
Above-threshold-ionization structures in photoelectron momentum distributions for single
ionization of He by a strong electromagnetic field

I. A. Ivanov* and A. S. Kheifets
Research School of Physical Sciences and Engineering, The Australian National University, Canberra,

Australian Capital Territory 0200, Australia
�Received 12 October 2009; published 8 December 2009�

Our numerical calculations support a recently advanced hypothesis that an individual photon absorption is
still a valid concept in the tunneling regime of atomic ionization in a strong electromagnetic field. We observe
characteristic structures in the photoelectron momentum distribution resulting from single ionization of the
helium atom in the tunneling regime which are normally associated with above threshold ionization �ATI�. The
nodal structure of these ATI-like rings varies with the photon energy which can be attributed to altering parity
of the photon numbers producing the corresponding rings.
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I. INTRODUCTION

The well-known Keldysh theory �1� outlines two essen-
tially different regimes of atomic ionization by strong elec-
tromagnetic �EM� fields. The atom is ionized either through
tunneling or multiphoton ionization processes depending on
the value of the Keldysh parameter �=��2I /F. This dimen-
sionless parameter is expressed via the photon energy �, the
EM field strength F and the atomic ionization potential I, all
the quantities are measured in atomic units. For values �
�1, ionization proceeds through tunneling which is charac-
terized by strong �exponential� dependence of ionization
probabilities on the field strength. This implies that the ion-
ization event occurs predominantly at the moments of the
peak intensity of the EM field which is utilized in the so-
called ADK model �2� of tunneling ionization. This model
predicts a smooth distribution of the photoelectron momenta
which is sharply centered at the point corresponding to zero
momentum. The ADK theory provides a basis for theoretical
description of various strong field ionization phenomena
such as high harmonics generation �3,4� or formation of ul-
trashort pulses of EM radiation �5�. The ADK theory and its
variations do not use the concept of an individual photon.

For values ��1, the multiphoton ionization process takes
place which is characterized by appearance of sharp struc-
tures in electron spectra due to absorption of various num-
bers of individual photons from the field. For example, elec-
tron energy spectra in the domain of the multiphoton
ionization show sequence of peaks separated by the photon
energy, which are known as the above threshold ionization
�ATI� peaks �6�.

Experiments performed up until recently seem to have
confirmed this clear separation of the tunneling and multi-
photon regimes of strong field atomic ionization. This sepa-
ration, however, was challenged in high-resolution measure-
ments of photoelectron momentum distribution from noble
gas atoms �7,8�. Typical values of the Keldysh parameter �
in these experiments were around 0.5. Yet, it was found that
electron spectra, especially the electron distribution with the

momentum component Pz parallel to the polarization axis of
the EM field, revealed the ATI-like structures.

In strong contradiction to the ADK model which predicts
a smooth Gaussian profile for this distribution, the experi-
ment �7� revealed a double-peak structure with a minimum at
Pz=0. The authors of Ref. �7� suggested that their results
could be explained by a process of resonantly enhanced ion-
ization. Another explanation was proposed on the basis of
the Coulomb-phase modification of the Keldysh-Faisal-Reiss
theory �9� within the concept of individual photon absorp-
tion. In this work and the subsequent paper �10�, the authors
suggested that for a long enough pulse and correspondingly
small bandwidth, no matter what actual value of � is, the
mechanism of absorption of individual photons is always at
work.

In Refs. �11,12�, it was suggested that this manifestation
of the multiphoton effects deep in the tunneling regime was
made possible by the long-range Coulomb potential effect,
present in the case of single ionization of a neutral atom. In
the paper �12�, the authors identified appearance of these
structures with a particular term of the S-matrix expansion
which described interaction between the core and the ionized
electron. The authors found that when this term was taken
into account and averaging over the experimental field inten-
sity was performed, they could satisfactorily reproduce dis-
tributions found in the experiment �7�. The effect of the
atomic potential and the pulse duration on the double-peak
structure of the longitudinal momentum distribution was
studied in Ref. �13�. Using various model potentials and dif-
ferent pulse lengths, the authors found that for a long enough
pulse the multiphoton effects were responsible for the ap-
pearance of the double-peak structure. On the other hand, for
short two-cycle pulses it was the interaction of the outgoing
electron and the atomic core that produced the double hump
structure in the spectrum. In Ref. �14�, it was found, that the
double-peak structure in the longitudinal momentum distri-
bution could be explained for short pulses using purely semi-
classical notions of the ADK theory, without introducing the
multiphoton effects if the Coulomb force acting on the elec-
tron after tunneling is taken into account.

In the present paper we continue these theoretical studies
of the electron momentum distributions following the one-*Corresponding author; igor.ivanov@.anu.edu.au
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electron ionization of helium in the tunneling regime. Our
studies are based on numerical solution of the three-
dimensional time-dependent Schrödinger equation �TDSE�
with the Hartree-Fock potential of the helium atom. Results
of Ref. �12� show that the structures arising in the longitudi-
nal momentum distribution are, in fact, multipeak structures.
However, less prominent peaks disappear after the focal vol-
ume averaging is performed. We show, that these substruc-
tures can be identified with the remains of the ATI rings
present in the electron spectra for nonzero values of the
transverse �perpendicular to the polarization axis� component
of electron momentum. This result supports the hypothesis
put forward in Ref. �9� that individual photon absorption can
be identified even deep into the tunneling regime. Moreover,
we find that the structure of these ATI-like rings exhibits
rather sensitive dependence on the photon energy which is
reminiscent to what one would expect for the process of
multiphoton ionization.

The paper is organized as follows. In the next section we
outline the formalism. In Sec. III we describe the numerical
procedure we use and various checks we performed to test its
accuracy. In Sec. IV we discuss the results.

II. THEORY

We seek a solution of the TDSE for a two-electron atom

i
��

�t
= Ĥ� , �1�

with

Ĥ = Ĥatom + Ĥint�t� , �2�

where
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Interaction of the atomic system and the external EM field is
written in the velocity gauge,

Ĥint�t� = A�t� · �p̂1 + p̂2� . �4�

The vector potential is related to the ac field F�t�
= f�t�F0 cos��t+��, where � is the carrier frequency and �
is the carrier envelope phase �CEP�, via A�t�=−�0

t F���d�.
The function f�t� describing envelope of the pulse is chosen
in such a way that the amplitude of the ac field remains
constant during the time interval �T ,T1−T�, where T
=2� /� is a period of the ac electromagnetic field, T1—total
duration of the pulse. The field is ramped on and off
smoothly over one ac field period. The ac electric field is
assumed to be linearly polarized along the z axis.

In the interaction Hamiltonian given by the Eq. �4� we
have omitted the A2�t� term present in the minimal coupling
Hamiltonian describing atom-EM field interaction. This term
can always be removed through a gauge transformation �15�.
This gauge transformation amounts to the absorption of this
term as a phase factor in the wave function. As long as we
rely on the dipole approximation where vector potential is

spatially independent, this factor is unimportant, since it does
not affect ionization probabilities. It should be taken into
account, however, that use of the Hamiltonian give by the
Eq. �4� instead of the minimal coupling Hamiltonian alters
interpretation of the shift, which both continuum threshold
and bound states undergo in the presence of the EM field.
Hamiltonian �4� without the A2�t� term does not shift the
continuum threshold. Instead, bound states energy levels are
shifted downwards by an additional amount �15�. Total en-
ergy required to ionize the atom remains of course the same
irrespective of the form of the interaction Hamiltonian which
we use.

The solution of the TDSE is represented in the form of the
basis set expansion,

��r1,r2,t� = �
j

aj�t��1 + P̂12�YJ
l1l2�r̂1, r̂2�fn1l1

�r1�fn2l2
�r2� ,

�5�

where Y is a bipolar harmonic function �16�, operator 1

+ P̂12 ensures proper symmetrization of the wave function,
the index j is used as a shortcut for the set n1 , l1 ,n2 , l2 ,J
specifying a basis vector. Radial orbitals fnl in Eq. �5� were
obtained by diagonalization of the target Hamiltonian �i.e.,
the Hamiltonian of the hydrogenlike ion with the same Z as
in Eq. �3��, using the set of B splines of the order k=7. More
details about the radial orbitals are given in the next Section
and in Refs. �17–19�.

Our choice of the gauge to describe the atom-field inter-
action is motivated by the following consideration. The use
of the velocity gauge in numerical studies of photoionization
processes in the tunneling regime may offer computational
advantages �20,21�. In particular, considerably smaller num-
ber of the angular momentum states can be deployed in Eq.
�5� as compared to the case of the length gauge.

Substitution of Eq. �5� into the TDSE results in a set of
coupled differential equations for the amplitudes aj which
are solved by means of the Crank-Nicholson method �22� on
the time interval �0,T1�, where T1 �typically 10 optical
cycles� is total duration of the pulse.

The solution is then projected on the set of the field free
singly-ionized atomic states. The set, which we use is pro-
vided by the so-called convergent close coupling �CCC�
method �23,24�, which gives us a solution of the problem of
the electron scattering on a hydrogenic ion with the nuclear
charge Z in the target state n0 , l0 ,m0. Since we consider ion-
ization without excitation, we have therefore n0=1 and l0
=m0=0.

The CCC scattering wave function with the ingoing
boundary conditions can be written as

�k
�−��r1,r2� = �

lm

JM

�n0l0lkJ
�−� �r1,r2�ile−i	l�k�


	lml0m0�JM
Yl0m0
�r̂1�Ylm

� �r̂2�Ylm�k̂� . �6�

The radial functions �n0l0lkJ
�−� �r1 ,r2� are obtained by solving

the Lippmann-Schwinger equations describing the scattering
process. This set can be solved, in principle, for any number
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of coupled channels. However, as we are dealing with the
single ionization problem within the frozen core approxima-
tion, we can restrict the scattering problem to a one-channel
calculation leaving the He+ ion in its ground state.

Aided by this projection technique, we can compute elec-
tron distributions of interest. As we shall see, for the correct
interpretation of these spectra it may be necessary to take
into account the shifts of the energy levels due to interaction
of the atom with the EM field. In the picture using the mini-
mal coupling Hamiltonian, the dominant part of this shift is
the shift of the continuum limit, which for long enough
pulses is given by the ponderomotive energy Up=F0

2 /4�2

�25�. For the low frequency EM fields this shift can be quite
significant and may far exceed the photon energy. As we
mentioned above, in the picture using the Hamiltonian given
by the Eq. �4�, continuum limit does not shift, instead the
ground state acquires additional downward shift, which for
long pulses is equal to Up. For the pulses of several optical
cycles, which we consider below, the total shift of ground
state �and the decay rate �� can be computed from the solu-
tion of the TDSE as follows �26�:

�E − i
�

2
=

1

T1
�

0

T1 	����Ĥint�����

	��������
d�

d� , �7�

where �t�=e−iE0t0 is the ground state wave function, ��t�
is the solution of TDSE, Ĥint, given by the Eq. �4�, describes
the atom-field interaction and integrals are computed over
the interval �0,T1� of the duration of the pulse.

III. NUMERICAL DETAILS

The set of the B splines used to construct the radial func-
tions in Eq. �5� was chosen as follows. The knots defining
the splines were located at the sequence of points lying in
�0,Rmax� where the size of the box Rmax was 400 a.u. All the
knots ti were simple ones except for the knots located at the
origin and the outer boundary R=Rmax of the box. These
knots had multiplicity k=7. The simple knots were distrib-
uted uniformly in �0,Rmax� �approximately 200 B splines
were employed for each l�. For each value of the angular
momentum l the first l+1 B splines and the last B spline
resulting from this sequence of knots were discarded. The
omission of first l+1 B splines ensured that any B spline in
the set decreased as rl+1 �or faster� at the origin, the omission
of the last B spline ensured that all B splines of a set assumed
the zero value at the outer boundary.

We used this recipe in previous works �17–19� for calcu-
lations of one- and two-photon ionization of two-electron
systems. Present problem of ionization by low frequency ac
field differs in the respect, that we have to include many
more angular momenta �both in Eq. �5� and in the CCC
expansion �6��. To describe accurately ATI processes in the
velocity gauge, angular momenta of up to 10 are to be in-
cluded in the calculation �20�. It is this upper limit that we
used both for l1 , l2 ,J in Eq. �5� and l ,J in Eq. �6�.

To make the problem tractable numerically, we had to
impose some additional restrictions on the basis set in Eq.
�5�. Since we are interested in one-electron ionization, we

may “freeze” �either completely or partially� one of the elec-
trons in Eq. �5�, restricting the number of angular momentum
and radial states for this electron. Natural �and apparently
harmless� restriction for helium is to freeze one of the elec-
trons completely, i.e., allow this electron to occupy only the
1s state of the target ion. As long as we interested in ioniza-
tion of atom by the infrared radiation, this restriction of the
basis set introduces only a minor error in the computed ion-
ization probabilities �of the order of a percent� �27�. This fact
can be understood if we take into account that a typical value
of the electron excursion radius for the infrared radiation of
large intensity far exceeds the size of the parent ion. It is not
surprising, therefore, that ionization in this case is not very
sensitive to the fine details of the atomic structure. Yet, even
with this restriction, and the B spline basis set described
above, we can get a reasonably accurate value of
−2.872 30 a.u.. for the ground-state energy of helium.

To give an illustration of our computational procedures,
we consider a simple case of ionization of the helium atom
by a 40 eV VUV photon. This is a simple problem, for which
almost exact answer for the ionization probability can be
obtained �28� and we can use it to check the accuracy of our
procedure. In particular, we can check the effect which the
restriction of the basis set by freezing the state of one of the
electrons, may have on the results. As we noted above, we
may expect, that ionization by the infrared radiation would
show less sensitivity to the atomic structure than we can
expect for the ionization by a 40 eV VUV photon. If we find
that our basis set gives accurate enough results in the latter
case, we may expect it to be yet more accurate in the former.

In Fig. 1 we show the electron energy distribution �left�
and the longitudinal momentum distribution �right� for the
single ionization of helium with the following field param-
eters: �=40 eV, T1=20T, F0=0.1 a.u.

To compute the distributions shown in Fig. 1, the basis set
�Eq. �5�� was restricted by freezing one of the electrons to the
1s state of the He+ ion. By integrating either the energy or
momentum distributions �the answers are identical within a
fraction of a percent�, we can compute the total ionization
probability after the end of the 20-cycle pulse. This probabil-
ity turns out to be Pion=0.255. The ionization probability is
related to the decay rate via Pion=1−e−�T1, where T1 is du-
ration of the pulse. Thus produced �=3.67
10−3 a.u. can
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FIG. 1. �Color online� Electron distributions for single ioniza-
tion of helium with the following field parameters: �=40 eV, T1

=20T, F0=0.1 a.u. Left panel: energy distribution, solid �red� line
projection on CCC states, dashed �green� line-projection on helium
pseudostates. Right panel: distribution as function of longitudinal
�along polarization of the EM field� component of the momentum.
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be compared with the value �=4.21
10−3 a.u. obtained
from a highly accurate Hylleraas basis calculation with a
complete account of the electron correlations �28�. The �
value obtained in the present TDSE calculation can be rela-
tively easily improved by relaxing the frozen 1s orbital. For
example, by adding the 2p ionic state to the basis �5� we
obtain the � value accurate within 3%. This is not, however,
the point of the present demonstration. What we meant to
demonstrate was the adequacy of the frozen core 1s calcula-
tion which could provide a reasonably accurate description
of single ionization of He by 40 eV photons. As we discussed
above, we may expect accuracy to improve for lower energy
photons.

This demonstrative calculation also allows us to check
other ingredients of our numerical scheme. On the left panel
of Fig. 1 we show �solid line� results of the projection of the
solution of TDSE on the manifold of the CCC states. Be-
cause single ionization is by far the dominant channel, we
may use alternative way of computing the energy spectrum,
based on the concept of the pseudostates �29� of a two-
electron system. To compute the probability of ionization
within a given energy range we need to be able to calculate
the projection operator on the part of the continuum spec-
trum of the two-electron atom, corresponding to this energy
range. One way to compute such a projection operator is to
use explicit set of the scattering states, for example the CCC
states which we use in the present work. Alternative way is
to diagonalize the helium Hamiltonian in a box, produce a
set of densely spaced �but discrete� levels, and use this set to
build the projection operator. In other words, the set thus
obtained provides the discretized representation of the pro-
jection operator �and related quantities, such as resolvent op-
erator� �29�. We followed this recipe by diagonalizing the
helium Hamiltonian using the same basis set as we used to
solve the TDSE. Results �dashed green line on the left panel�
are virtually identical to the results obtained if we use the
manifold of the CCC states. What this tells us is that the
continuum spectrum of helium viewed by the CCC method,
and the continuum spectrum of helium as rendered by the
basis we use in Eq. �5� nearly coincide. More formally, if

P̂CCC is the projection operator on the part of the continuum

spectrum of He constructed using the CCC basis, and P̂TDSE
is the same operator constructed using the basis �5�, then

P̂TDSE� P̂CCC. This is a nontrivial result since the basis we
use and the basis used in the CCC method are different. This
result guarantees that when we compute ionization probabili-
ties by projecting solution of TDSE on the manifold of the
CCC state, we do not introduce a significant error. This is an
important conclusion. While we could, in principle, calculate
the energy spectrum using the discretized representation of
the continuum spectrum for low frequencies, the projection
on the CCC states �or some equivalent basis� is the only way
to obtain the momentum distributions such as the one shown
on the right panel of Fig. 1.

To conclude discussion of this test calculation, we should
mention an alternative way to compute � which is based on
Eq. �7�. Calculation using this formula gives essentially the
same value for the decay rate �=3.55
10−3 a.u.

IV. RESULTS

We open this section by presenting our results obtained
for a 10 optical cycle pulse with the carrier frequency corre-
sponding to 1.56 eV photon energy. These laser field param-
eters were used in the experimental work �7� where the ATI-
like pattern in the photoelectron momentum distribution was
observed in the tunneling regime. Similarly to work �13�, we
average the results of the TDSE calculation over the phase �.
More specifically, for each set of the field parameters re-
ported below, we perform computations with ten values of
CEP distributed uniformly on the interval �0,�� and average
the obtained spectra over this set.

There is a second type of average associated with the laser
field intensity distribution over the focal volume. This aver-
aging is known to further smooth the theoretical electron
spectra �12�. We do not perform this averaging, since we are
specifically interested in the features in the photoelectron
spectra which survive the CEP average, but are smoothed out
by the focal volume average. These additional features,
which may not be seen experimentally, provide yet another
evidence of the “multiphoton” origin of the ATI-like
structures.

In Fig. 2 we present the electron momentum distributions
corresponding to the field intensity of 0.6 PW /cm2. The
same field intensity was used both in the experimental work
�7� and theoretical paper �12�. The right panel of Fig. 2
shows the two-dimensional �2D� electron distribution
Q�Pz , P�� as a function of the momentum components in the
cylindrical coordinates with the z axis directed along the po-
larization axis of the light. The left panel of this figure shows
the ionization probability as a function of the longitudinal
component Pz only. The latter is computed as an integral:
�0

�Q�Pz , P��dP�.
The longitudinal momentum distribution displayed on the

left panel of Fig. 2 shows the two highest maxima located at
�Pz�0.2 a.u., and the smaller maxima at �Pz�0.4 a.u.
and �Pz�0.5 a.u. The origin of these peaks can be ex-
plained as follows �9�. Even deep in the tunneling regime
�present value of the Keldysh parameter �=0.58�, the sharp
structures in the photoelectron spectra can still be associated
with absorption of the integer number of photons. This can
be done using the conventional energy conservation formula
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FIG. 2. �Color online� Photoelectron momentum distribution
from single ionization of helium. Laser field parameters: �
=1.56 eV, pulse duration 10 optical cycles, intensity 6

1014 W /cm2, the Keldysh parameter �=0.58. Left panel: elec-
tron distribution with respect to the longitudinal momentum. Right
panel: 2D distribution �logarithmic scale� as function of the mo-
mentum components in the cylindrical coordinates.
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E=N�− I−Up, where I is the ionization potential, the pon-
deromotive potential Up accounts for the shift of the con-
tinuum, N is an integer such that the kinetic energy E is
positive. It was argued in Ref �9�. that, in the tunneling re-
gime, the electron cannot acquire large momentum P� per-
pendicular to the polarization axis. Hence, one may express
the kinetic energy as E� Pz

2 /2 and, consequently, the posi-
tions of the peaks in the electron longitudinal momentum
distribution correspond to Pz��2�N�− I−Up�. This reason-
ing explains the main features of the phenomenon such as
appearance of two sequences of peaks located symmetrically
with Pz=0, the cusplike structure of the peaks, and the spac-
ing between the consecutive peaks in the spectrum.

In the above formulas it was understood that the change
of the ionization potential due to the presence of the EM field
is given by the ponderomotive energy Up. If we are inter-
ested in determining the exact value of N responsible for the
appearance of a particular peak in the spectrum, then we
must take into account the total shift of the energy of ground
state given by the Eq. �7�. This shift is largely dominated by
the quantity −Up, so that �E=−Up+�E1, where �E1 is small
comparing to the ponderomotive energy �we remind, that in
the picture rendered by the Hamiltonian given by the Eq. �4�
ionization threshold does not shift, instead bound states are
shifted downwards�. Account of the additional shift �E1,
however, proves to be important. For the very low photon
frequencies we consider, even this small shift can be larger
than photon energy. For the pulse parameters we consider,
for instance, calculation according to Eq. �7� gives for the
total shift of the ground state �E=−41.14 eV, and Up
=35.52 eV.

The above formula for the location of the peaks in the
longitudinal momentum distribution, which we should now
write as Pz��2�N�− I+�E�, gives the following peak posi-
tions: 0.22 a.u.�N=42�, 0.40 a.u.�N=43�, 0.53 a.u.�N=44�.
We used the ionization potential I=0.872 a.u. corresponding
to the ground-state energy obtained with our basis. The peak
nearest to Pz=0 in Fig. 2 is thus due to absorption of 42
photons. Note, that the additional correction �E1 to the shift
of the ground state plays an important role here. If we did not
use this correction we would have obtained a sequence
0.04 a.u.�N=38�, 0.34 a.u.�N=39�, 0.48 a.u.�N=40� which
agrees considerably worse with the observed positions of the
peaks displayed in Fig. 2. Thus, we get better agreement with
the observed position of the peaks and, more importantly,
more accurate estimate of the number of photons which are
responsible for appearance of these peaks. This circumstance
is rather important because it allows us to get a glimpse of
the behavior of electron distribution for nonzero values of
the transverse momentum P�.

As one can see from the plot on the left panel of Fig. 2,
the peaks nearest to Pz=0 are split. Such splitting has also
been found in the calculation �12�. The origin of this splitting
is clear from the plot on the right panel of Fig. 2. This plot
shows that the ionization probability has several maxima ly-
ing on a circle with the radius approximately equal to 0.23
a.u. in the �Pz , P�� plane. One can clearly discern six such
maxima. In each quadrant the two maxima nearest to the Pz
axis �at Pz� �0.22 a.u., P��0.03 a.u. and Pz
� �0.16 a.u., P��0.16 a.u.� have comparable intensities.

The maxima lying farther away from the Pz axis �those with
Pz� �0.03 a.u. and P��0.22 a.u.�, are notably weaker.

This circular nodal structure, which is reminiscent of the
multiphoton ATI rings, can be interpreted as remnants of the
ATI ring in the �Pz , P�� plane. The maxima with the largest
values of P� are weaker since in the tunneling regime ion-
ization proceeds predominantly into the states with small
transversal momenta. After the P� integration, this nodal
structure of the 2D distribution results in the additional split-
ting of the main peaks near Pz=0 on the plot displayed on
the left panel of Fig. 2.

We cannot expect to see all the details which one would
see for a truly multiphoton ionization corresponding to ab-
sorption of 42 photons. In the tunneling regime, the ATI
structures, if present, are expected to be considerably dis-
torted. Nevertheless, the structure observed on the 2D plot of
Fig. 2 is suggestive of the angular pattern characteristic to
the multiphoton ionization.

If this interpretation is correct, we can expect the prob-
ability distribution along the ATI ring to depend on the parity
of the photon number which correspond to the ring. In the
pure multiphoton case the transition amplitudes which pro-
duce the 2D distributions corresponding to absorption of
even and odd number of photons would be expressed as
linear combinations of Legendre polynomials of even and
odd degree Pl���, correspondingly. Odd degree Legendre
polynomials have nodes at �=� /2 corresponding to the P�

axis of the 2D plot of Fig. 2. We can expect, therefore, to see
less structure near this axis in the case of the ATI ring cor-
responding to an odd number of absorbed photons.

The ring corresponding to the odd number of absorbed
photons in Fig. 2 is too dim to make any conclusions. We
performed therefore a separate calculation of single-electron
ionization of helium for the same intensity and slightly
shifted frequency �=1.63 eV. A calculation analogous to
the one given above for �=1.56 eV, shows that for this
shifted frequency the minimum number of photons needed to
ionize the helium atom is odd �N=39�. The results of this
calculation are summarized in Fig. 3. One can see that, in
agreement with our expectations, much less structure is vis-
ible in the 2D distribution away from the Pz axis. We should
emphasize that the field parameters in these two cases are
very close. The total ionization probabilities, therefore, differ
only slightly, as can be observed from the plots on left panels
of Figs. 2 and 3. As one can see, both height and widths of
the longitudinal distributions are nearly the same. What is
different is the absence of the splitting of the main peaks on
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FIG. 3. �Color online� Same as Fig. 2 for the photon energy �
=1.63 eV.
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the plot on the left panel of Fig. 3. We interpret this differ-
ence as due to the difference in the 2D probability distribu-
tions on the ATI rings nearest to the origin. As we suggested,
this difference can be linked to the different parities of the
photon numbers needed to produce these structures.

The split structure of the peaks is present for higher in-
tensities as well. We performed calculations for the set of
intensities reported in the experimental paper �7�. Results for
longitudinal momentum distributions are shown in Fig. 4.

V. CONCLUSION AND FURTHER DIRECTIONS

We studied the process of single-electron ionization of
helium by the laser field with the set of parameters identical
to the experimental work �7�. In this work, a double-peak
structure in the longitudinal momentum distribution was ob-
served for the first time. This structure was later explained as
originating from the absorption of an integer number of pho-
tons from the laser field deep in the tunneling regime �9�.
This absorption also produces the local maxima in the corre-
sponding 2D distributions with nearly zero P� and Pz defined
by the energy conservation. It was conjectured in Refs.
�9,10� that the mechanism of absorption of individual pho-
tons is present even deep in the tunneling regime.

We report additional evidence in favor of this hypothesis.
Our study of 2D momentum distributions shows, that traces
of the ATI structures can be discerned even farther away
from the Pz axis, making it almost a true ATI ring. Moreover,
there are indications, that these structures are very sensitive
to the photon frequency, which can be interpreted as mani-
festation of different nodal structures of ATI rings for differ-
ent parities of photon numbers producing the rings.

These structures in the 2D momentum distributions
present for nonzero values of transverse momentum manifest
themselves as multipeak structures in the longitudinal mo-
mentum distributions. It is clear, that these structures are
rather fragile.

As was shown in �12�, where the multipeak structure in
the longitudinal momentum distribution was also found, the
average over the focal volume smoothes out the distribu-
tions. It is easy to give at least one reason why variations of
intensity in the laser focus may produce this effect. For the
present case of low photon frequencies and large pondero-
motive energy, relatively small change of the field param-
eters may change the ionization threshold, and consequently
the nodal structure of the ATI-like ring, producing consider-
able change in the distributions as comparison of Figs. 2 and
3 shows. Experimentally, therefore, the multipeak structures
in the longitudinal momentum distributions may be difficult
to observe, requiring uniform spatial distribution of intensity
in the focal volume.

We did not try to simulate the effects of the nonuniform
spatial distribution of the EM field intensity in our paper.
Calculational procedure which we adopt in the present work
relies on the numerical solution of the fully dimensional
TDSE for the realistic model of the helium atom. Averaging
over the spatial distribution of the EM field intensity would
necessitate multiple solutions of the TDSE with various field
parameters. The average over the CEP distribution, which we
do perform, implies that, for a given field intensity, we have
to solve TDSE ten times with various CEP values for the
driving pulse. Additional averaging over different field inten-
sities would have put a considerable stress on our computa-
tional resources. The point we wished to make in the paper
was, however, not so much the feasibility of the experimental
observation of the multipeak structure in the longitudinal
momentum distributions. We tried to demonstrate its exis-
tence in the electron spectra for the field of constant ampli-
tude, which, to our opinion, is another unexpected manifes-
tation of the multiphoton mechanism working deep in the
regime of tunneling ionization.

In the future, we would like to extend the computational
scheme used in the present work to double ionization of
helium by a strong laser field in the tunneling regime �30�.
Computationally, this is a rather challenging problem which
requires to propagate in time an atomic system with two
active electrons. However, we can concentrate specifically on
the rescattering mechanism of the nonsequential double ion-
ization �3� which is known to be a dominant mechanism of
this process �31�. In this mechanism, only one atomic elec-
tron is tunneled out and, on revisiting the nucleus, it knocks
out the second electron. To describe such a scattering pro-
cess, we can use the present computational scheme replacing
the CCC wave function of the singly-ionized scattering state
by the corresponding CCC wave function describing the
doubly ionized continuum.
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