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We present an approach to calculating strong field ionization dynamics of multielectron molecular targets.
Adopting a multielectron wave function ansatz based on field-free ab initio neutral and ionic multielectron
states, a set of coupled time-dependent single-particle Schrödinger equations describing the neutral amplitude
and continuum electron are constructed. These equations, amenable to direct numerical solution or further
analytical treatment, allow one to study multielectron effects during strong field ionization, recollision, and
high-harmonic generation. We apply the method to strong field ionization of CO2 and suggest the importance
of intermediate core excitation to explain the previous failure of analytical models to reproduce experimental
ionization yields for this molecule.
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I. INTRODUCTION

Present theoretical tools for calculating strong field ion-
ization of atoms and molecules fall into two categories, 1�
semianalytical theories based on the strong field approxima-
tion �1� and/or Ammosov-Delone-Krainov �ADK� theory �2�,
often with improvements over the traditional formulation to
incorporate molecular targets �3,4�, and 2� direct time-
dependent numerical solution of the Schrödinger equation.
The first category suffers from approximations necessary to
allow a semianalytical treatment, most notably the neglect of
the target-specific binding potential of the molecular core on
the ionization, continuum, and recollision dynamics. The
second category has the shortcoming that full numerical
treatment becomes impossible as the number of degrees of
freedom increases. Time-dependent numerical solutions of
the Schrödinger equation including a strong laser field is
only feasible for one or two-particle systems. Steps have
been made along the numerical route to incorporate multi-
electron effects into strong field dynamics through the use of
time-dependent Hartree-Fock theory �5�, multiconfigura-
tional time-dependent Hartree-Fock �6�, time-dependent con-
figuration interaction singles �7�, and time-dependent density
functional theory �8�.

In this work, we address both the problems of including
the binding potential consistently throughout the strong field
dynamics as well as the problem of accounting for a major
fraction of multielectron effects. In particular, motivated by
recent experiments demonstrating effects of multiple final
ionic states in high-harmonic generation �HHG� �9�, we fo-
cus on a multiple ionic channel effects in strong field ioniza-
tion, which is the first step in HHG. We consider only the
electronic problem, with the nuclei held fixed and work in
the length gauge. Our approach to strong field ionization of
multielectron targets combines ab initio quantum chemistry
multielectron wave functions with single particle time-
dependent numerical grid solutions. We use as a basis the
field-free n-electron neutral and the lowest few
�n−1�-electron singly ionized states. Any coupling to the
multiply-charged ionic states is neglected. The wave function
of the nth continuum electron associated with each ionic state
is represented by a three-dimensional �3D� Cartesian numeri-

cal grid. Equations of motion describing the evolution and
coupling of the basis state amplitudes and the nth electron
wave function are derived from the multielectron
Schrödinger equation and contain no adjustable parameters.
Our method is closely related to the R-matrix theory of
electron-molecular scattering �10�. We use the identical wave
function ansatz. R-matrix theory accounts for antisymmetri-
zation exactly and is applicable to time-independent prob-
lems while our formalism includes antisymmetrization ap-
proximately but can be applied to time-dependent problems.

As a first example, we apply the method to the strong field
ionization of CO2. A recent experiment �11� found that pre-
dictions made using molecular ADK �MO-ADK� for strong
field ionization of CO2 failed to account for the experimental
angle-resolved ionization yields. Strong field ionization of
this molecule has also been theoretically analyzed in recent
papers using time-dependent density functional theory �TD-
DFT� in Ref. �12� and single-channel frozen-core approach
in Ref. �13�. Following our analysis presented below, we
suggest that an intermediate excitation channel not consid-
ered in Ref. �11� is responsible. In this channel, first an ex-
citation of the outer-lying electron occurs concomitant with
an ionic core excitation. The excited ionic core then couples
back to the ground state of the inner core via laser coupling
followed by release of the outer-lying electron.

II. LENGTH GAUGE THEORY FOR ONE-ELECTRON
CONTINUUM

A. Hamiltonians and states

The �nonrelativistic� Hamiltonians of the laser-free ion
and neutral are

HI��r��n−1� = �
i=1

n−1 �−
1

2
�� i

2 + Vnuc�r�i� + �
j=i+1

n−1
1

	r�i − r� j	

 , �1�

HN��r��n� = HI��r��n−1� −
1

2
�� n

2 + Vnuc�r�n� + �
i=1

n−1
1

	r�i − r�n	
, �2�

where �r��n−1 are the �n−1� spatial electronic coordinates of
the ion, �r��n are the n spatial electronic coordinates of the
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neutral, and Vnuc�r�� is the electrostatic potential of the nuclei

Vnuc�r�� = �
a

− Za

	r� − R� a	
, �3�

where Za and R� a are the charges and positions of the nuclei.
Note that Hartree atomic units ��=me=e=1� are used
throughout. In the length gauge and dipole approximation,
the Hamiltonian of the full n electron system interacting with
the laser field is

HF��r��n,t� = HN��r��n� − �
i=1

n

F� �t� · r�i. �4�

Let 	Nj� and 	Ij� be the orthogonal n-electron eigenstates of
the field-free neutral and the �n−1�-electron eigenstates of
the field-free ion, respectively,

HN	Nj� = Ej
N	Nj�

HI	Ij� = Ej
I	Ij� . �5�

Note that 	Nj� and 	Ij� depend on both spatial as well as spin
coordinates of the electrons. In practice, ab initio multielec-
tron methods provide only approximate eigenstates. The ap-
proximate nature of 	Nj� and 	Ij� could be taken into account
by using the expectation value equations

�Nj	HN	Nj� = Ej
N

�Ij	HI	Ij� = Ej
I �6�

instead of the eigenvalue equations Eq. �5�. In this case,
whenever a term such as HN	Nj� is encountered in the deri-
vation, it must be replaced by the expansion

HN	Nj� = �
i

	Ni��Ni	HN	Nj� �7�

and likewise for the terms HI	Ij�. Thus, additional terms cou-
pling the basis states 	Nj� and 	Ij� will arise that are not found
in the formulation when Eq. �5� hold. For the present work it
is assumed that the states are the exact neutral and ionic
eigenstates and Eq. �5� are used in the following derivation.
In the following only the neutral ground state 	N0�= 	N� will
be used.

B. Antisymmetrization

We use a wave function ansatz that has the form �see
below for specific ansatz used�

	��t�� = Â	�p�t�� , �8�

where 	�p�t�� is a nonantisymmetrized “proxy” wave func-
tion ansatz that treats the nth electron differently than the
remaining �n−1� core electrons,

Â =
1
n
�1 − �

j=1

n−1

P̂jn� �9�

is the antisymmetrization operator that antisymmetrizes the

nth electron with the remaining �n−1� electrons, and P̂jn is

the permutation operator that interchanges electrons j and n.
Note that the �n−1� core electrons are already correctly an-
tisymmetrized due to the use of fully antisymmetric 	N� and
	Im� states. If exact propagation of n-electron states were pos-
sible and if the proxy wave function 	�p�t�� spanned the full
multielectron space, the time evolution of Eq. �8� would be
given by

Û�t,t0�	��t0�� = Û�t,t0�Â	�p�t0��

= Û�t,t0�
1
n
�1 − �

j=1

n−1

P̂jn�	�p�t0��

=
1
n
�1 − �

j=1

n−1

P̂jn�Û�t,t0�	�p�t0��

= ÂÛ�t,t0�	�p�t0�� , �10�

where Û�t , t0� is the evolution operator defined by

i
�

�t
Û�t,t0� = HF�t�Û�t,t0�, Û�t0,t0� = Î . �11�

Equation �10� demonstrates that, at least in the case of exact
propagation, one need not propagate a fully antisymmetrized
wave function. Rather, it is enough to propagate a partially
symmetrized initial state and apply antisymmetrization at the

final time: ÂÛ�t , t0�	�p�t0��.
With this property of time evolution in mind, we proceed

to construct a propagation scheme for a nonantisymmetrized
proxy wave function ansatz

	�p�t�� = Û�t,t0�	�p�t0�� , �12�

where the nth electron is treated differently than the �n−1�
core electrons. The correctly antisymmetrized wave function
can then be retrieved using Eq. �8�. Since the propagator
construct below is only approximate, due to the use of a
truncated basis of ionic states, the reconstructed antisymmet-
ric wave function will no longer be an exact representation of
time evolution of the initial antisymmetric wave function.
We will return to this point following the definition of
	�p�t�� below to see what our propagation scheme missed
using this procedure.

C. Projectors and wave function ansatz

We wish to construct a propagation scheme based on
coupled single-particle Schrödinger equations. With this goal
in mind, we now introduce a set of single-particle orbitals
that arise naturally for the present problem, and the multi-
electron partitioning that will be used below.

Given the neutral ground state 	N� and ionic states 	Im�,
we introduce the set of �single-particle� orbitals, called ion-
ization source orbitals, defined as the overlap between the
neutral and ionic states

	�m
S � = �Im	N� , �13�

where the integration is over the �n−1� electrons of the ion.
These source orbitals are related to the Dyson orbitals 	�m

D�
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that arise in photoionization processes �14,15� by a simple
scaling factor, 	�m

D�=n	�m
S �. In addition, it will be conve-

nient to use the normalized source orbitals 	�̃m
S �, defined as

	�̃m
S � =

	�m
S �

��m
S 	�m

S �
, �14�

as well as the amplitude �m:

�m = ��̃m
S 	�m

S � . �15�

Using 	�̃m
S � and its associated ionic states 	Im� we define the

multielectron source-ion states 	Sm� as

	Sm� = 	�̃m
S �	Im� . �16�

We now introduce the set of projectors used below to
partition the multielectron wave function:

P̂m
S = 	Sm��Sm	 , �17a�

P̂Ñ = 	Ñ��Ñ	 = �Î − �
k�

P̂k�
S �	N�	NÑ	2�N	�Î − �

k

P̂k
S� ,

�17b�

P̂m
I = �Î − P̂Ñ − �

k�

P̂k�
S �	Im��Im	�Î − P̂Ñ − �

k

P̂k
S�

= �Î − P̂Ñ − P̂m
S �	Im��Im	�Î − P̂Ñ − P̂m

S � , �17c�

where

	Ñ� = NÑ�Î − �
m

P̂m
S �	N� = NÑ�	N� − �

m

�m	Sm�
 �18�

is the �normalized� component of the neutral ground state
orthogonal to the set of source-ion states 	Sm� used, and

NÑ = �1 − �
m

	�m	2�−1/2
�19�

is the normalization factor of the state 	Ñ�. These projectors
split the multi-electron space into three parts with distinct

physical interpretation: the P̂m
S project onto the overlap be-

tween the neutral and ionic states, P̂Ñ projects onto the com-
ponent of the neutral that is orthogonal to all of the ionic

states, and the P̂m
I project onto the component of the ionic

channels that is orthogonal to the neutral.
The projectors defined above obey the standard relations

for a mutually orthogonal set of projectors

P̂ÑP̂Ñ = P̂Ñ �20a�

P̂m
S P̂k

S = �mkP̂m
S �20b�

P̂m
I P̂k

I = �mkP̂m
I �20c�

P̂m
S P̂Ñ = P̂ÑP̂m

S = 0 �20d�

P̂m
S P̂k

I = P̂k
IP̂m

S = 0 �20e�

P̂ÑP̂m
I = P̂m

I P̂Ñ = 0 �20f�

where �mk is the Kronecker delta. Further, using these rela-
tions it can be shown that

�Im	P̂m
I = R̂m

S �Im	 , �21�

where R̂m
S = �1− 	�̃m

S ���̃m
S 	� projects out �removes� the source

orbital from the one-particle space connected to the 	Im�
channel. Equation �21� will be used below.

The wave function ansatz for the proxy wave function
constructed in the space spanned by these projectors is

	�p�t�� = b�t�	Ñ� + �
m

�am�t�	Sm� + 	Xm�t��� �22�

where

	Xm�t�� = 	�m�t��	Im� �23�

and 	�m�t�� is the single-particle function that represents the
excited nth electron associated with the ionic channel 	Im�,
that is, 	�m�t�� contains the continuum electron wave func-
tion that we wish to calculate. By imposing the condition
�Sm 	Xm�t��= ��m

S 	�m�t��=0, which must be enforced in the
initial condition and is maintained during the propagation
through the use of the projection operators below, the basis
states in 	�p�t�� represent orthogonal spaces that can be ac-
cessed by operating with the projection operators

P̂Ñ	�p�t�� = b�t�	Ñ� �24a�

P̂m
S 	�p�t�� = am�t�	Sm� �24b�

P̂m
I 	�p�t�� = 	�m�t��	Im� . �24c�

Returning to the issue of antisymmetrization discussion in
the previous section, we can now point out the dominant
interactions that are neglected using the procedure

Û�t,t0�Â	�p�t0�� → ÂÛ�t,t0�	�p�t0�� �25�

with the ansatz define in Eq. �22�. First we note that by using
fully antisymmetric neutral 	N� and ionic states 	Im�, correct
antisymmetrization is present in the �n−1� core electrons.
Thus, the procedure in Eq. �25� only concerns the nth �i.e.,
continuum� electron. When using a truncated basis of only a
few low lying 	Im� states, the representation given by Eq.
�22� only allows for a single electron �the nth electron� to be
in highly excited or continuum states. Thus, no interactions
that couple a continuum �or highly excited� state of one elec-
tron with a continuum state of a different electron are al-
lowed in the present formulation. Note that these interactions
are different than interactions of two electrons simulta-
neously in the continuum, and would appear as two-particle
operators that cause transitions between two-electron states
where, for example, a continuum state of electron j and a
bound state of electron k simultaneously couple to a con-
tinuum states of electron k and a bound state of electron j.
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D. Full propagation equations

Consider now the Schrödinger equation for 	�p�t��
�where �t=� /�t�

i�t	�p�t�� = HF�t�	�p�t�� . �26�

The solution of this equation is equivalent to solving

Û�t , t0�	�p�t0�� discussed above. Using the projection opera-
tors, the Schrödinger equation becomes

i�tP̂Ñ	�p�t�� = P̂ÑHF�t�P̂Ñ	�p�t�� + �
k

P̂ÑHF�t�P̂k
S	�p�t��

+ �
k

P̂ÑHF�t�P̂k
I 	�p�t�� �27a�

i�tP̂m
S 	�p�t�� = P̂m

S HF�t�P̂Ñ	�p�t�� + �
k

P̂m
S HF�t�P̂k

S	�p�t��

+ �
k

P̂m
S HF�t�P̂k

I 	�p�t�� �27b�

i�tP̂m
I 	�p�t�� = P̂m

I HF�t�P̂Ñ	�p�t�� + �
k

P̂m
I HF�t�P̂k

S	�p�t��

+ �
k

P̂m
I HF�t�P̂k

I 	�p�t�� . �27c�

By projecting out 	Ñ�, 	Sm�, and 	Im�, and recalling Eq. �21�,
a coupled set of Schrödinger equations for am�t�, b�t� and
	�m�t�� is obtained

i�tb�t� = �Ñ	HF�t�	Ñ�b�t� + �
k

�Ñ	HF�t�	Sk�ak�t�

+ �
k

�Ñ	HF�t�	Xk�t�� �28a�

i�tam�t� = �Sm	HF�t�	Ñ�b�t� + �
k

�Sm	HF�t�	Sk�ak�t�

+ �
k

�Sm	HF�t�	Xk�t�� �28b�

i�t	�m�t�� = R̂m
S �Im	HF�t�	Ñ�b�t� + �

k

R̂m
S �Im	HF�t�	Sk�ak�t�

+ �
k

R̂m
S �Im	HF�t�	Xk�t�� . �28c�

All the required matrix elements of HF�t� are given in the
Appendix.

The set of Eqs. �28�, together with the matrix elements
appearing in the Appendix, is the main result of this work. In
particular, they allow for the use of coupled single-particle
propagation methods to solve for the 	�m�t�� wave functions
rigorously coupled to the multielectron states 	N� and 	Im�.
Furthermore, numerical propagation of Eqs. �28� does not
involve nonlocal potentials.

III. SPECIFIC CASES AND NUMERICAL RESULTS

A. Singlet molecules with uncoupled ionic channels

Equations �28� are completely general and can be applied
to any target molecule regardless of symmetry or charge
state. In this section, we chose to consider the particular case
of ionization from singlet molecules. Further, for simplicity
in the first implementation, we consider uncoupled ionic
channels. That is, we consider ionization to multiple final
ionic states, but calculate ionization to each individually ne-
glecting interchannel couplings.

For ionization from a singlet closed-shell neutral to a par-
ticular final ion state 	Im�, the ion can be left in either spin-up
or spin-down states. Thus, with spin included, every final
continuum-times-ion state has two spin-related channels,
	Im ,↑� and 	Im ,↓�, each coupled to a continuum electron with
opposite spin, 	�m�t� ,↓� and 	�m�t� ,↑�, respectively. As long
as any spin-orbit coupling is neglected, the two spin-related
continuum functions are identical in all respects except for
the differing spin label. In this case, the proxy wave function
takes to form

	��t�� = b�t�	Ñ� + �am
↑ �t�	�̃m

S ,↑� + 	�m�t�,↑��	Im,↓�

+ �am
↓ �t�	�̃m

S ,↓� + 	�m�t�,↓��	Im,↑� , �29�

and Eq. �28� reduces to

i�tb�t� = HÑ�t�b�t� + 2�Tm	�m
I �t�� �30a�

i�tam�t� = ��̃m
S 	�	Hm

I �t�� + b�t�	Tm�� �30b�

i�t	�m�t�� = R̂m
S �	Hm

I �t�� + b�t�	Tm�� �30c�

where am�t�=am
↑ �t�=am

↓ �t�, 	�m�t�� represents the �identical�
spatial part of 	�m�t� ,↓� and 	�m�t� ,↑�, and

	�m
I �t�� = 	�m�t�� + am�t�	�̃m

S � �31�

where 	�̃m
S � is the �identical� spatial part of the two spin-

related source orbitals 	�̃m
S ,↑� and 	�̃m

S ,↓�. �In the following,
we drop the explicit spin dependence of the states when the
quantities involved to do not dependent on the spin label.�
Also appearing in Eqs. �30� are

	Hm
I �t�� = �Hm − F� �t� · �r�n − d�mm

I ��	�m
I �t�� , �32�

where

Hm�r�n� = Em
I −

1

2
�� n

2 + Vnuc�r�n� + Vmm
H �r�n� , �33�

is the single-electron field-free Hamiltonian for the nth elec-
tron moving in the field of the mth ionic state,

d�mm
I = − �Im	�

k=1

n−1

r�k	Im� �34�

is the electronic dipole moment of the ion,
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Vmm
H �r�n� = �Im	�

k=1

n−1
1

	r�k − r�n	
	Im� �35�

is the electrostatic potential of the ion core electrons. The

�single particle� orbital 	Tm
Ñ� defined as

	Tm
Ñ� = NÑ��m�E0

N − F� �t� · d�mm
I − Hm�	�̃m

S � − F� �t� · 	�� m
C��

�36�

is the ’transfer orbital’ that couples 	�̃m
S �	Im� and 	�m�t��	Im� to

the 	Ñ� component of the neutral, where 	�� m
C� is given by

	�� m
C� = �Im	�

k=1

n−1

r�k	N� . �37�

This single-particle function 	�� m
C� represents an ionization �or

excitation� process where the laser field acts on a bound elec-
tron, but ionizes �or excites� a different electron. We refer to
this orbital as a ’cradle orbital’ in analogy with Newton’s
cradle, a multi-ball pendulum where one ball receives a force
causing a different ball to swing. The remaining term in Eqs.
�30� given by

HÑ�t� = 	NÑ	2�E0
N + 2	�m	2���̃m

S 	Hm	�̃m
S � − 2E0

N�

+ F� �t� · �d�N + 2	�m	2d�mm
I + 2	�m	2��̃m

S 	r�n	�̃m
S �

+ 2�m��� m
C	�̃m

S � + 2�m
� ��̃m

S 	�� m
C��� �38�

is the energy of the 	Ñ� state in the presence of the laser field,
and

d�N = − �N	�
k=1

n

r�k	N� �39�

is the electronic dipole moment of the neutral. The initial
condition corresponding to all population in the neutral state
are

b�t = 0� = 1 − 2	�m	2 �40a�

am�t = 0� = �m �40b�

	�m�t = 0�� = 0. �40c�

The propagation Eqs. �30� coupling the continuum elec-
tron 	�m�t�� to the ground state amplitudes am�t� and b�t� are
perhaps not so transparent at first glance. They can be sim-
plified in the case of negligible depletion and distortion of
the ground state,

b�t� � b�t = 0�e−iE0
N�t�t �41a�

am�t� � am�t = 0�e−iE0
N�t�t, �41b�

where E0
N�t�=E0

N−F� �t� ·d�N−�	F� �t�	2 takes into account a
small Stark shift of the neutral. In this case, Eq. �30c� sim-
plifies to

i�t	�m�t�� = R̂m
S ��Hm − F� �t� · �r�n − d�mm

I ��	�m�t���

+ R̂m
S �− F� �t� · �r�	�m

S � + 	�� m
C���e−iE0

N�t�t. �42�

This last equation is now very close to a standard laser-
dressed single-particle Schrödinger equation for 	�m�t��. The
only difference is that orthogonality with the neutral is main-

tained through the appearance of R̂m
S , and the term R̂m

S �
−F� �t� · �r�	�m

S �+ 	�� m
C��� acts as the source that populates

	�m�t��. For regimes where negligible depletion is expected
and where Stark shifts and distortions of the neutral are
small, Eq. �42� could be used instead of Eqs. �30�. In the
following calculations, we use Eqs. �30� throughout.

B. Ionization of CO2

We now apply this formalism to the strong field ionization
of CO2. Recently, angle-resolved ionization yields have been
measured �11� for this molecule, where the angle is between
the molecular axis and the polarization direction of a linearly
polarized laser field. In Ref. �11�, it was found that the ex-
perimental angular ionization pattern for CO2 differs strongly
from the results of molecular ADK theory �MO-ADK�, a
single-active electron quasi-static tunneling theory of mo-
lecular ionization �4�. The central difference is that MO-
ADK predicts ionization peaks at an angle of �30° while the
measure show strong peaks at �45°. Here we consider
angle-resolved ionization yields of CO2 exposed to a single
cycle of an 800 nm laser �	=0.057 a.u.�.

The neutral 	N� and lowest five ionic 	Im� multielectron
orbitals are calculated using the GAMESS electronic structure
code �16�. All calculations use the correlation-consistent po-
larized valence triple zeta �cc-pVTZ� basis set �17� and were
done at a complete active space �CAS� level using 16 �neu-
tral� or 15 �cation� active electrons in 10 orbitals. Experi-
mental geometry of the CO2 ground state is used �linear,
RC-O=1.1621 Å�. The states and energies used are shown in
Table I along with the approximate location of the hole �rela-
tive to the neutral� left by the removed electron for each
ionic state. Equations �29� are solved using a leapfrog algo-
rithm. The wave function 	�m�t�� is represented on a three-
dimensional Cartesian grid. The grid extends to 
13 a.u. in
the x and z directions, and to 
8 a.u. in the y direction. All

TABLE I. Multielectron states and energies used in the CO2

ionization calculations. Zero of energy was set equal to the �degen-
erate� ionic ground state. Highest occupied molecular orbital
�HOMO�.

State Label Energy �eV� Hole

	N� X̃ 1�g −13.76

	I1� X̃ 2�g,x 0 HOMO

	I2� X̃ 2�g,y 0 HOMO

	I3� Ã 2�u,x 3.53 HOMO-1

	I4� Ã 2�u,y 3.53 HOMO-1

	I5� B̃ 2�u 4.28 HOMO-2
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calculations are done with a grid spacing of =0.1 a.u. in
all directions unless otherwise specified. Absorbing boundary
conditions are used in the xz plane with a width of 5 a.u.
from the boundary edges �18�. The ionization yield was cal-
culated by monitoring the density absorbed at the bound-
aries. The CO2 molecule has the C atom at the origin and has
the bond axis aligned along the z-axis. The laser field F�t�
=E0 sin�	t� is rotated in the xz plane. The angle � is the
angle between the laser polarization and the molecular axis.
The laser field is turned off after a single cycle, F�t
�2� /	�=0, and the simulations are run until t=150 fs �an
additional 40 fs after the single cycle is over� to allow the
liberated electron density to be absorbed at the boundary. A
time step of t=0.00133 a.u. is used for the time propaga-
tion.

Figure 1 plots angle-resolved ionization yields for the five
final ion states considered for a intensity of 1.5
�1014 W /cm2. The solid lines correspond to calculations
with the step sizes specified above, while the dashed lines
show results using =0.2 and t=0.00266 a.u. While the
total yields continue to decrease a bit as the grid size be-
comes finer, the general character and relative behavior of
the ionization channels is preserved. For all angles, the ion-

ization yield is dominated by the X̃ 2�g channels. Polar plots
showing the angular shape of each ionization channel are
presented in Fig. 2. Also shown in this plot is the total ion-
ization yield that included the yield from all channels
�bottom-right panel�, which is effectively the same as the

yield including only the two X̃ 2�g channels �not shown�.
The total ionization yield has a “bow tie”-like pattern, with
peak values appearing near 30°. This is in closer agreement
with the MO-ADK results than the experimental distribu-
tions, both presented in Ref. �11�. Note that the MO-ADK
results of Ref. �11� include only the “in-plane” HOMO chan-

nel which would correspond to the X̃ 2�g,x channel alone.

Thus, our uncoupled channel calculations still fail to repro-
duce the experimental peak positions seen in Ref. �11�.

C. Role of nodal planes and the binding potential

It has been shown that the presence of nodal planes in the
ionizing orbitals leads to suppression of the ionization rate
�3�. Most prominently, large suppression is expected to occur
when the laser field is aligned along a nodal plane. This
expected trend can be seen in our results �Fig. 2� by compar-
ing the angular ionization yields with the corresponding
Dyson orbitals. However, two features stand out that deserve
attention. First, although suppression is seen along both

nodal planes in the X̃ 2�g,x distribution, there is much more
suppression along the 90° node than along the 0° node. Sec-

ond, there is a dip in the Ã 2�u,x ionization yield at 90° that

corresponds to no obvious feature in the Ã 2�u,x Dyson or-
bital.

Consider the X̃ 2�g,x distribution. We first consider the
case when the peak laser field is 1�1014 W /cm2 and return
to the case of 1.5�1014 W /cm2 below. �Note that although
the angular ionization yields shown in Fig. 2 where calcu-
lated for 1.5�1014 W /cm2, the angular shapes for each
channel are very similar when using an intensity of 1

�1014 W /cm2.� Panels �a� and �b� in Fig. 3 plot the X̃ 2�g,x
Dyson orbital along with select contours of the instantaneous
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FIG. 1. �Color online� Angle-resolved ionization yields for in-
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results using a grid spacing =0.1 a.u. while the dashed curves
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FIG. 2. �Color online� Left column: Dyson orbitals of the ionic
channels considered. Angle between the laser field and the molecu-
lar axis is depicted in the top left panel. Only the Dyson orbitals
with lobes in the plane of the laser field are shown. Center and right
columns: Angular ionization yields for intensity 1.5
�1014 W /cm2 for each ionic channel considered. Bottom-right
panel shows the total ionization yield, which is the sum of all
channels.
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potential at the peak of the laser pulse for an intensity of 1
�1014 W /cm2. The contours are taken at the ground-state
energy of the neutral and show the entrance and exit of the

tunneling barrier through which the X̃ 2�g,x Dyson orbital
must escape. Panel �a� shows the contours when the laser is
aligned along 0°, while panel �b� is for the 90° case. The
short solid lines connecting the entrance and exit depict the
tunneling path positioned along the peak of the orbitals
lobes. The tunneling barrier along these paths are shown in
panel �c�. Already one can see that the tunneling path
through, which the orbital lobes must pass is much shorter in
the 0° configuration than in the 90° configuration suggesting
the origin of the difference in suppression in the 0° and 90°

degrees directions seen in the X̃ 2�g,x distribution. In order to
get a quantitative semiclassical estimate of the ratio of ion-

ization at 0° and 90°, we use the Wentzel-Kramers-Brillouin
�WKB� tunneling formula

Rate � exp�− 2�
x0

x1 2�V�x�� − E�dx�
 , �43�

where the integral is taken across the tunneling barrier. Using
this measure, we find that the rate of tunneling along 0°
should be larger than the rate along 90° by a factor of 7.3,
which in good agreement with the actual ratio of 8.8 ex-
tracted from the simulations. Panels �d� and �e� plot the same
contours as in panels �a� and �b�, but now for the intensity of
1.5�1014 W /cm2. In this case, the ionization is above bar-
rier, and the ground state energy contours show the “door-
way” opened by the presence of the laser field. Although a
quantitative estimate is difficult in the above-barrier regime,
one can see that for 0° the doorway encompasses almost the
whole width of the Dyson orbital along this direction, while
for 90° the doorway is allowing only a small portion of the
orbital localized around the nodal plane to pass. Thus, the
analysis of the potential landscape in the 1.5�1014 W /cm2

case allows for a qualitative understanding of the large dif-
ference in suppression along the nodal planes seen in the

X̃ 2�g,x angular ionization yields.

We turn now to the Ã 2�u,x channel, where a similar
analysis accounts for the dip at 90°. Figure 4 shows the

Ã 2�u,x Dyson orbital along with the ground-state energy
contours. In panel �a� the laser field points along 90° while
panel �b� corresponds to 45°. Both panels correspond to a
peak intensity of 1.5�1014 W /cm2, the case shown in Fig.
2. Integrating the tunneling rate along the paths shown in the
plots, which are the shortest paths connecting the inner and
outer regions in both cases, we calculated that the tunneling
rate for the 90° case should be suppressed by a factor of 0.6
as compared to the 45° case. This is again in good agreement
with the actual suppression of 0.5 extracted from the results
in Fig. 2 for this channel.

D. Toward coupled-channel ionization of CO2

We can use the results of the present uncoupled channel
calculations to infer potentially important ionization mecha-
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nisms that will appear in a coupled channel treatment.
In our formulation, the wave function 	�m�t�� carries not

only the continuum states, but also a complete set of bound
states bound to the 	Im� ionic core. Thus, using the same
simulations discussed above, we can calculate excited, but
unionized, population of nth electron surrounding each ionic
core. In particular, the top two panels of Fig. 5 show the

angular excitation yields surrounding the Ã 2�u,x ionic core
for two intensities of 1�1014 and 2.5�1014 W /cm2. These
yields show strong peaks near �or beyond� 45°. In addition,
as shown in Fig. 6�a�, the peak excitation yield surrounding

the Ã 2�u,x ionic core is much larger than the peak ionization

yield coming from the X̃ 2�g channels.
In an uncoupled channel formulation, as is the case with

the present calculations, this excited population surrounding

the Ã 2�u,x ionic core is trapped. �We have checked that
similar excited population exists at the end of a 5 fs Gaussian
laser pulse in addition to the single cycle pulses used herein�.
However, in a coupled channel formulation, some of this

excited population surrounding the Ã 2�u,x core will be

moved to the X̃ 2�g,x ionic core through laser-induced dipole

coupling of the Ã 2�u,x and X̃ 2�g,x core, i.e., through the
polarization of the ionic cores. The amount of ionic core
coupling can be estimated by solving a two-state problem for

the laser coupling of the Ã 2�u,x and X̃ 2�g,x cores

i
�

�t
�CX�t�

CA�t� 
 = � EA − F�t��AB

− F�t��AB EB

�CX�t�

CA�t� 
 , �44�

where �AB=−0.46722 a.u. is the transition dipole between

the ionic states X̃ 2�g,x and Ã 2�u,x, calculated using GAMESS

as outlined above, and CX�t� and CA�t� are amplitudes of the

X̃ 2�g,x and Ã 2�u,x states. Figures 6�b� and 6�c� plot 	CX�t�	
as a functions of time for two different pulse, panel �b� uses
a single cycle and panel �c� uses a multicycle pulse with
Gaussian envelope, with the initial condition CX�t�=0 and
CA�t�=1. The calculations were done for two different inten-
sities, 1�1014 W /cm2 �thick lines� and 2.5�1014 W /cm2

�thin lines�. These calculations allows us to estimate that
about 5 to 10% of the excited population surrounding the

Ã 2�u,x core will couple back to the X̃ 2�g,x state on subse-
quent cycles. Some �and perhaps all� of this excited popula-
tion will escape the core region once coupled back to the

X̃ 2�g,x ionic core. We, thus, anticipate two important ioniza-
tion channels in a coupled-channel formulation of CO2, the
direct channel and an intermediate excitation channel

Direct: CO2�X̃ 1�g� → CO2
+�X̃ 2�g� + e− �45�

Inter.Ex.: CO2�X̃ 1�g� → CO2
+�Ã2�u,x��e−��

→ CO2
+�X̃ 2�g� + e−, �46�

where �e−�� denotes an excited electron. Assuming that all of
the excited population will escape the core upon coupling

from the Ã 2�u,x back to the X̃ 2�g,x state, the intermediate
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excitation channel will carry predominantly the angular im-

print of the CO2�X̃ 1�g�→CO2
+�Ã2�u,x��e−�� excitation step.

The direct channel yield and �estimated� intermediate
channel yield, as well as their sum, is plotted in the bottom
two panels of Fig. 5 for the two intensities shown. Here, the
intermediate excitation channel yield was estimated by mul-

tiplying the yields for excitation on the Ã 2�u,x ionic core by
the amount of coupling seen in Figs. 6�b� and 6�c�, 0.05 in
the case of 1�1014 W /cm2 and 0.1 for 2.5�1014 W /cm2.
At the higher intensity, the direct channel dominates, while
for the lower intensity the intermediate excitation channel is
becoming important. Further, the peak of the total ionization
estimate for 1�1014 W /cm2 is now approaching 45°, as
seen in the experiment �11�. Our treatment of the proposed
intermediate excitation channel is admittedly crude, and fails
to reproduce the sharpness of the experimental peaks seen in
Ref. �11�. An accurate description requires a full coupled-
channel treatment of Eqs. �28� that includes at least the

X̃ 2�g,x and Ã 2�u,x states. However, from the scaling of the
excitation and ionization yields seen in Fig. 6�a� it is clear
that the intermediate excitation channel will become impor-
tant for a correct description of strong field ionization of CO2
at intensities up to �and perhaps beyond� 1014 W /cm2.

IV. SUMMARY

In this work we developed a method for strong field one-
electron ionization of multielectron targets. Our method uses
field-free multielectron orbitals to describe the neutral and
lowest few ionic states. These multielectron basis states are
supplemented with a one-particle numerical grid used to rep-
resent the continuum electron. Equations of motion coupling
the basis states to the continuum grid are derived from the

multielectron Schrödinger equation. The result is a coupled
set of single-particle Schrödinger equations describing ion-
ization into each final ion state included in the ionic basis.
Our equations are general and applicable to strong field ion-
ization of any small molecule.

As an example, we studied ionization of CO2 in the un-
coupled channel approximation including the lowest five
ionic states of CO2

+. Strong field ionization of this molecule
has been experimentally shown �11� to deviate from the pre-
dictions of MO-ADK, a single-active-electron quasistatic
model of molecular ionization. Our method allows the inclu-
sion of two dominant effects not present in MO-ADK: 1�
influence of the specific shape of the tunneling barrier dis-
cussed in Sec. III C and 2� the possibility to rigorously
couple multiple ionic channels as discussed �but presently
not implemented� in Sec. III D. In our analysis, the devia-
tions from MO-ADK seen experimentally likely arise from
intermediate ionic core excitations followed by interchannel
coupling.

APPENDIX: MATRIX ELEMENTS OF THE HAMILTONIAN

In order to evaluate the matrix elements appearing in Eq.
�28�, we need to know how HF��r�n� , t� acts on the basis
states. The Hamiltonian acting on the neutral state gives

HF	N� = �E0
N − �

k=1

n

F� �t� · r�k�	N� . �A1�

The Hamiltonian acting on a state 	�m�	Im�, where 	Im� is an
ionic state and 	�m� is here an arbitrary single particle func-
tion, gives

HF�	�m�	Im�� = �HI −
1

2
�� n

2 + Vnuc�r�n� + �
k=1

n−1
1

	r�k − r�n	
− �

k=1

n

F� �t� · r�k
	�m�	Im�

= �
j

	Ij��Ij	�Em
I −

1

2
�� n

2 + Vnuc�r�n� + �
k=1

n−1
1

	r�k − r�n	
− �

k=1

n

F� �t� · r�k
	�m�	Im�

= �Hm�r�n�	�m��	Im� + ��
j�m

Vjm
H �r�n�	�m�
	Ij� − �

j

	Ij��Ij	�
k=1

n

F� �t� · r�k�	�m�	Im��

= �Hm�r�n�	�m��	Im� + ��
j�m

Vjm
H �r�n�	�m�
	Ij� − F� �t� · ��

j

�r�n� jm − d� jm
I �	�m�
	Ij� �A2�

where

Hm�r�n� = Em
I −

1

2
�� n

2 + Vnuc�r�n� + Vmm
H �r�n� , �A3�

is the single-electron field-free Hamiltonian for the nth elec-
tron coupled to the ionic state 	Im�,

d� jm
I = − �Ij	�

k=1

n−1

r�k	Im� �A4�

are the electronic dipole moments and transition dipoles of
the ionic states, and
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Vjm
H �r�n� = �Ij	�

k=1

n−1
1

	r�k − r�n	
	Im� �A5�

are the electrostatic potentials and inter-ionic couplings.
Equation �A2� is only exact if a complete basis of 	Ij� is used.
If this basis is truncated, Eq. �A2� gives HF�	�m�	Im�� pro-
jected into the space of the truncated basis. Below we will
also need the electronic dipole of the neutral defined as

d�N = − �N	�
k=1

n

r�k	N� �A6�

We now calculate the required matrix elements of the
Hamiltonian. First consider the matrix elements of the
“primitive” basis functions 	N�, 	Sm�, and 	Xm�t��. In the fol-
lowing matrix elements, the convention m�k is used in or-
der to avoid excessive use of Kronecker’s delta.

�Sm	HF�t�	Sm� = ���̃m
S 	�Im	�HF�t��	�̃m

S �	Im��

= ��̃m
S 	Hm	�̃m

S � − F� �t� · ���̃m
S 	r�n	�̃m

S � − d�mm
I �

�A7�

�Sm	HF�t�	Sk� = ���̃m
S 	�Im	�HF�t��	�̃k

S�	Ik��

= ��̃m
S 	Vmk

H 	�̃k
S� + F� �t� · d�mk

I ��̃m
S 	�̃k

S� �A8�

�Sm	HF�t�	N� = ���̃m
S 	�Im	�HF�t�	N�

= �mE0
N − F� �t� · ��m��̃m

S 	r�n	�̃m
S � + ��̃m

S 	�� m
C�� �A9�

�Sm	HF�t�	Xm�t�� = ���̃m
S 	�Im	�HF�t��	�m�t��	Im��

= ��̃m
S 	Hm	�m�t�� − F� �t� · ��̃m

S 	r�n	�m�t��
�A10�

�Sm	HF�t�	Xk�t�� = ���̃m
S 	�Im	�HF�t��	�k�t��	Ik��

= ��̃m
S 	Vmk

H 	�k�t�� + F� �t� · d�mk
I ��̃m

S 	�k�t��
�A11�

�N	HF�t�	N� = E0
N + F� �t� · d�N �A12�

�N	HF�t�	Xm�t�� = �N	HF�t��	�m�t��	Im��

= − F� �t� · ��m
� ��̃m

S 	r�n	�m�t�� + ��� m
C	�m�t��� �A13�

�Im	HF�t�	Sm� = �Im	HF�t��	�̃m
S �	Im��

= Hm	�̃m
S � − F� �t� · �r�n − d�mm

I �	�̃m
S � �A14�

�Im	HF�t�	Sk� = �Im	HF�t��	�̃k
S�	Ik�� = Vmk

H 	�̃k
S� + F� �t� · d�mk

I 	�̃k
S�

�A15�

�Im	HF�t�	N� = �mE0
N	�̃m

S � − F� �t� · �r�n	�̃m
S ��m + 	�� m

C��
�A16�

�Im	HF�t�	Xm�t�� = �Im	HF�t��	�m�t��	Im��

= Hm	�m�t�� − F� �t� · �r�n − d�mm
I �	�m�t��

�A17�

�Im	HF�t�	Xk�t�� = �Im	HF�t��	�k�t��	Ik��

= Vmk
H 	�k�t�� + F� �t� · d�mk

I 	�k�t�� .

�A18�

Now we use these matrix elements to evaluate the remain-

ing terms in Eqs. �28� that involve 	Ñ�

�Sm	HF�t�	Ñ� = NÑ��Sm	HF�t�	N� − �
k

�k�Sm	HF�t�	Sk�
 = NÑ��Sm	HF�t�	N� − �m�Sm	HF�t�	Sm� − �
k

k�m

�k�Sm	HF�t�	Sk�

= NÑ��mE0

N − F� �t� · ��m��̃m
S 	r�m	�̃m

S � + ��̃m
S 	�� m

C�� − �m���̃m
S 	Hm	�̃m

S � − F� �t� · ���̃m
S 	r�m	�̃m

S � − d�mm
I ��

− �
k

k�m

�k���̃m
S 	Vmk

H 	�̃k
S� + F� �t� · d�mk

I ��̃m
S 	�̃k

S��� = NÑ��m�E0
N − ��̃m

S 	Hm	�̃m
S �� − F� �t� · ���̃m

S 	�� m
C� + �md�mm

I �

− �
k

k�m

�k���̃m
S 	Vmk

H 	�̃k
S� + F� �t� · d�mk

I ��̃m
S 	�̃k

S��� �A19�

�Ñ	HF�t�	Sm� = �Sm	HF�t�	Ñ�� = NÑ��m
� �E0

N − ��̃m
S 	Hm	�̃m

S �� − F� �t� · ���� m
C	�̃m

S � + �m
� d�mm

I �

− �
k

k�m

�k
����̃k

S	Vkm
H 	�̃m

S � + F� �t� · d�km
I ��̃k

S	�̃m
S ��� �A20�
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m

�m
� �Sm	�HF�t��	N� − �

k

�k	Sk��
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m
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����̃m
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H 	�k�t�� + F� �t� · d�mk
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S ��m − F� �t� · r�n	�̃m
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I 	�̃k

S���
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N − F� �t� · d�mm
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k
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