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We have observed Stückelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an
externally applied radio-frequency field. The oscillating rf field brings the interaction between cold Rydberg
atoms in two separated volumes into resonance. We observe multiphoton transitions when varying the ampli-
tude of the rf field and the static electric field offset. The angular momentum states we use show a quadratic
Stark shift, which leads to a fundamentally different behavior than linearly shifting states. Both cases are
studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to
the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized
Bessel function in the quadratically shifting case. The oscillatory behavior of both functions corresponds to
Stückelberg oscillations, an interference effect described by the semiclassical Landau-Zener-Stückelberg
model. The measurements prove coherent dipole-dipole interaction during at least 0.6 �s.
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I. INTRODUCTION

The subject of the sinusoidal perturbation of a quantum
mechanical object is a very general one and has a long his-
tory. Here we will treat this subject for the particular case of
particles with states that have a quadratic shift under the
influence of a perturbation. This is what is generally found in
second-order perturbation theory. The typical example is the
polarizability of a neutral particle under the influence of an
electric field. The realization chosen to study this phenom-
enon is the dipole-dipole interaction between Rydberg atoms,
because this system provides the resolution and flexibility
required for these experiments. Apart from representing a
much broader class of phenomena, the study of dipole-dipole
interaction in oscillating fields provides us a direct tool to
measure the coherence time of the interaction and the possi-
bility of switching the interaction. Both aspects are relevant
for the feasibility of implementing quantum information pro-
cessing with Rydberg atoms.

First we will give a description of polar and polarizable
systems in a rf field, i.e., we compare the situation for states
with a linear versus a quadratic Stark shift. We use the Flo-
quet approach, which is applicable for periodically varying
fields. In this framework a two-level system plus oscillating
field is replaced by an infinite number of sidebands on the
two states. For a quadratic Stark shift the result is fundamen-
tally different and much richer than for a linearly Stark
shifted state. Next we compare the Floquet description with
the classical limit. In addition we interpret the oscillations of
the population of the sidebands as Stückelberg oscillations.

In the subsequent section we describe details of the ex-
periment and present results of the measurements. Related
experiments have been performed with transitions within
single Rydberg atoms, in most cases for states with a linear
Stark shift �1–3�, but also quadratic shifts have been studied
�4�. Collisions of Rydberg atoms in an oscillating field have
been studied in an atomic beam setup �5,6�, as well as in a
cold cloud �7,8�. In our experiment we control the interaction
strength by maintaining a fixed distance between the
Rydberg-atom volumes. Because of the small unperturbed

energy mismatch between initial and final states, we use a
rather low frequency for the oscillating field; it lies in the
radio-frequency range rather than in the microwave range,
giving the opportunity to test the coherence properties of the
system for a longer period of time.

II. COUPLED TWO-LEVEL SYSTEM
IN AN OSCILLATING FIELD

To introduce the system under investigation we recall the
two-level system �9�, coupled by an interaction V in the pres-
ence of a field F�t�

F�t� = FS + Frf cos �t , �1�

with an oscillating and a static part. We write the full Hamil-
tonian as

H = H0 + HFS
+ HFrf

+ V , �2�

where H0 is the Hamiltonian of the two-level system without
interaction, HFS

the interaction with the static field and HFrf
the interaction with the oscillating field. V is the dipole in-
teraction between the two involved states. We want to know
the population in both states, so we need to know the full
wave function ��r , t�, by solving the Schrödinger equation.
We solve the problem by starting from the known static so-
lutions for H0+HFS

, as described below, and then we add the
other two terms as perturbation. In Sec. II A “Numerical so-
lutions in the time domain” we work out the problem by first
adding the interaction term V to the Hamiltonian, and then
the oscillating field HFrf

. This provides us with two coupled
equations which can be solved numerically in the time do-
main. In the subsequent subsections we work in the reverse
order. In Sec. II B “Floquet approach” we add the oscillating
field HFrf

first and work out the problem in the frequency
domain, which basically provides us with an infinite number
of steady states in the form of sidebands. The classical limit
of the sideband population, Sec. II C, gives some physical
insight in its behavior. Then, in Sec. II D “Coupling between
dressed and undressed state” we add the interaction term V to
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the Hamiltonian. The oscillations in the coupling as a func-
tion of rf amplitude can be understood in terms of Stückel-
berg oscillations, explained in Sec. II E.

We will start by treating the perturbation of the Hamil-
tonian H0 in a static field. With just the first two terms of the
Hamiltonian H=H0+HFS

we obtain the solution

��r,t� = a�1�r,t� + b�2�r,t� , �3�

where �1 and �2 are the eigenstates of the system and a and
b are their normalized time-independent amplitudes,

�1�2��r,t� = �1�2��r�e−iW1�2�t, �4�

where W1 and W2 are the eigenenergies of the two stationary
states.

We will discuss two cases, one for states with a linear
Stark shift and one for states with a quadratic Stark shift. The
first case is depicted in Fig. 1�a�. State �1� always has the
energy 0 and state �2� has the energy W0 in the absence of
any fields and a linear energy shift as a function of electric
field F �all equations are in atomic units�,

W1 = 0; W2 = W0 − kF . �5�

Here k is the permanent dipole moment of state �2�. This
system is in fact equivalent to two states with difference
energy W0 and a difference in dipole moment of k, which
makes this two-level system applicable to many realistic sys-
tems. The two levels cross at a field

Flin =
W0

k
. �6�

The second case is sketched in Fig. 1�b�. Again, state �1�
has the energy 0 for all fields and state �2� has the energy W0
at zero field but the energy decreases quadratically as a func-
tion of electric field F,

W1 = 0; W2 = W0 −
1

2
�F2. �7�

Here � is the polarizability of state �2�. Similar to the linear
case this system is equivalent to two states with difference

energy W0 and a difference in polarizability of �. The two
levels cross at �Fquad, where

Fquad =�2W0

�
. �8�

A. Numerical solutions in the time domain

The most direct method to calculate the evolution of the
wave function in an oscillating field is to numerically solve
the two coupled differential equations for both states. For
this we first add the coupling V and then the time dependent
field perturbation HFrf

. When we add the interaction V, the
degeneracy at the crossing is lifted and an avoided crossing
arises, which has a width �0. This �0 can also be interpreted
as a quantum beat oscillation frequency: the population of
state �1 and �2 oscillate against each other with this fre-
quency after an appropriate initial condition. The avoided
crossing is depicted in the inset of Fig. 1 where the width is
given by

�0 = 2��2�r��V��1�r�� . �9�

When we add a time-dependent field it is convenient to sepa-
rate the time and spatial dependence of the wave function
�Eq. �3��

��r,t� = T1�t��1�r� + T2�t��2�r� . �10�

where �1�r� and �2�r� are the two original states without
interaction. This separation of time and spatial dependence is
only allowed if both spatial states remain approximately the
same despite the applied fields. We will see in Sec. III A that
this assumption is valid. Using this wave function in the
time-dependent Schrödinger equation we obtain

iṪ1�2��t� = W1�2��t� +
�0

2
T2�1��t� . �11�

Now the energies W1 and W2 depend on time. For the linear
case we have

W2�t� = W0 − k�FS + Frf cos �t� , �12�

and for the quadratic case

W2�t� = W0 −
1

2
��FS

2 + 2FSFrf cos �t + Frf
2 cos2 �t�

�13�

and in both cases W1�t�=0.
We have numerically solved the two coupled equations in

Eq. �11�. However, the results are less informative than the
approach described in the next section, the Floquet approach.
Although equivalent, an answer in terms of a coherent super-
position of stationary states is more informative than the time
dependence of a wave function. However, this numerical ap-
proach can be used for all time-dependent fields, whereas the
Floquet approach only works for periodic functions.

B. Floquet approach

In the Floquet approach we add the perturbations in the
opposite order as in the numerical calculation; so we first

(b)(a)

FIG. 1. �Color online� Energy level diagrams of state �1� and �2�
as a function of electric field. State �1� has no Stark shift, state �2�
has a linear Stark shift in Fig. �a� and a quadratic Stark shift in Fig.
�b�. Due to the coupling between the states, the crossing becomes
an avoided crossing, depicted in the inset. When an oscillating field
is applied, depicted as a dashed purple line, this translates as an
oscillating energy for state �2�, depicted on the right-hand side as a
dash-dotted red line. The orange dotted lines depict the average
energy during the oscillation and the corresponding field; in �a� this
field is simply FS, the average field, but in �b� it is different and we
define it as the effective field Feff, given in Eq. �25�.
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perturb the states �1 and �2 with the oscillating field and
subsequently add the interaction V between the two states
�4,9�. As in the previous section we separate the time and
spatial dependence, but this time we keep two separate wave
functions

�1�2��r,t� = T1�2��t��1�2��r� . �14�

Using these in the time-dependent Schrödinger equation we
obtain

iṪ1�2��t��1�2��r� = W1�2��t�T1�2��t��1�2��r� . �15�

We can factor out the spatial dependent part and integrate
Eq. �15�

T1�2��t� = e−i	W1�2��t�dt, �16�

where W1�t�=0 for both examples.
For the linearly Stark shifted case, still following �9�, we

use Eq. �12� to obtain

T2�t� = e−i�W0−kFS�teikFrf/� sin �t. �17�

The last exponent can be written as an expansion of Bessel
functions �10�, such that

�2�r,t� = �2�r�e−i�W0−kFS�t 

n=−�

�

Jn� kFrf

�
�ein�t. �18�

This expression shows that the wave function consists of the
original spatial wave function, but with a modified time de-
pendence in the form of an infinite number of sidebands.
This is the steady-state solution of the problem, consisting of
a number of states with different amplitudes, given by the
Bessel function Jn�

kFrf

� �, all with a different energy

W2,n = W0 − kFS − n� . �19�

In Fig. 2 the sidebands of �2 are plotted for various rf
amplitudes. It is clearly visible that more sidebands are
populated when a larger rf amplitude is applied. The red
dashed lines indicate the classical limits, the maximum and
minimum field values that occur in the oscillation. This is
equivalent with the absolute order and absolute argument of
the Bessel function being equal.

The result for the quadratically Stark shifted case is quite
different. Combining Eqs. �16� and �13� we obtain

T2�t� = e−i�W0−1 � 2��FS
2+1 � 2Frf

2��t

	 ei��FrfFS/��sin �tei��Frf
2 /8��sin 2�t. �20�

Here we have two exponents to expand in terms of Bessel
functions

eix sin �teiy sin 2�t = 

m�=−�

�

Jm��x�eim��t 

m=−�

�

Jm�y�ei2m�t

= 

n=−�

�

ein�t
 

m=−�

�

Jn−2m�x�Jm�y�� , �21�

where n=m�+2m is used on the third line. The amplitude of
the sideband, i.e., the inner summation in the above expres-

sion, is known as the generalized Bessel function Jn�x ,y�. It
was first used by Reiss �11� and investigated by, e.g., Dattoli
et al. �12�. It is defined here as

Jn�x,y� = 

m=−�

�

Jn−2m�x�Jm�y� . �22�

In practice the summation can be constrained to �m�
y
+3y1/3+3 or �m�
 1

2 �n+x+3x1/3+3�, because beyond these
points the Bessel function is negligibly small �13�. Instead of
evaluating the sum, it is also possible to calculate the gener-
alized Bessel function on basis of the recurrence relation �14�
in analogy with the well-known approach to calculate the
regular Bessel function on basis of its recurrence relation.

Using these results the wave function becomes

�2�r,t� = �2�r�e−i�W0−1 � 2��FS
2+1 � 2Frf

2��t

	 

n=−�

�

ein�tJn��FrfFS

�
,
�Frf

2

8�
� . �23�

A similar description of sidebands on quadratically shifted
states is given in �4�. Note that the leading order of the series
expansion is proportional to Frf

n ; a result that is also found for
the linear case and that is expected from a description of
multiphoton transitions.
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FIG. 2. �Color online� The sidebands of state �2� for the linear
case in an oscillating field of 8 MHz for various rf amplitudes. The
intensity of a line represents the population of the respective side-
band, where the original state, or the n=0 sideband, is colored blue
and indicated with an “o.” The red dashed lines depict the borders
of the classically allowed region. We used k=2�	60 MHz /
�V /cm� and W0=2�	25 MHz.
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If we compare this wave function with the linear case it is
the generalized Bessel function instead of the regular Bessel
function that determines the sideband amplitude. The result
depends on both the static field FS as well as the rf amplitude
Frf, whereas for the linear case it depends on the rf amplitude
only. The energy of the sidebands is also fundamentally dif-
ferent and one obtains

W2,n = W0 −
1

2
��FS

2 +
1

2
Frf

2� − n� . �24�

Whereas in the linear case the energy of a particular sideband
shifts with the static field FS only, in the quadratic case there
is an additional term that depends on the rf amplitude 1

4�Frf
2 .

This term corresponds to the ac-Stark shift of the state. It is
convenient to define an effective field Feff, such that the en-
ergy shift of such a static field corresponds to the energy shift
of a given static plus rf field,

Feff
2 = FS

2 +
1

2
Frf

2 . �25�

The different behavior is visible in Fig. 3, where the side-
bands are plotted versus static field for several rf amplitudes.
Again, the intensity depicts the population of the sideband:
Jn

2(�FrfFS /� ,�Frf
2 / �8��). As in the linear case more side-

bands are populated with a larger rf field, but a clear differ-
ence is that the population of a sideband is now not only a
function of the rf amplitude, but also of the dc field, visible
as the changing intensity within one sideband. Second, the
different positions of the sidebands in each subfigure illus-
trates that the sideband energy also depends on Frf �note that
the original state, or the n=0 sideband, in blue and indicated
with “o,” is shifted downward for larger Frf�. The next step
would be to add the coupling between state �1� and state �2�
�Sec. II D�, but first we will look closer into the population
of the sidebands for different frequencies.

C. Classical limit of the sideband population distribution

To illustrate the sideband population and to obtain some
physical insight into its behavior, we depicted the sideband
population for a fixed field amplitude and offset as a function
of the sideband energy �Eqs. �19� and �24�� and various fre-
quencies in Figs. 4 and 5. So we plot the squared �general-
ized� Bessel function Jn�x�2, respectively, Jn

2�x ,y� for fixed x
and y �per subfigure� as a function of n. The pictures can also
be seen as a vertical cut through a subfigure of Fig. 2 or 3
with the appropriate parameters FS, Frf, and �. For large
frequencies, i.e., small x and y, the function peaks at n=0
and drops off on both sides, so there are not many populated
sidebands. For smaller frequencies �or large x, y�, more and
more sidebands arise. Around n=0 the population oscillates
and near �n�= �x� the Bessel function reaches a maximum,
after which it drops exponentially to zero. Interestingly, the

�40

�20

0

20

40

0 0.2 0.4 0.6 0.8 1
E
n
e
rg
y
�M
H
z
�

Static field �V�cm�

FRF�0.1 V�cm

o

0 0.2 0.4 0.6 0.8 1

�40

�20

0

20

40

Static field �V�cm�

E
n
e
rg
y
�M
H
z
�

FRF�0.2 V�cm

o

�40

�20

0

20

40

E
n
e
rg
y
�M
H
z
�

FRF�0.3 V�cm

o

�40

�20

0

20

40

E
n
e
rg
y
�M
H
z
�

FRF�0.4 V�cm

o

0 0.2 0.4 0.6 0.8 1

�40

�20

0

20

40

Static field �V�cm�

E
n
e
rg
y
�M
H
z
�

FRF�0.5 V�cm

o

0 0.2 0.4 0.6 0.8 1

�40

�20

0

20

40

Static field �V�cm�

E
n
e
rg
y
�M
H
z
�

FRF�0.6 V�cm

o

FIG. 3. �Color online� The sidebands of state �2� for the qua-
dratic case in an oscillating field of 8 MHz for different rf ampli-
tudes. The intensity of a line symbolizes the population of that
sideband. The n=0 sideband is depicted in blue and indicated with
an “o.” The red dashed lines depict the position of the asymptotes of
the distribution of occurring energies. We used the values corre-
sponding to the experimental values of the left resonance, as men-
tioned at Eq. �52�.
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FIG. 4. �Color online� Depicted in black is the sideband popu-
lation of state �2� as a function of the sideband energy �Eqs. �19�
and �24�� for various frequencies. � is 2� times the denoted fre-
quency. We used again k=2�	60 MHz / �V /cm� and W0=2�
	25 MHz and field values of FS=0.2 V /cm and Frf=0.3 V /cm.
The red dashed lines depict the distribution of classically occurring
energies, calculated with the approach of Eq. �26�.
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sideband populations extend further in energy beyond �n�
� �x� for the higher frequencies as for the lower frequencies.
For the number of populated sidebands beyond �n�= �x� the
opposite is true. These extensions can be understood as a
quantum mechanical effect, whereas the energy levels are in
a classically forbidden region. The generalized Bessel func-
tion also has these features. In addition, it has a more asym-
metric structure, which we will discuss further below.

For low frequencies the �generalized� Bessel function ap-
proaches the classical limit, meaning it approaches the den-
sity distribution of the occurring energies. To calculate such
a density distribution it is useful to know how a distribution,
f�x�, changes under a change of variable, from x to y. If y
=g�x� the resulting density function becomes

P�y� = 

k

n � 1

g�„gk
−1�y�…

� f„gk
−1�y�… �26�

with g� the derivative and g−1 the inverse function and n the
number of solutions in x for g�x�=y. gk

−1�y� are these solu-
tions.

We could choose g to be the energy as a function of time,
given by Eqs. �12� and �13�. It is, however, instructive and
easier to first calculate the distribution of the occurring
fields. So we use g�t�=F�t�=FS+Frf cos �t. We start with f
as a uniform normalized distribution. It is sufficient to have
instances during half a cycle of the cosine,

f�t� = ��/� if 0 
 �t 
 �

0 elsewhere.
� �27�

Application of the functions f and g to Eq. �26� provides the
probability density distribution of the field

P�F� = �1/��FS
2 − �F − Frf�2 if FS − Frf 
 F 
 FS + Frf

0 elsewhere
� .

�28�

This function diverges at F=FS�Frf. The asymptotes corre-
spond to the turning points of the field.

The function F�t� is sketched in the energy level diagram
Fig. 1, as a dashed purple line. How the field oscillation
translates to an oscillation in energy �Eqs. �12� and �13�� is
depicted on the right hand side as the red dash-dotted line. In
the linear case, the function simply remains a cosine, but in
the quadratic case the function is distorted. For Frf�FS the
density distribution consists of two parts that add up. In this
case there is a third turning point when the field goes through
zero. Both functions are plotted together with the strength of
the sidebands in Figs. 4 and 5. Here they are multiplied by
the frequency to match the average height of the sidebands.
The asymptotes of the distribution functions are also de-
picted in Figs. 2 and 3 as red dashed lines.

We observe in Figs. 4 and 5 that for the lower frequencies
the sideband population indeed converges nicely to the dis-
tribution functions. The height of the peaks oscillates around
the red dashed line. In most cases values occur between 0
and twice the red dashed line. In the case of the generalized
Bessel function, on the right hand part of the plot some much
higher peaks occur. However, the moving average still ap-
proaches the red dashed line. This is depicted in Fig. 6,
where we zoomed in around the asymptote W0− 1

2��FS
−Frf�2.

D. Coupling between dressed and undressed state

Now that we know the wave functions in an oscillating
field, we can add the coupling V between �1 and �2. Every
sideband of �2 crosses with �1. After introducing the cou-
pling V, every crossing becomes an avoided crossing. When
we use the wave functions given by Eq. �14� we get

��1�r,t��V��2�r,t�� = ��1�r��V��2�r��T1
�T2. �29�

The nth sideband of the linear case �see Eq. �18�� becomes
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FIG. 5. �Color online� Similar as Fig. 4. We used the experimen-
tal values for the left resonance �Eq. �52�� and field values of FS

=0.2 V /cm and Frf=0.45 V /cm. The distribution of occurring en-
ergies �red dashed lines� is calculated with Eq. �26�. Note the oc-
currence of three turning points.
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FIG. 6. �Color online� As Fig. 5, but at a lower frequency and
zoomed in around the middle asymptote. The blue dotted curve
depicts the moving average of the sideband population depicted in
black.
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��1�r,t��V��2�r,t��n = ��1�r��V��2�r��

	 e−i�W0−kFS−n��tJn� kFrf

�
� . �30�

The resonance condition is seen in the exponent

n� = W0 − kFS. �31�

The coupling strength at this resonance �the half width of the
nth avoided crossing� is given by the time-independent part
of Eq. �30�

�n

2
= ��1�r��V��2�r��Jn� kFrf

�
� =

�0

2
Jn� kFrf

�
� . �32�

Here we used Eq. �9�, which gives the coupling strength �0

without oscillating field. So the total coupling 1
2�0 is distrib-

uted over all avoided crossings, according to the Bessel func-
tion. In a similar manner, we get the resonance condition for
the quadratic case

n� = W0 −
1

2
��FS

2 +
1

2
Frf

2� �33�

and the coupling strength is

�n

2
=

�0

2
Jn��FrfFS

�
,
�Frf

2

8�
� . �34�

In Fig. 7 we plot the coupling resonances as a function of
rf amplitude, Frf, and static field, FS, for a fixed frequency �

for the linear case. The grayscale depicts the squared cou-
pling strength or Jn

2�kFrf /�� . The resonances are just vertical
lines, since the resonance depends on the static field only.
The blue dashed lines indicate the boundaries of the classi-
cally allowed region, which correspond to the regions where
the field F�t� �Eq. �1�� reaches the static field resonance Flin
�Eq. �6��. These classical boundaries correspond to the
boundaries depicted as dashed red lines in Fig. 2 and to the
asymptotes depicted as red dashed lines in Fig. 4. Above
these lines the coupling strength oscillates as a function of
Frf, which we can interpret as Stückelberg oscillations, de-
scribed in the next section.

Figure 8 shows the corresponding plot for the quadratic
case. Here the resonance lines are curved, in fact, each line
follows a line of constant effective field as defined in Eq.
�25�. The boundaries of the classically allowed region are
again indicated with the two lower blue dashed lines. They
correspond to the lines FS+Frf=Fquad and FS−Frf=Fquad
�with Fquad defined in Eq. �8��. There is a third blue dashed
line at higher rf amplitudes, which indicates the boundary
FS−Frf=−Fquad; above this line both the crossing at −Fquad as
well as the crossing at +Fquad are involved. Note that the
third boundary or asymptote from Figs. 3 and 5, the one with
value W0, is not relevant, because it is never involved in the
crossing with state �1�. Within the classically allowed region,
i.e., above the lower two blue dashed lines, we see the Stück-
elberg oscillations.

At this point there is enough information to start the mea-
surements; it is known where to expect resonances and how
strong they are. However, we will first explain why the os-

FIG. 7. �Color online� Calculated interaction strength as a func-
tion of static and oscillating field for the linear case. The vertical
lines depict the n� resonances, where n varies from −6 �the one
most right� to 6 �the one most left� and � is fixed to 2�	4 MHz.
The darker the color the stronger the interaction. Destructive inter-
ference between the two states is depicted by the curved lines in red
�solid� and green �shaded�, according to Stückelberg theory de-
scribed in Sec. II E. The dashed blue lines give the boundaries of
the classically allowed region; in other words these lines depict field
combinations where the crossing �Eq. �6�� occurs at an extremum of
the rf oscillation.

FIG. 8. �Color online� Calculated interaction strength as a func-
tion of static and oscillating field for the quadratic case. The quarter
circles in varying gray depict the n� resonances. Here n runs from
−25 �in the upper right corner� to 3 �in the lower left corner�; the
frequency of the rf field is here �=2�	8 MHz. The darker the
color the stronger the interaction. Destructive Stückelberg interfer-
ence between the two states is depicted by the curved lines in red
�solid�, green �shaded�, and orange �checkerboard pattern� �Sec.
II E�. The dashed blue lines give all field combinations where the
crossing is reached during an extremum of the rf oscillation.
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cillations in the interaction strength can be interpreted as
Stückelberg oscillations.

E. Stückelberg oscillations

Stückelberg oscillations �15� are due to an interference
effect between two quantum states, which occur when an
avoided crossing is traversed at least twice. Imagine we start
with all population in the state �1� and subsequently we
sweep the field through the resonance and back �Fig. 1�.
When sweeping through, part of the wave function will fol-
low the state �1� diabatically and “ignores” the avoided
crossing, while the other part will follow the eigenenergy
adiabatically and end up in state �2�. When coming back
again to the crossing, both parts of the wave function have
built up a different phase, due to their energy difference and
due to a difference in passing the crossing. This phase dif-
ference leads to interference, which can be observed when
varying for example the duration or the amplitude of the field
sweep. In this particular case we have a sinusoidal oscillation
of the field with a fixed frequency and we vary both FS and
Frf.

To calculate the interference patterns we use the Landau-
Zener-Stückelberg �LZS� model �15–17�, as described in,
e.g., �18� and apply it to the situation sketched in Fig. 1. It is
assumed that the avoided crossing �Eq. �9�� is small com-
pared to the range of occurring energies during an rf oscilla-
tion �Eq. �12� or �13��. In that case we can separate the ac-
quired relative phase into a phase evolution due to energy
differences and phase jumps due to avoided crossings. The
Hamiltonian of the two-level system in a diabatic description
is

H = �Wa�t� V

V� Wb�t�
� , �35�

where Wa and Wb are the unperturbed eigenenergies of, re-
spectively, state �a� and �b�, and V is the coupling between
them. In order to better exploit the symmetry of the problem,
we choose a definition of energies that is slightly different
from before: Here Wb=−Wa= 1

2W2, with W2 defined in Eq.
�12� or �13�. The energies Wa and Wb during an rf oscillation
are illustrated in Figs. 9 and 11 for a specific choice of FS
and Frf.

In the LZS model we describe the evolution of the wave
function with transfer matrices. The transition at a level
crossing is described by the transfer matrix �18�

M = � �1 − 
 �
e−i�

− �
ei� �1 − 

� . �36�

The matrix M is applicable for crossings where state �a�
crosses �b� from the lower-energy side. In the opposite case
the transpose of M, MT should be used. The phase angle � is
the so-called Stokes phase �19�

� =
�

4
+ arg ��1 − i�� + ��ln��� − 1� �37�

with values between 0 and � /4. And 
 is the Landau-Zener
adiabatic transfer probability


 = 1 − e−2��. �38�

Both quantities depend on the adiabaticity parameter � which
in turn depends on the coupling strength V and the rate of
change of the difference of the diabatic energies

� =
V2

�d�Wb − Wa��/dt
. �39�

In the diabatic limit � is small and subsequently 
 is small as
well, while � approaches the value � /4. In the adiabatic
limit 
 approaches 1 and � approaches 0.

After the crossing, the fraction in state �b� develops a
different phase compared to the fraction in state �a�, before
coming back to the crossing. Both phase evolutions are de-
scribed by the matrix

Gij = �ei�ij 0

0 e−i�ij
� , �40�

with �ij =	ti
tj�Wb�t�2+V2dt�	ti

tjWb�t�dt. The approximation
is valid for small V. Note that �ij is a function of FS and Frf.
The matrices M and G which describe the phase develop-
ment at and between the crossings are indicated in Figs. 9
and 11. The shaded surfaces indicate the phase of state �b� as
it develops between the crossings.

For states with a linear Stark shift the situation is depicted
in Fig. 9 and, assuming that we start with all probability in
�a�, the amplitude of both states after N oscillations is given
by

�G23MG12M
T�N�1

0
� = SN�1

0
� , �41�

where S describes the time evolution of the wave function
over one rf oscillation. The matrix S is unimodular �det S
=1�. Therefore we can write SN in terms of Chebychev poly-
nomials Un��� �20�

FIG. 9. �Color online� The energies of states �a� and �b� as a
function of time during the rf oscillation for the case of linear shift-
ing Stark states. Indicated are the times where the two states cross,
t1, t2, and t3, and the matrices that describe the evolution of the
wave function at the indicated time intervals: MT, G12, M, and G23.
The green �shaded� and red �solid� colored areas indicate the phase
evolution of the state �b�, �ij, which is contained in the Gij matrix.
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SN = SUN−1��� − IUN−2��� , �42�

where �=Tr�S�. The solution of the full wave function in the
linearly Stark-shifting case after N oscillations can be ex-
pressed in terms of the above defined quantities. In view of
the size of the expression, we just give the population of
state �b�

Pb = 4�1 − 
�
 sin2��12 + ��UN−1
2 ��� �43�

with the trace

� = cos��12 + ��cos��23 − ��

− �1 − 2
�sin��12 + ��sin��23 − �� . �44�

In the near-diabatic limit �
�1� the population Pb reduces to

Pb = 4
 sin2��12 + ��
sin2�N��12 + �23��

sin2��12 + �23�
. �45�

In Fig. 10 we depicted the population of state �b� as a func-
tion of the static field FS and the rf amplitude Frf for N=3.
Note the similarity with Fig. 7. For larger N the vertically
elongated areas of large population become narrower.

The quadratic case allows for a similar approach, but
there is a twist. In cases where the states cross each other at
only one field, either +Fquad or −Fquad �Eq. �8��, the same
equations are used as for the linear case. However, for large
rf amplitudes it is possible that the two states cross at two
different fields: F= �Fquad. The speed at which each cross-
ing is crossed is usually different, so we have different values
for the adiabaticity parameter � which will be labeled + and
−. The same holds for parameters that depend on �: �, 
, and
M. The situation is illustrated in Fig. 11. After N oscillations
the wave function has evolved to

�G45M+G34M−
TG23M−G12M+

T�N�1

0
� , �46�

The parameter of the Chebychev polynomial now becomes

� = �1 − 
−�cos�2�12 + �23 + �45� + 
− cos�2�− + 2�12

− �23 + �45� + 2 sin��45 − �+��
+ sin�2�12 + �23 + �+�

− 2 sin��23 − �−��
+
− cos�2�12 + �− + �+�

+ ��1 − 
−�
−�1 − 
+�
+�� , �47�

where we have used �12=�34. After N oscillations the �b�
population is

Pb = 4��1 − 2
+���1 − 
−�
− sin��23 − �−�

− ��1 − 
+�
+�sin�2�12 + �23 + �+�

− 2
− cos�2�12 + �+ + �−�sin��23 − �−���2UN−1
2 ���

�48�

For near-diabatic transitions 
− ,
+�1 the transferred popu-
lation reduces to

Pb = 4
sin2�N�2�12 + �23 + �45��

sin2�2�12 + �23 + �45�
,

��
+ sin�2�12 + �23 + �+� − �
− sin��23 − �−��2. �49�

This �b� population is plotted as a function of the static field
FS and the rf amplitude Frf for N=3 in Fig. 12. This figure
shows a similar structure as Fig. 8.

In the expressions for the probability of state �b� �Eqs.
�45� and �49�� we recognize two factors. First, the familiar
sin2�Nx� /sin2�x� factor which gives rise to the resonance
condition x=n�; a very ubiquitous phenomenon. Working
out this resonance condition we get exactly the same result
as before: Eqs. �31� and �33�. Second, we identify what we
call the Stückelberg interference factor,
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FIG. 10. �Color online� The population of state �b� as a function
of the static field FS and the rf amplitude Frf �Eq. �45�� for N=3,
where red �dark areas� is a large population and white is a popula-
tion of 0.

FIG. 11. �Color online� Similar to Fig. 9; now for the case of
quadratically shifting Stark states and large rf amplitudes, such that
both the +Fquad and the −Fquad crossing occur. At t1 and t4 the field
is at the +Fquad crossing and at t2 and t3 the field is at the −Fquad

crossing. Furthermore, it is clearly visible that �12 and �34 are
equal, they cover the section between +Fquad and −Fquad.

VAN DITZHUIJZEN, TAUSCHINSKY, AND VAN LINDEN VAN DEN HEUVELL PHYSICAL REVIEW A 80, 063407 �2009�

063407-8



I1 = 4
 sin2��12 + �� �50�

for the linear case or the quadratic case where only one
crossing occurs and

I2 = 4��
+ sin�2�12 + �23 + �+� − �
− sin��23 − �−��2

�51�

for two-crossings case. Note that these interference factors
are independent of N and that they occur already for one
single oscillation.

In Fig. 7 we have depicted the regions of destructive in-
terference. The green, shaded lines are the destructive inter-
ference regions for the situation described above. The red,
solid lines give the destructive interference regions for the
case of a different starting point of the rf oscillation: between
t1 and t2 �Fig. 9�. Note that in this case the phase difference
that results in the interference �Eq. �50�� involves �23 �the
red �solid� area in Fig. 9� instead of �12 �the green �shaded�
area�. This is because only the phase difference that has de-
veloped between the first two crossings is relevant; the last
part gives just an overall phase factor to the wave function.

In Fig. 8 the double crossings case occurs in the upper left
corner, above the upper blue dashed line. Below this blue
dashed line �but above the lower two blue dashed lines� the
one-crossing case is valid. In this lower part we have equiva-
lently plotted the destructive interference in red �solid� and
green �shaded�. For the two-crossings case the interference
factor I2 �Eq. �50�� involves the first three colored area’s
from Fig. 11, �12, �23, and �34 �which is equal to �12�. So
here the phase difference that has developed between t1 and
t4 is relevant. The orange regions in Fig. 8 correspond to the
regions where this factor I2=0. Starting between t2 and t3,
the interference factor I2 would contain �45 instead of �23
and the relevant phase difference has developed between t3
and t6 �t6 is the moment of the crossing after t5�; this is

indicated as the red �solid� regions in Fig. 8. Other starting
points are possible, but not indicated in the figure since no
new physics is involved.

The semiclassical Landau-Zener-Stückelberg �LZS�
model we described is an alternative to the Floquet model,
described in Secs. II B and II D. Both models give approxi-
mately the same results, as we compare Fig. 10 with Fig. 7
and Fig. 12 with Fig. 8. Second, the regions of destructive
interference correspond nicely with the minima of the �gen-
eralized� Bessel function in Figs. 7 and 8. This shows that
both theories work well in the description of our measure-
ments. The Floquet approach is valid for an infinite number
of rf periods. In the experiment we work with an 8 MHz
oscillation during 20 �s, i.e., 160 periods, so we believe that
the Floquet approach is very well validated. The LZS de-
scription is not fully quantum mechanical-the exact time
evolution near the crossings is not taken into account and it
does not give an answer outside the classically allowed re-
gions, i.e., below the lower blue dashed lines in Figs. 7 and
8. However, the LZS description might give more physical
insight into the problem, such as the interpretation of the
occurrence of maxima and minima in the interaction
strength.

III. EXPERIMENT

A. Spectroscopy

In the following part we will describe the performed ex-
periments and compare the results with the theory presented
above. For the two interacting states we have used two two-
atom states, which are coupled through dipole-dipole inter-
action. We prepare atoms in the 41 d state in a confined
region of space, and some tens of microns away, we prepare
atoms in the 49 s state; in both cases by laser excitation. At a
static field of approximately 0.4 V/cm the binding energy of
one 41 d3/2 atom plus the binding energy of one 49 s1/2 atom
equals the sum of binding energies of one 42 p1/2 atom and
one 49 p3/2 atom. The two-atom energy level diagram is de-
picted in Fig. 13. Both the 41 d3/2 and the 49 p3/2 atoms
undergo Stark splitting of the two �mj� states, giving four
two-atom states. The 42 p1/2,1/2+49 p3/2,1/2 state �notation:
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FIG. 12. �Color online� The population of state �b� as a function
of the static field FS and the rf amplitude Frf �Eq. �49�� for N=3,
where red �dark areas� is a large population and white is a popula-
tion of 0.

FIG. 13. �Color online� The two-atom energy levels of the
41 d+49 s and 42 p+49 p system. In the inset we have zoomed in
around the two relevant crossings, which become avoided crossings
due to the dipole-dipole interaction.
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n� j,�mj�
� is plotted as the dotted red line and the 42 p1/2,1/2

+49 p3/2,3/2 state is plotted as the dash-dotted green line. The
41 d3/2,1/2+49 s1/2,1/2 state is shown as the solid blue line.
The 41 d3/2,3/2 state is not excited by the laser, so the
41 d3/2,3/2+49 s1/2,1/2 state, depicted with a blue dashed line,
does not play a role in our experiment. The energies and
polarizabilities are calculated with the Numerov method �21�
and we get W0=25.15�13� MHz. The transition

41 d3/2,1/2 + 49 s1/2,1/2 ↔ 42 p1/2,1/2 + 49 p3/2,1/2 �52�

has a difference polarizability of �1
=347.04�4� MHz / �V /cm�2 and is therefore resonant at a
field of F1=0.3807�15� V /cm. The transition

41 d3/2,1/2 + 49 s1/2,1/2 ↔ 42 p1/2,1/2 + 49 p3/2,3/2 �53�

has a difference polarizability of �2
=297.40�4� MHz / �V /cm�2 and is resonant at a field of F2
=0.4113�16� V /cm.

The states couple through resonant dipole-dipole interac-
tion. The single-atom states have virtually no permanent di-
pole moment, but one atom oscillates due to the coherent
49 s and 49 p superposition and the other atom due to the
41 d and 42 p superposition. These superpositions of two
states do have a dipole moment, a so-called transition dipole
moment �, �sp= �49 s�r�49 p� and �dp= �41 d�r�42 p�. Tran-
sition dipole moments oscillate with a frequency that is given
by the energy difference of the contributing states. Both di-
pole moments are around 1000a0e but can have various po-
larizations: �=�z for �mj =0 or �=�x� i�y for �mj = �1.
Note that, in contrast to the situation in a constant field, here
the sign of mj is relevant. The strength of the dipole-dipole
interaction is given by the well-known expression

Vdd =
�sp · �dp − 3��sp · R̂���sd · R̂�

R3 �54�

and is approximately equal to 2� 100 kHz for a distance of
25 �m. This results in typical values of the adiabaticity pa-
rameter � between 10−5 and 10−3 �depending on the values of
FS and Frf�. This means that the crossings are traversed in a
highly diabatic manner. The adiabatic transfer probability 

is between 10−4 and 10−2, so the approximations Eqs. �45�
and �49� are well justified. The Stokes phase � lies between
0.248� and 0.25�.

All five involved Rydberg states have a purely quadratic
downwards Stark shift. This energy shift is due to the cou-
pling with several � states in a field. This means for the
eigenstates in a field � is not a good quantum number and the
orbital angular momentum is not a conserved quantity. It is
then not allowed to split the spatial and temporal dependence
of the wave function �as in Eq. �14��, because the field
changes with time, and therefore ��r� changes with time.
This is not a problem with linearly Stark shifted states, be-
cause here these states have k as a good quantum number, the
parabolic quantum number which determines the dipole mo-
ment of the state. So in the linear case ��r� does not change
with the field �and therefore not with time�. Fortunately, we
need to use only very small fields. In the field of 0.4 V/cm
we calculated the eigenstates of a whole range of Rydberg

states and it appears that all involved states are more than
99.8% pure, e.g., the population of the 49 p part of the wave
function we call 49 p is 99.8%. With this number we are
confident that the separation of the space and time-dependent
part of the wave function is justified �see Eq. �10��.

In the experiment we explored the coupling strength as a
function of the applied static field and the intensity of the
radio-frequency wave for this quadratically shifted system.
In fact we made a few cuts though Fig. 8; a few horizontal
scans, one scan along the vertical axis and finally several
scans, where we followed a curved resonance line and could
clearly observe the oscillations. The results �Sec. III D� are
discussed after we have described the experimental setup in
Sec. III B and the simulations we have done on a system of
multiple atom pairs in Sec. III C.

B. Experimental setup

To control the dipole-dipole interaction strength Vdd �Eq.
�54�� we confined the atoms in space by using focused laser
beams for the creation of the Rydberg atoms, as described in
�22�. Two sets of pulsed dye-lasers excite ground-state atoms
in a magneto-optical trap �MOT� to the Rydberg states. By
using cold atoms, we ensure that the atoms hardly move on
the time scale of the experiment. The cylinderlike volumes
that contain the Rydberg atoms are approximately 15 �m in
diameter, determined by the laser focus. The length is about
0.5 mm, determined by the diameter of the MOT cloud. Each
volume contains about 25 interacting atoms. The distance
between the two laser beams is chosen to be 25 �m. Several
ms before the laser excitation the magnetic field for the MOT
is switched off, because this field broadens the resonances
due to position-dependent and mj dependent variation of the
Zeeman effect.

The atoms are located between two field plates, on which
the 8 MHz oscillating field is applied as well as an ionizing
field ramp to detect the atoms and their states �9�. The oscil-
lating field is applied by an Agilent 33250A Arbitrary Wave-
form Generator, controlled by an NI LABVIEW program. The
distance vector between the cylinders is in the same direction
as the electric field. We use the fraction of 49 p atoms
�N49 p / �N49 s+N49 p�� as a measure for the interaction
strength. The exact field is calibrated with a static field scan
over the known resonances F1 and F2. The atoms are de-
tected after 20 �s of interaction time. All data are averaged
over 200 realizations. More details on the experimental setup
can be found in �23,24,22�.

C. Simulations for multiple atom pairs

In Sec. II D we derived expressions for the coupling
strength as a function of the oscillating field. However, what
we measure in the experiment is the 49 p fraction, which is a
measure for the 49 p+42 p state �pp-state� population. The
population of this pp-state on resonance is given by Ppp
=sin2 �t /2, since we start with 100% in the sd-state. The
interaction strength � is given by Eq. �34�, which contains
the interaction V �Eq. �9��. This interaction is in this case the
dipole-dipole interaction strength Vdd �Eq. �54��, which de-
pends strongly on the atom-atom distance, which is restricted
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but not fixed. To match the theory better to the actual realis-
tic situation, we performed simulations with multiple atom
pairs. We have two elongated volumes, with the atoms
sparsely distributed, giving varying distances for the atom
pairs. V is also angular dependent, this complicates the prob-
lem a lot, also because �sp and �dp have several possible
polarizations. We will assume the angular dependence is av-
eraged out and we use for Vdd

Vdd =
�sd�pp

�x2 + �y + d�2 + z2�3/2 , �55�

with d the distance between the two cylinders.
We randomly placed one particle in an elongated ellip-

soid, Gaussian in three-dimensional �3D� with full length
400 �m and radius 8 �m �both numbers are 1 /�e widths�
at 25 �m distance of a probe particle. For the interaction
strength we used Eq. �34�, with �0 /2 simply equal to Vdd
�Eq. �55��. For �sd�pp we used 8002a0

2e2. We varied the mix-
ing angle, while keeping the effective field �Eq. �25�� con-
stant on resonance for different n and �=8 MHz. The mix-
ing angle is defined as

�F = arctan� Frf

�2FS
� . �56�

In Fig. 8 �F runs from 0 to � /2, where 0 corresponds to the
horizontal axis and � /2 corresponds to the vertical axis. We
evaluated the �pp� probability after 20 �s for 10 000 random
cases. The result is shown in Fig. 16 as the red dashed lines,
where only the height is fitted to the experimental data.

D. Results

As a first experiment we measured the 49 p fraction,
which is a measure for the dipole-dipole interaction strength,
as a function of static field, for various values of the rf field,
given in Fig. 14. The measured data are depicted in black
and are shown on top of a diagram of the resonances, like in
Fig. 8. The red dashed lines belong to the transition in Eq.
�52� and the blue dash-dotted lines belong to Eq. �53�. The
green dotted lines depict the exact rf amplitudes of the per-
formed scans, which are Frf = 0.049, 0.17, 0.4, and 0.585
V/cm. The green dots indicate where the resonances are ex-
pected, i.e., where the green dotted lines cross the red dashed
and blue dash-dotted lines.

We observe that the positions of the peaks correspond
nicely to the expected positions, the green dots. The exact
field values Frf and FS have been slightly adjusted by a mul-
tiplication factor �maximum 2% different from 1� to fit the
expected positions, because the exact effective plate distance
is not accurately known. The measurements show that indeed
more sidebands occur for a stronger rf field, or in other
words, more multiphoton transitions can be observed. With
an amplitude of only 0.049 V/cm just two sidebands are
populated, the one above and the one below the original
states. We can also say that we have observed the n=1 tran-
sition, where the two-atom system absorbs one rf photon,
and we have the n=0 transition, the original resonance, and
there is the n=−1 transition, where the two-atom system

emits one rf photon through stimulated emission. When we
increase the rf amplitude to 0.17 V/cm we observe sidebands
from n=2 down to n=−5. Surprisingly, at this field the origi-
nal state is completely depleted: the n=0 peaks are missing.
At Frf=0.4 V /cm the peaks around n=−4 are missing, while
at Frf=0.585 V /cm the peaks around n=−9 have disap-
peared. All these missing peaks are nicely predicted in Fig. 8
by the green �shaded�, red �solid� and orange �checkerboard�
areas or the white parts in the resonance curves. Here the
generalized Bessel function and therefore the strength of the
transition goes to zero, or in other words destructive Stück-
elberg interference occurs.

As a second experiment, we measured the 49 p fraction as
a function of rf amplitude Frf for FS=0. In other words, we
made a vertical cut through Fig. 8, along the vertical axis.
The results are depicted in Fig. 15. The observed peaks fit
the expected resonances, depicted as red dashed lines �tran-
sition in Eq. �52�� and blue dotted lines �transition in Eq.
�53�� well; again a small adjustment of the field has been
made. This figure shows in fact the pure ac-Stark shift of the
states, which is 1

4�Frf
2 �see Eq. �24��. Interestingly, we ob-

serve only even-photon transitions. In the absence of a static
field only an even number of photons can be transferred, due
to the selection rules of photon transitions, as was the case in
�23� and is also visible in Fig. 8. Both atoms make a ��
= �1 transition, and one photon—with angular momentum
1—goes from one atom to the other. Adding an even number
of photons the transition is possible, because then the total
angular momentum of these rf photons can add up to zero.
With an odd number of rf photons, however, some angular
momentum remains, and the photons cannot be absorbed by
the two atoms. Already in a small static field odd-photon
transitions are allowed, as can be seen in Fig. 8 because the
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FIG. 14. �Color online� The 49 p fraction in arbitrary units,
depicted in black, is measured as a function of static field for dif-
ferent rf amplitudes. The red dashed and blue dash-dotted resonance
lines correspond to respectively Eqs. �52� and �53� and run from the
+3 photon transition �lower left corner� to the −14 or −11 photon
transition �upper right corner�. The 0-photon transition is depicted
with thicker lines. The resonance peaks are expected where the
green dotted lines cross with the red dashed and blue dash-dotted
lines, indicated with green dots.
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static field can contain some angular momentum �but no en-
ergy�. In other words, with a static field other � states are
mixed in the atomic wave functions, as described in Sec.
III A, and the photons can couple these parts of the wave
function. Note that only a tiny fraction of other � states is
already enough to break up the selection rules. In other
words, for a small field the radial part of the wave function is
hardly changed, but the time-dependent part is changed sig-
nificantly.

A third experiment illustrates the Stückelberg oscillations
most clearly. Here we keep the effective field �Eq. �25�� con-
stant and fixed to a resonance and we vary the mixing angle
�Eq. �56��. This requires adjustments of both the field ampli-
tude and the static field. In Fig. 16 the result is depicted for
mixing angles between 0 and � /2 for the n=−3 to n=+2
photon transitions of Eq. �52�. In fact the measurements run
over the gray lines in Fig. 8 starting on the bottom. The clear
presence of the Stückelberg interference patterns in the data,
especially at the positions of the destructive interference,
proves that our system is coherent for at least one period of
the rf oscillation, i.e., 125 ns. Since the crossing is traversed
mostly diabatically, many oscillations are needed to build up
the pp population. It cannot be proven from these data if this
build up occurs coherently or incoherently. However, if we
look at Figs. 14 and 15, we can estimate the ratio of peak
width to peak distance to be approximately 5. This means
that N in Eq. �49� is at least 5, so we can say that the inter-
action is coherent for at least 5 rf periods, i.e., 0.6 �s. In
reality the coherence time could be longer, because the reso-
nance peaks are probably broadened through other mecha-
nisms.

The red dashed lines in Fig. 16 show the results of the
simulations, described in Sec. III C. Here only the height and
the vertical offset are adjusted to fit the data. The simulations
fit the data nicely, proving that this straightforward calcula-
tion reflects the real experimental situation quite well. The
blue dash-dotted lines in Fig. 16 depict the squared general-
ized Bessel function directly �Eq. �23��. This reflects a situ-
ation of weak or short interaction, since the population of the
pp-state then becomes Ppp�V2Jn

2t2. When the interaction is
stronger, the pp probability oscillates between 0 and 1: the

process is saturated. However, because multiple distances oc-
cur and therefore different interaction strengths, these oscil-
lations are washed out. The result is that the peaks of the
blue dash-dotted lines are broadened, as visible in the red
dashed lines of the simulation. We see again that for small
angles �dc-dominated cases� the population is fully in the n
=0 state. With increasing rf amplitude the population in this
state decreases and more and more higher order states are
populated. For higher �n� the start of the increasing popula-
tion occurs at a larger rf amplitude �or larger mixing angle�.
This is also visible in the classical boundaries, depicted as
green dotted lines, equivalent to the blue dashed lines in Fig.
8. Beyond these boundaries we observe the Stückelberg os-
cillations. On the right-hand side of the plot we see again
that the odd photon transitions go to a minimum and the
even-photon transitions go to a maximum, because on this
side the static field is zero and the selection rules apply as
explained in connection with Fig. 15.

IV. CONCLUSIONS

We have studied both experimentally and theoretically in-
teractions between atoms under the influence of an oscillat-
ing electromagnetic field. States with a quadratic Stark shift
�polarizable states� show a fundamentally different behavior
than states with a linear Stark shift �states with a permanent
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FIG. 15. �Color online� The 49 p fraction as a function of rf
amplitude at zero static field. The red dashed and blue dotted ver-
tical lines depict the expected positions of the even-photon transi-
tions for both transitions given in Eq. �52� and �53�.

� ��� ��� ���� ���
���
����
��� � 	�

���������� � ��	�� 
�

���
����
���
���� ����

����
���
���� ���	

����
���
���� ���


�
�

��
��
��
�

����

���
��	

���

����

���

���

FIG. 16. �Color online� The 49 p fraction measured for different
mixing angles �Eq. �56��. From left to right we have increasing Frf

and decreasing FS. The effective field is kept constant at the
n-photon resonance for each plot. The red dashed lines show the
result of the simulation discussed in Sec. III C. The blue dash-
dotted lines depict the squared generalized Bessel function �Eq.
�23�� directly, which can be seen as a small transfer approximation.
The green dotted vertical lines depict the boundaries of the classi-
cally allowed region and correspond to the lower blue dashed lines
in Fig. 8.
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dipole moment�. A comparison between the two cases has
been made using the Floquet approach. Where in the linear
case the resonance frequency depends purely on the static
field and the coupling strength depends purely on the ampli-
tude of the field, in the case of the quadratic shift, both the
resonance frequency and the coupling strength depend on
both the amplitude and the static offset of the field, and no
separation of variables can be made. For the coupling
strength in the quadratic case we invoked the generalized
Bessel function. Its role is similar to the regular Bessel func-
tion for the linear case. The behavior of both functions is
studied as a function of frequency and compared to the clas-
sical limit; the energy values that occur the most in the os-
cillating field correspond to the resonances with the strongest
coupling strength, apart from some oscillatory behavior. The
oscillatory behavior of the Bessel function as well as the
generalized Bessel function can be explained in terms of
Stückelberg oscillations, which is an interference effect be-
tween the developed phases of the two interacting states.

In the experiment the resonance positions and the interac-
tion strength fully fit the described theory. Destructive Stück-
elberg interference is clearly observed, which proves that our
system is coherent for at least one period of the rf oscillation,
125 ns. From the ratio of the mutual distance the peaks and
the width of the peaks, the lower bound is increased by a
factor of 5 to 0.6 �s. Simulations with multiple atom pairs
at different distances, corresponding to our experimental
situation of two cylinders of atoms, fit the observed interfer-
ence patterns well.
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