromagnetic field, an ionizing
solution of the time-dependent Schrödinger equation for an
atom or molecule can be propagated, using the methods de-
scribed above, to arbitrarily long times, essentially until it
has vanished from the real part of the grid. In such cases, if
the complex portion of the grid, extending from �Z0 to the
end of the grid in either direction, is made long enough so
that the wavepacket does not reach its end with appreciable
values, the long-time propagation accumulates discretization
error but shows no numerical instabilities. The required
length of complex portion of the grid will depend on the
momenta involved. However, in the presence of a radiation
field, we see a different behavior for long times.

In Fig. 4, we show the results of a numerical experiment
for the problems treated in the previous section in Figs. 2 and
3, except that the propagation times are considerably longer.
Here, we propagate the Volkov state to T=500 and the soft
Coulomb wavepacket to 1000 atomic units �for a pulse du-
ration of T=1100�. The upper panels of Fig. 4 show propa-
gations using small complex portions of the contours, ex-
tending 25 and 50 bohr beyond �Z0. In those calculations,
large peaks appear periodically on both complex sides of the
contour, and we see that there is a numerical instability as-
sociated with reflections from the end of the ECS contour
being amplified by the presence of the field. In the bottom
row, the contour extends 75 bohr beyond �Z0, which is
enough to eliminate the instability for the soft Coulomb ex-
ample, but it still appears at longer times for the Volkov state
with the initial parameters chosen for the Gaussian wave-
packet.

Although they can be eliminated by using a longer ECS
contour, still much shorter than the real grid necessary to

contain the entire wavepacket for such long times, this is
nonetheless a qualitatively different behavior than seen in
other applications, either time-dependent or time-
independent, of the ECS approach. In the next section, we
discuss the origins of this behavior.

IV. NUMERICAL ANALYSIS OF ERROR GROWTH
DURING LONG-TIME INTEGRATIONS

In this section, we look in detail at the mathematics be-
hind exterior complex scaling. In particular, we look at how
enforcing the homogeneous Dirichlet boundary condition at
the end of the complex contour ensures that only outgoing
waves are allowed at the end of the real part of the grid.

At the same time, we also look at the mathematics that
will explain the influence of the ECS contour on the time
evolution. Although simulations on the ECS grid in the ve-
locity gauge are long-time stable, we will illustrate that they
suffer from short-term error growth. This effect is caused by
the fact that the ECS grid turns the Hermitian Hamiltonian
into a non-normal operator with particular mathematical
properties.
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Since the field is switching back and forth over a period T,
the dynamics never reach the decaying regime of the un-
coupled eigenmodes. It always stays in the regime of short-
term exponential growth. This explains the error growth on
ECS contours for periodically changing fields. However, the
error will have a low spatial frequency with a period equal to
the period of the applied field.

A. Bound on the error

During numerical simulation, local rounding and trunca-
tion errors are accumulated each time step that affect the
final result. We can express the solution of the error equation
corresponding to the Schrödinger equation as the sum of two
terms

��t� = e−iH�t���0� + �
0

t

e−iH�t−s���s�ds , �15�

where the first is the propagation of the initial error ��0�, the
second term is the local truncation error ��t� that is made
each time step and propagates over the domain, hence the
integral.

An upperbound on the error at time t can be found as

���t�� 	 �e−iH�t�����0�� + max
0	s	t

���s���
0

t

�e−iH�t−s��ds ,

�16�

where � · � denotes the L2 norm. We also take the maximum of
the local truncation error over the interval and place it out-
side the integral. The key to this upperbound is �e−iH�t��, the
norm of the evolution operator. We use the operator norm
that is induced by the vector norm and defined as the supre-
mum of �e−iH�t�v� over all possible vectors v�V, a vector
space, with �v�=1. So, to understand this bound on the error,
we will analyze the short- and the long-term behavior of
�e−iH�t��.

B. Non-normal operators

The advantage of the ECS contour is that it absorbs out-
going waves without any reflections, in the exact continuous
case, before discretization on a grid or with basis functions.
The disadvantage is that it turns the originally Hermitian
Hamiltonian into a non-normal operator that alters the short-
term behavior of the evolution operator. Indeed, a normal
operator A commutes with its Hermitian conjugate, such that
AA�=A�A. We will illustrate, for the continuous �i.e., not
discretized� case, that after the ECS transformation, even the
simplest differential operator, e.g., A=d /dz, is non-normal.

We start by writing the ECS transformation in integral
form as in �11�,

C�z� = �
0

z

q�z�dz . �17�

This gives a Jacobian related to the transformation

d

dC�z�
= �dC�z�

dz
�−1 d

dz
=

1

q

d

dz
.

We then find that

AA� − A�A =
1

q

d

dz

1

q�

d

dz
−

1

q�

d

dz

1

q

d

dz
= −

1

q

q��

�q��2

d

dz
+

1

qq�

d2

dz2

+
1

q�

q�

q2

d

dz
−

1

qq�

d2

dz2 =
1

qq��q�

q
−

q��

q� � d

dz
. �18�

This is nonzero for all choices of q�z� that implement exte-
rior complex scaling. In particular, for the ECS transforma-
tion

q�r� = 
 1 for r 	 R0

ei� for r � R0
� , �19�

where q�z� has a discontinuous derivative q��r�
= �ei�−1���r−R0� at R0, the operator is not normal. In a simi-
lar way, it easy to show that the Hamiltonian, which has a
second order differential operator, is non-normal after the
ECS transformation.

It is known that a non-normal operator may have nonor-
thogonal eigenvectors �31�. As a consequence, an eigenvalue
analysis of the time evolution can only give information
about the long-term asymptotic behavior. If the eigenvectors
are not orthogonal, the time evolution cannot be uncoupled
in the basis of the eigenvectors. Let ci�t�= (zi ,u�t�) be the
projection on the i-th eigenstate zi. Then,

iċi�t� = � �zi,H�t�zj�cj�t� � �ici�t� , �20�

since �zi ,zj���i,j.
In a similar way, the length of u�t� is not equal to the sum

of the projections

�u�t��2 � � 
ci�t�
2,

which can lead to growth of the total probability.

C. Numerical and spectral abscissa

The time evolution of a system of ordinary differential
equations �ODE� with a non-normal time-independent matrix
has been studied before �31�. We will introduce the numeri-
cal abscissa and spectral abscissa, two mathematical mea-
sures that will help us to understand the short-term error
growth.

As t→�, the asymptotic growth rate of �e−iHt�, where H
is a time-independent Hamiltonian, is determined by

lim
t→�

t−1 ln�e−iHt� = ��− iH� , �21�

where the spectral abscissa ��H� is defined as

��− iH� = max
�j���H�

Re�− i� j� .

The asymptotic behavior depends on the eigenvalue of −iH
with the largest real part. In Fig. 5, we show the eigenvalues
with the largest real part for a model with an alternating dc
field that we will introduce in the next section.
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On the other hand, the short-term behavior, as t→0, is
determined by the numerical range, defined as the set of
complex values reached by the Rayleigh quotient, x�Ax /x�x,
of vectors with length one. If Hn�Cn�n is a numerical rep-
resentation of H, we then have the definition of the numerical
range

W�− iHn� = �− ix�Hnx � C:�x�2 = 1,x � Cn� . �22�

In Fig. 5, we show, for the same model, the numerical range.
In contrast to the eigenvalues, the numerical range signifi-
cantly protrudes into part of the complex plane with positive
real part.

The short-term behavior is determined by

lim
t→0

t−1 ln�e−iHnt� = 
�− iHn� , �23�

where 
�−iHn� is the numerical abscissa. It is the largest real
part of complex points in C that lie inside the numerical
range W�−iHn�. Only normal operators have the same nu-
merical and spectral abscissa, and the short- and long-term
behavior is the same.

In our problem, however, after the introduction of the
ECS transformation and the representation of the Hamil-
tonian on a grid, the operator is non-normal and the spectral
and numerical abscissa differ significantly. This is also clear
from Fig. 5. In particular, the spectral abscissa has a negative
real part that ensures a decaying long-term behavior. In con-
trast, the numerical abscissa has a positive real part that leads
to a short-term growth. Fig. 6 shows the difference in short-
term growth and long-term decay for a model problem we
present in the next section.

D. Error analysis for an analytically solvable problem

1. Model with vector potential that is piecewise constant in time

In order to understand the behavior of the error at the
boundaries, we present a minimal model. It has an alternat-
ing vector potential that is constant in one direction during
the first half a period T and constant in the other direction for
the remainder of the period. When the initial state is a wave-
packet, an exact analytical expression gives the position and
shape of the wavepacket at all times. The equation is

i
�u�z,t�

�t
= �−

1

2

�2

�z
−

i

c
A�t�

�

�z
+

1

2c2A�t�2�u�z,t� , �24�

with

A�t� = 
+ a0c if nT 	 t 
 �n + 1/2�T
− a0c if �n + 1/2�T 	 t 
 �n + 1�T� ∀ n � N .

�25�

Again, this model problem can be solved exactly, if the state
at the beginning of a half period is described by a Gaussian
wavepacket

��z,t� = exp�i�0�z − z0�2 + ip0�z − z0� + i�0� . �26�

During that half period, the parameters evolve as

z�t� = z0 + p0t − a0t ,

p�t� = p0,

��t� = �0/�2�0t + 1� ,
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FIG. 5. Spectrum of the time-independent operator of the alter-
nating dc model. Operator is discretized with finite differences on
the ECS contour using 100 interior points and 50 points on each of
the exterior scaled domains. Spectrum of the operator is shown with
circles ���; each mode is stable. The boundary of the numerical
range �dashed line� significantly protrudes into the region with posi-
tive real parts, resulting in short-term growth. Dotted line: the
boundary of the numerical range generated by the complex part of
the ECS contour only. The rightmost point, indicated with the ar-
row, is the numerical abscissa of this subset of C and gives an
estimate for the error growth discussed in Sec. IV E.
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FIG. 6. Time evolution of the norm of the exponential operator
for the model problem with a0=0.6 discretized on a finite difference
grid and an ECS angle of 30°, with time in atomic units
�24.19�10−18 s�. Since the operator is non-normal the numerical
and spectral abscissa differ. The spectral abscissa is negative while
the numerical abscissa is positive, leading to a short-term growth,
but there is long-term decay. Dashed line shows the initial growth
while the dotted line is the asymptotic decay rate given by the
eigenvalue with the largest real part. Note that at t=0, the norm of
�exp�−iHt��=1.
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��t� = �0 + p0
2t/2 + i ln�2�0t + 1�/2 − a0

2t/4. �27�

These equations also determine the shape of the wavepacket
at the end of a period given the parameters at the start of a
period. By applying these equations recursively, it is possible
to get an analytical expression for the shape of the solution at
any time.

Since the Hamiltonian is time-independent over intervals
of duration T /2, an eigenvector, eigenvalue and numerical
range analysis of the time evolution can give us more insight
into the behavior of the error at the boundaries.

2. Eigenmode analysis of model problem

Since the operator of the model problem is constant dur-
ing half a period, an analysis based eigenvalues and the nu-
merical range is possible. The Hamiltonian for a constant
vector potential is

H = −
1

2

�2

�C�z�2 − ia0
�

�C�z�
+

1

2
a0

2, �28�

where a0 is positive for this discussion. The results for −a0
are the same, with the sign reversed. We denote uj for eigen-
state and � j the corresponding eigenvalue.

It can be shown �32� that for a finite difference, discreti-
zation with a sufficiently large number of grid points, all the
eigenvalues lead to stable modes.

For this discussion, we consider the left-hand side of the
domain. The same analysis is valid on the other side of the
domain. In the complex domain, beyond the point of exterior
scaling, Z0, the equation is a second order ODE with constant
coefficients and the solution can be written, ∀z�Z0, as a
linear combination of two fundamental solutions

uj�z� = A exp�i�− a0 + 	2� j�C�z��

+ B exp�i�− a0 − 	2� j�C�z�� . �29�

Now at the end of the domain, at C�Z1�, homogeneous Di-
richlet boundary conditions u�C�Z1��=0 are enforced. It fol-
lows that the ratio of the coefficients is


B


A


= exp�− 2�Re�	2� j�Im�C�Z1�� + Im�	2� j�Re�C�Z1���� .

�30�

We conclude that the effect of the ECS rotation is that B, the
coefficient of the incoming wave, is suppressed exponen-
tially with respect to the outgoing wave. This holds for each
of the eigenmodes, as long as the � j is such that

Re�	2� j�Im�C�Z1�� + Im�	2� j�Re�C�Z1�� � 0. �31�

Note that not each eigenmode is suppressed in the same way.
Eigenmodes with 
� j
�1 are better suppressed than eigen-
modes with small 
� j
. The suppression, however, is indepen-
dent of the field strength a0.

In the presence of a field, it is not necessary that the full
solution is exponentially decaying in the absorbing boundary.
Indeed, in the presence of the field the fundamental solutions
can be both incoming or outgoing. If 
� j
 is very small, it
might be that both −a0+	2� j and −a0−	2� j have the same

sign in Eq. �29�. So situations can appear where enforcing
the Dirichlet boundary conditions suppresses one of the two
incoming waves but leaves the other incoming wave unat-
tenuated. The overall wave function will then grow at the
onset of the complex rotation. In a way, this is the correct
physical picture. The electrons that move faster than the field
should be suppressed. The waves that are slower should not
be suppressed since they will return to the target as the field
is reversed.

We give an example. Let a0=0.2 and take an ECS contour
with �=� /6 and length L=20. Let the eigenmode have
	2� j =0.1. On the ECS contour, the eigenstate is written as a
linear combination A exp�i0.3ei�z�+B exp�i0.1ei�z�. Enforc-
ing the Dirichlet boundary condition at Z1=−20 then gives

B
= 
A
exp�−0.2 Im C�Z1��. The total wave function is still
exponentially increasing on the left complex contour as
shown in Fig. 7.

E. Estimate of the short-term error growth

In this section, we estimate the short-term growth. As dis-
cussed earlier, this is determined by the numerical abscissa

�−iHn�, which is the real part of the rightmost point in the
numerical range W�−iHn�. To estimate this short-term
growth, we will look for the rightmost point in a subset of
the numerical range.

Let Hn be a finite difference semidiscretization of Eq.
�24�, i.e., the numerical representation of the operator on the
ECS grid, where we approximate the spatial differential op-
erator with the help of central differences as

�d2u�x�
dx2 �

x=xi

=
u�xi+1� − 2u�xi� + u�xi−1�

h2 + O�h2�
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FIG. 7. For the eigenmodes for the model problem with constant
vector potential of Sec. IV D 1 with 
� j
�a0, the wave functions,
�, as functions of z �in bohr� for both the fundamental modes
�broken curves�, are exponentially increasing on the left complex
contour. The Dirichlet boundary condition forces the sum of the two
to be zero at −Z1. The sum of the two, shown as the solid line, is
increasing in the initial part of the complex contour and then bends
over to fit the homogeneous Dirichlet boundary condition at
z=−Z1.
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�du�x�
dx

�
x=xi

=
u�xi+1� − u�xi−1�

2h
+ O�h2� . �32�

The Rayleigh quotients of a vector v�Cn with vk
= �exp�i���k for all �� �0,2�� gives the symbol curve that
encloses a subset of the numerical range. The definition and
properties of symbol curves are discussed in �31�. Further-
more, we have found that the rightmost points of the numeri-
cal range come from the complex part of the ECS grid �32�.
We therefore look at the symbol of the tridiagonal submatrix

H̃n of Hn representing the complex ECS contour. This is a
diagonally constant matrix

�H̃nv� j =
e−2i�

2h2 �− ei�j+1�� + 2eij� − ei�j−1���

− ia0
e−i�

2h
�ei�j+1�� − ei�j−1��� +

1

2
a0

2eij�, �33�

where e−i2� comes from the complex rotation of the grid on
the contour with an angle �.

⇒
v�H̃nv

v�v
=

�
j

v j
�Hnv j

�
j

v j
�v j

=
e−2i�

h2 �− cos��� + 1� − a0
e−i�

h
sin��� +

1

2
a0

2.

The imaginary part of
v�H̃nv

v�v
,

− sin�2���− cos��� + 1�/h2 + a0 sin���sin���/h ,

is the real part of v��−iH̃n�v /v�v. The extremum
�max� �0,2�� satisfies

tan ��max� = ha0
sin���

sin�2��
, �34�

where 0
�max	� corresponds to the maximum. The ex-
treme point is then

��− iH̃n� = − a0
sin ���

h

cos��max� − 1

sin ��max�
, �35�

which is positive since 0
sin ��max�. For weak fields a0, we
can approximate

cos��max� − 1

sin ��max�
=

1 − 	1 + tan2 ��max�
tan ��max�

� −
1

2
tan ��max� .

�36�

We then get an estimate for the numerical range

��− iH̃n� �
1

2

sin2 ���
sin�2��

a0
2. �37�

Since H̃n is a submatrix of Hn, the numerical ranges are
subsets. Therefore,

��− iH̃n� 	 ��− iHn� . �38�

We have used Eq. �38� to estimate the initial growth in Fig.
6. We have also indicated the extreme point in Fig. 5.

F. Error growth in a periodic field

In a periodic problem, where the field changes periodi-
cally over time, there is always a short-term growth when the
field changes. If the period is comparable to the timescale of
this short-term growth, the numerical simulation never
reaches the long-term decaying behavior determined by the
eigenvalues. This leads to a continuously growing error. This
is illustrated in Fig. 8, where we compare, for the exactly
solvable model of equation �24�, the total probability on the
real part of the domain. The total probability of the exact
problem decays because the packet propagates onto the com-
plex portion of the contour. The numerical simulation also
decays, but because of the short-term error growth, there is a
continuously growing error. As time increases, the numerical
and the exact solution start to deviate significantly from each
other.

This error is in the low energy components of the wave
packet. Indeed, as shown in Fig. 5, the modes on the com-
plex contour that protrude into the right half of the complex
have a small momentum. This explains why the numerical
experiments show an error with a low spatial frequency.

V. HIGH-HARMONIC GENERATION WITH
PROPAGATION ON THE ECS CONTOUR

Once understood, the numerical instabilities discussed
above can be avoided in practice for any maximum propaga-
tion by an appropriate choice of the ECS contour. As a dem-
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FIG. 8. Time evolution of total probability on interior of the
domain for model problem with alternating dc field with time in
atomic units �24.19�10−18 s�. Solid line: exact solution based on
Eq. �26�; dashed line: numerical solution; dashed-dot line: error in
the total probability. At time t=400, i.e., five periods, the error
exceeds the numerical solution. Note that the error is mainly low
frequency. The period is T=80, a0=0.6, L= �−13,13�; we used 100
grid points on the interior of the domain. Each complex contour has
a length 13 and has 50 grid points. Crank-Nicholson is used for the
numerical time integration.
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onstration of the practical utility of the ECS approach to the
solution of the time-dependent Schrödinger equation for at-
oms and molecules in an electromagnetic field, we calculate
the high harmonics generated by the one-dimensional soft
Coulomb model treated in Sec. II B. The formulation we use
to extract the spectral density function from a given wave-
packet propagation follows that used by Telnov and Chu
�33,34�, who treated high-harmonic generation �HHG� using
the Floquet method combined with complex scaling in pro-
late spheroidal coordinates. In that work, Telnov and Chu
found a multiphoton resonance phenomenon in the HHG
spectrum, and we find the same phenomenon in this model,
provided long enough pulses are employed.

Again, we make use of a sine squared pulse shape so that
the vector field is specified by a central photon frequency 
0,
a duration, T, and a field strength A0

A�t� = A0 sin2��

T
t�sin�
0t� . �39�

We will use field intensities between 1012 and 1014 W /cm2,
and pulse durations of 60 cycles of the central frequency

0=0.057, corresponding to T=160 fs, so in the absence of
complex scaling the wavepacket would extend over a broad
range of z, much larger than the ECS contour, by the end of
the pulse.

The harmonic spectrum can be calculated from the Fou-

rier transform, D̃�
�, of the time-dependent dipole moment,
D�t�,

D�t� � ��t
z
�t�

D̃�
� =
1

T
�

0

T

ei
tD�t�dt �40�

in terms of which we can express the spectral density of the
radiation energy S�
� emitted over the duration of the pulse
�34�,

S�
� =
2
4

3�c3 
D̃�
�
2. �41�

In finite grid solutions of the time-dependent Schrödinger
equation, it is more convenient to relate S�
� to the Fourier
transform of an operator that is more localized on the atom
so that it can be calculated accurately without large grids,
and the ECS method is no exception. We require a quantity
whose representation converges on �−Z0 ,Z0�. Thus, we cal-
culate the dipole acceleration

a�t� =
d2

dt2D�t� , �42�

which, using Ehrenfest’s theorem, and the Hamiltonian in the
form H= 1

2 �p̂z+A�t� /c�2+V0�z�, can be shown to satisfy �33�

a�t� = −

���z,t�

d

dz
V0�z�
��z,t��

���z,t�
��z,t��
− E�t� , �43�

where E�t� is the electric field amplitude corresponding to
Eq. �40�. In these calculations, the integrals in Eq. �44� were
taken only over the real part of the ECS contour. Defining
the Fourier transform of a�t� as in Eq. �41�, and making use

of the relation ã�
��
4
D̃�
�
2 �33�, we calculate the spec-
tral density of the harmonics as

TABLE I. Energies �in hartrees� of the eigenstates of the soft
Coulomb potential of Eq. �4� and the approximate harmonic order
to which the transition energies correspond.

Eigenstate n En �En−E1� /
0

1 −0.66978 0

2 −0.27489 6.93

3 −0.15145 9.09

4 −0.09268 10.13

5 −0.06353 10.64

6 −0.04547 10.95

7 −0.03425 11.15

8 −0.02471 11.32

9 −0.01499 11.49

10 −0.00283 11.70
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FIG. 9. �Color online� Left column: spectral energy density in
atomic units �hartrees�atomic time unit� for harmonic generation
in the soft Coulomb potential problem, with 60 cycle pulse and
intensities varying �top to bottom� 5�1012, 1013, and 1014 W /cm2.
Dashed vertical line: classical cutoff at �Ip+3.17Up� /
0. Right col-
umn: corresponding dipole acceleration, with time in atomic units
�24.19�10−18 s�.
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S�
� =
2

3�c3 
ã�
�
2. �44�

In Fig. 9, we show the spectral densities of harmonics gen-
erated by the 160 fs pulse in Eq. �40� for intensities of
5�1012, 1013, and 1014 W /cm2 together with the corre-
sponding dipole accelerations, a�t�. The ECS contour has
Z0=70 bohr, and the complex part of grid is chosen to ex-
tend an additional 100 bohr. The time step for the Crank-
Nicolson propagation of the wave function was �t=0.02.

Although for shorter pulses, these harmonic spectra vary
considerably with pulse duration, for pulses longer than sixty
cycles, they do not change appreciably. The dipole accelera-
tion can be seen to change qualitatively as the intensity
reaches 1014 W /cm2. The harmonic spectra are consistent
with the classical cutoff number �35�, N= �Ip+3.17Up� /
0,
where the ionization potential, Ip is given by the energy of
the ground state in Table I, and the ponderomotive potential
is given by Up= I / �4
0

2�. Those cutoff numbers for the inten-
sities 5�1012, 1013, and 1014 W /cm2 are shown by dashed
lines at N=13, 15, and 25, respectively.

In their calculations on HHG from H2
+, Telnov and Chu

found resonance features in S�
� when the transition ener-
gies from the ground to bound excited states of the target
molecule correspond to the frequencies of particular har-
monic orders. The intensities of those harmonics are strongly
enhanced by these resonances. For the soft Coulomb poten-
tial treated here, we can see from Table I that the transition
between the first and second states corresponds almost ex-
actly to the frequency of the seventh harmonic, and that the
transition to the third eigenstate almost perfectly matches the
ninth harmonic. The insets in Fig. 9 show strong enhance-
ments of those harmonics for intensities of 5�1012 and
1013 W /cm2. Transitions to the fifth and higher states of the
Rydberg series can be seen to intensify and change the peak
shapes of the 11th and 13th harmonics. Long pulses are re-
quired to see these effects in S�
� clearly.

Finally, in Fig. 10, we show a comparison of the ECS
results at the highest intensity we consider here with a cal-
culation on the same grid using the procedure of He et al.
�21�, to demonstrate which parts of the harmonic spectral
density are modified by the spurious components of the wave
function generated by not properly analytically continuing

the solution onto the ECS contour. In that figure, one sees
that in this case, it is primarily the cutoff region that is ad-
versely affected.

VI. CONCLUSION

In this paper, we have analyzed the application of the ECS
method to the dynamics of electrons in intense laser fields,
and concluded that the pathological numerical behavior that
He et al. �21� observed in the application of this idea in the
radiation gauge was an artifact of the grid parameters they
chose. Moreover, the formal arguments used in Ref. �21� to
explain that behavior are evidently in error. We have demon-
strated numerically that a choice of the ECS contour that
places the exterior scaling radius Z0 inside the region cov-
ered by the spatial extent of the initial packet plus the quiver
radius leads to perfectly understandable and completely
avoidable apparent numerical pathologies. To further empha-
size those points, we have presented another numerical dem-
onstration, requiring converged, long-time integrations, of
the calculation of high harmonics using the ECS method.

Nonetheless, a careful mathematical analysis shows that,
for long times, the error in numerical propagation of the
solution of the time-dependent Schrödinger equation using
the ECS contour has a surprising behavior. Because the
Hamiltonian under ECS is non-Hermitian and therefore is a
non-normal operator, and because of the boundary conditions
forcing the solution to zero at the ends of the grid, a signifi-
cant difference can appear between the short- and long-term
behaviors of the error during time integration.

We have examined the mathematics that explains this
contrasting behavior and analyzed these two time scales for
one-dimensional models of the dynamics of electrons in in-
tense laser fields. In the radiation �velocity� gauge, the simu-
lations are long-term stable. On the other hand, there can be
significant short-term error growth that scales with the
square of the strength of the electric field.

In periodic problems, the dynamics never reaches the re-
gime of long-term decay of the error. Since the field is
changing, it always stays in the regime with short-term
growth. This means that the error can grow significantly dur-
ing the simulations. We have found, however, that the calcu-
lation of the high-harmonic spectrum is hardly affected by

0 10 20 30 40 50

10-4

10-2

100

102

104

106

Harmonic order

S(
ω
)x
10

20

0 10 20 30 40 50

10-4

10-2

100

102

104

106

Harmonic order

I = 1014 W cm-2 I = 1014 W cm-2

FIG. 10. Harmonic generation.
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� from ECS calculation
using a 60 cycle pulse with central
frequency 
0=0.057 atomic units
and intensity of 1014 W /cm2.
Right: calculation using same
pulse parameters using method of
Ref. �21�. Units as in Fig. 9
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this error in practice, in part because the error affects low
energy components of the solution and evolves on a different
timescale from the high harmonics.

An aim of the numerical analysis we present here is to
find conditions on the numerical grid, ECS boundary, and
applied fields, such that we can estimate and therefore con-
trol, a priori, the numerical error in ECS calculations on
atoms and molecules in fields. Such estimates will allow
large-scale and high-dimensional calculations to be carried
out on systems with two active electrons and moving nuclear
degrees of freedom without empirical exploration of the nu-
merical parameters of the simulation.
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