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Complete transfer of populations from a single state to a preselected superposition of states using
piecewise adiabatic passage: Experiment
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We demonstrate a method of adiabatic population transfer from a single quantum state into a coherent
superposition of states. The transfer is executed with femtosecond pulses, spectrally shaped in a simple and
intuitive manner, which does not require iterative feedback-controlled loops. In contrast to nonadiabatic meth-
ods of excitation, our approach is not sensitive to the exact value of laser intensity. We show that the population
transfer is complete, and analyze the possibility of controlling the relative phases and amplitudes of the excited
eigenstates. We discuss the limitations of the proposed control methods due to the dynamic level shifts and

suggest ways of reducing their influence.
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I. INTRODUCTION

Population transfer from one energy state to a coherent
superposition of states (i.e., a “wave packet”) is an important
tool in atomic and molecular physics and chemistry. Prepa-
ration of a wave packet with well defined amplitudes and
phases of the constituent eigenstates is the starting point for
many techniques in precision spectroscopy [1,2], coherent
control of molecular dynamics and chemical reactions [3], in
the design of atomic clocks [4] and fault tolerant quantum
computing schemes [5]. In many situations, it is desirable to
make the population transfer complete, that is to move the
entire ensemble of atoms or molecules to the target superpo-
sition state, in a robust manner with respect to the excitation
field parameters.

Both adiabatic and nonadiabatic methods of complete
population transfer between two single eigenstates are well
established [6]. Nonadiabatic Rabi cycling in a two-level
system enables complete population transfer by means of a
so-called “m-pulse.” Though a 7 pulse can be realized on a
very short time scale, it is far from being robust, as it is
highly sensitive to the exact value of the laser intensity, fre-
quency and pulse length. The method can be extended to the
case of a multilevel target state [7], but suffers from the
following complication.

Because of the difference in transition dipole moments to
different excited eigenstates, a single transform-limited pulse
cannot, in general, serve as a m pulse for all transitions si-
multaneously. Recently, we have shown that such nonunifor-
mity of dipole moments can be compensated using the tech-
nique of spectral pulse shaping [7]. Rabi frequencies, and
therefore pulse areas, for each transition can be equalized by
adjusting the amplitudes of the corresponding frequency
components of the excitation pulse. The required amplitudes
are, however, not easy to find due to the dynamic Stark shifts
of the energy levels. As illustrated in Fig. 1(a), strong poly-
chromatic field changes the instantaneous resonant frequen-
cies of atomic transitions, making the necessary (for a
m-pulse) resonance condition hard to satisfy throughout the
whole excitation process. Similar scenario has been consid-
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ered in a two-photon excitation scheme, where the required
pulse shaping has been found by means of iterative
feedback-controlled loops [8].

In contrast to the above, the method of adiabatic passage
(AP) is less sensitive to the parameters of the driving field,
transition dipole moments, and resonant frequencies [9—11].
In AP, the dynamics of a quantum system is described by a
time-dependent Hamiltonian, whose instantaneous “adia-
batic” eigenstates are essentially decoupled from one another
as long as the field is strong and its parameters are changing
slowly [12]. Each adiabatic state is a coherent superposition
of bare eigenstates of a field-free Hamiltonian. As the param-
eters of the interaction field change in time, projections of
each adiabatic state on the bare-state basis set are evolving
accordingly. By making one of the adiabatic states coincide
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FIG. 1. (Color online) Illustration of the interaction of a multi-
level system with polychromatic coherent radiation consisting of a
number of discrete spectral components (long red arrows). Dashed
lines represent the ground state “dressed” with a photon. Bare ex-
cited states of the system (solid lines) are dynamically shifted in
energy due to the presence of nonresonant components of the laser
field. This results in incomplete population transfer via nonadiabatic
process (a). When the spectral components are simultaneously
chirped in frequency (b), adiabatic transfer into a coherent superpo-
sition of excited states is executed. Different timing of the level
crossings (short arrows) complicates the control over the resulting
wave packet, but does not affect the completeness of excitation.
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with the initial state of an atom at the beginning of the inter-
action, and with the target excited state—at the end, one can
achieve robust and complete transfer of population as long as
the adiabaticity conditions are satisfied throughout the inter-
action.

Adiabatic passage between two states is most commonly
executed by sweeping, or “chirping,” an instantaneous fre-
quency of the driving field across a resonance. Adiabatic
crossing of the excited state by the ground state dressed with
a photon field results in complete population transfer be-
tween those rwo states. AP into multilevel wave packets have
been recently considered in two distinct interaction sce-
narios: with multiple phase-locked narrowband laser fields
[13-15], and a single spectrally shaped broadband pulse
[16]. The latter approach provides a simple strategy of shap-
ing the pulse in accord with the energy level structure of the
system of interest. By introducing local frequency chirp
around each resonant transition frequency [Fig. 1(b)], simul-
taneous AP is initiated into multiple target states which make
up the final wave packet. Figure 1(b) provides an intuitive
illustration of the robustness of the method, not only with
respect to the field amplitude and frequency, but also with
respect to the dynamic level shifts associated with the pres-
ence of a strong polychromatic field. Indeed, crossings of the
dressed ground state with multiple excited states will occur
even if the latter are heavily perturbed by the off-resonance
components of the driving field. Dynamic shifts of transition
frequencies result in a slightly different timing of each adia-
batic crossing. As we show here, this lack of synchronism
between multiple APs slightly complicates the control of the
makeup of the target wave packet, but does not reduce the
efficiency of population transfer.

In the time domain, the interaction picture is especially
intuitive when the target states are equidistant in energy. In
that case, shaping a pulse with multiple local frequency
chirps results in a train of mutually coherent ultrashort
pulses, separated by the evolution period of the wave packet.
Though each pulse in the train transfers only a small amount
of population to the target superposition state, population of
that state coherently accumulates [1,17,18] piece by piece,
reaching 100% at the end of the interaction regardless of the
total energy of the pulse train [16]. Shown in Fig. 2 is an
example of numerically calculated dynamics of such piece-
wise adiabatic passage (PAP) into a wave packet consisting
of only two levels and driven by a train of ultrashort pulses.

The population transfer technique we are studying here
can be viewed as a practical application of the 1+N-level
control schemes, based on the Morris-Shore transform [19]
and discussed in [15]. The selectivity of the transfer is ob-
tained by tailoring the temporal and spectral profiles of the
train of pulses to the target wave packet dynamics [1,20-22].
The correspondence between the properties of the pulse train
and the target wave packet dynamics has also been noted in
the optimization studies aimed at either maximizing popula-
tion transfer into a wave packet [23-25] or stabilizing such
transfer against the wave packet spreading and decoherence
[26]. Our method provides an alternative to the “multi-Rapid
adiabatic passage” pulse sequences of [27] and “molecular
ar-pulses” used in exciting molecular wave packets [28-31].
The difference with the latter methods is manifest when the
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FIG. 2. (Color online) Results of numerical simulations of
piecewise adiabatic passage for potassium atom. Population transfer
is shown in (a) as a function of time. Blue solid line represents the
ground state population while red dashed and green dotted lines
correspond to the populations of 4P, and 4P;, excited states,
respectively. Excitation field amplitude is plotted in (b) on the same
time scale.

target wave packet consists of more than two eigenstates
[16].

Recently, we have demonstrated experimentally the
method of piecewise adiabatic passage into a single excited
state [32]. Here, we extend this method to the multilevel
target states case, by exciting the fine-structure doublet in
atomic potassium. We show experimentally that one can
achieve complete population transfer into such “spin-orbit”
wave packet with high degree of robustness. We also present
a simple and intuitive approach to controlling the phases and
amplitudes of the constituent eigenstates of the final super-
position, and address its limitations.

II. EXPERIMENTAL SETUP AND DETECTION METHOD

The relevant levels of potassium atom are shown in Fig.
3(a). Two fine-structure levels, 4P, and 4P5,, make up the
target wave packet, which is populated from the initial
ground state 4S,,. The D, (4S,,—4P,,) and D, (4S,,
—4P5),) transitions at 769.9 and 766.5 nm, respectively, are
excited by a single broadband laser pulse of 9.5 nm full
width at half maximum (FWHM) centered at 768.2 nm. The
latter (“pump”) pulse is produced by a traveling wave optical
parametric amplifier [Fig. 3(c)], pumped by a Ti:sapphire
femtosecond regenerative amplifier. The energy of pump
pulses are attenuated and recorded with a fast photodiode
prior to shaping. Hereafter, the reported pulse energies al-
ways correspond to the energy of unshaped pulses.

To apply spectral shaping, we use a homemade pulse
shaper implemented in 4f geometry and based on a double-
layer liquid-crystal spatial light modulator (SLM) [33]. The
shaper controls both the phase and the amplitude of a pulse
with spectral resolution of 0.14 nm. The amplitude is shaped
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FIG. 3. (Color online) (a) Relevant quantum states of potassium.
Blue double-peak curve represents the shaped spectrum of pump
pulses, whereas red arrows depict possible channels of ionizing the
atoms with probe pulses. (b) Spectral shaping of pump pulses with
local frequency chirping around two electronic resonances at 766.5
and 766.9 nm: intensity (solid black) and phase (dashed magenta).
Dotted green line represents flat spectral phase used for a nonadia-
batic excitation scheme. (c) Experimental setup. Two optical para-
metric amplifiers (OPA) are pumped by a Ti:sapphire regenerative
amplifier (RGA) producing 130 fs 2 mJ pulses at 1 kHz repetition
rate. One OPA is used to generate pump pulses of variable energy,
controlled by an attenuator and measured by a fast photodiode.
Pump pulses are shaped with a pulse shaper and are weakly focused
on a cloud of potassium atoms inside a vacuum chamber. Probe
pulses are delayed by a variable time delay and tightly focused on
the atomic cloud. Potassium atoms, ionized by probe pulses, are
accelerated toward and detected by a multichannel plate based ion
detector.

by applying two Gaussian windows of variable relative
height and width, each centered at one of the resonant fre-
quencies [Fig. 3(b)]. Blocking the nonresonant spectral com-
ponents is important for achieving control over the target
wave packet, as discussed below. As shown in the figure,
quadratic spectral phase is added to each Gaussian window,
producing variable linear frequency chirp around the corre-
sponding resonance. Prior to applying any spectral shape de-
scribed below, the phase of pump pulses is flattened using
the technique of multiphoton interpulse interference phase
scanning (MIIPS [34]). Flat spectral phase is also used to
drive Rabi oscillations as described below. The shaped pump
pulses are then focused on a cloud of potassium atoms
evaporated from a potassium dispenser inside a vacuum
chamber.

The population of the excited coherent superposition state
is detected by photoionizing the atoms with a second
(“probe”) pulse. In order to probe the region of uniform
pump intensity, the probe beam is focused much tighter than
the pump pulse (beam diameters of 135 and 460 wm, re-
spectively). Our detection method is based on the weak field
bichromatic coherent control scheme [35]. The 4P, and
4P, states are coupled to 55, with a weak (less than
0.3 uJ) femtosecond pulse [Fig. 3(a)]. The central wave-
length of probe pulses is tuned in such a way as to drive both
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transitions at 1243 and 1252 nm with equal efficiency. Two
more photons from the same probe pulse ionized the atoms.
At such low probe energy, five-photon ionization from the
ground electronic state is negligible. Extracted from the in-
teraction regions with a series of voltage plates, the ions are
identified by their time of flight and detected by a micro-
channel plate (MCP) detector.

In order to understand the bichromatic control detection
we write the wave function of the system as

V(1) = 25 bi0)g = bo(04S ) + b1(D[4P15) + by(1)|4P3 ).

(1)

Because of the low probe energy, the ionization probability is
proportional to the population of the 55, state. In the per-
turbative regime of interaction, this probability can be calcu-
lated as [35],

P(t) = |b1(1)|2|€(w1)|2d11 + |b2(f)|2|5(w2)|2d22
+2 Re[b(1)b5(1) e(w)) € (wy)d5] (2)

where b,(r) and b,(z) are the excited eigenstate amplitudes
[Eq. (1)], €(w;) and e(w,) are probe field amplitudes at the
resonant probe transition frequencies of 4P;,—5S;, and
4P3,— 58y, respectively, and d;;=(i;|d|55,,)(58|d| )
with d being the dipole moment operator.

The last term in Eq. (2) is the interference term which
depends on the difference between the relative phase of the
excited wave functions b, , and the relative phase of the two
resonant probe field components e(w, ,). Since the latter is
constant, the ionization probability, and therefore the ion sig-
nal recorded as a function of the pump-probe time delay,
oscillates as sin[(w;—w,)t+¢,], where ¢,=arg{b|b,d,,}.
These oscillations indicate that two 4P states are populated
coherently, whereas their relative amplitudes and phases can
be extracted from the oscillation contrast and phase, respec-
tively [36]. In the experimental plots shown below, each data
point is an average of 200 measurements.

III. RESULTS

We first execute population transfer into each of the 4P
states separately. Nonadiabatic interaction results in familiar
Rabi oscillations which serve as a convenient tool for cali-
brating both the excitation pulse area and excited state popu-
lation. The original spectrum and the two Gaussian windows
of 1.8 nm FWHM used for amplitude shaping are shown in
Fig. 4(a). To drive Rabi oscillations on a selected transition,
a single Gaussian window was applied around the resonant
frequency of D; or D, transition. Hereafter, we refer to the
corresponding narrow-band pulses as “D; pulse” and “D,
pulse,” respectively. In both cases, the spectral phase was
kept flat across the whole spectrum of a pulse. Rabi oscilla-
tions are shown in Fig. 4 for both D, (b) and D, (c) lines.
Given the available laser power, we were able to reach pulse
areas of up to 37 on each transition. By fitting the data with
a sin2A1,2 function, we calibrate the areas of D; and D,
pulses (A, and A,, respectively) versus their energy. Simul-
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FIG. 4. (Color online) Adiabatic and nonadiabatic excitation of
a single (4P, or 4P3),) excited state. (a) Pump pulse spectra used
to excite either D or D, transitions separately (solid blue and
dashed red lines, respectively). Spectral profile of the initial un-
shaped femtosecond pulse is shown as dashed black curve. [(b), (¢)]
Nonadiabatic (blue diamonds) and adiabatic (red circles) population
transfer into 4P, (b) and 4P3), (c) states. Ion signal, proportional
to the target state population, is plotted as a function of the corre-
sponding pulse area, A 5. Solid lines show the anticipated sinZ(A,,z)
dependence fitted to the experimental data.

taneously, we calibrate the magnitude of the ion signal cor-
responding to the pulse area of 7. These calibrations are later
used for assessing the completeness of the population trans-
fer.

In order to execute an adiabatic passage into a single ex-
cited state, a frequency chirp is introduced by applying qua-
dratic spectral phase shaping around one resonant frequency
Wy, ie., p(w)=5(w—w,,)* [Fig. 3(b)], while blocking the
Gaussian window around the other resonance. The frequency
chirp is gradually increased by the shaper until the popula-
tion transfer shows AP-like saturation with intensity, such as
that shown in Figs. 4(b) and 4(c) by open circles for both D,
and D, transitions. Independent measurement of the applied
chirp yields @=270X 10° fs. For both transitions, the ion
signal reaches its maximum at a pulse area of =~ and stays
relatively flat with increasing pulse energy. The maximum in
the AP efficiency is seen to coincide with a maximal number
of Rabi oscillations, attesting to nearly complete population
transfer. The residual oscillations, reproduced in our numeri-
cal simulations (not shown), are due to the pixelization of the
spatial light modulator.

Once the pulse area and chirp required to satisfy adiaba-
ticity conditions are determined, we can execute complete
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FIG. 5. (Color online) Nonadiabatic population transfer into a
superposition of 4P, and 4P, states. The two-dimensional plots
[(a) experiment, (c) calculation] show the ion signal (color coded)
as a function of the effective pulse area and pump-probe time delay.
Oscillations along the vertical (time) axis reflect quantum beating
due to the time evolution of the wave packet. The quantum beats are
shown in (b) for pulse areas of 7 (solid blue) and 27 (dashed red),
corresponding to the dashed vertical white lines in (a). In plot (d),
we present the calculated populations of the two excited states,
4P, (dash-dotted blue) and 4P/, (dashed green), and the relative
phase (dotted red) between the corresponding wave functions plot-
ted on the same scale (in the units of 77), as a function of the
effective pulse area of the excitation field. The ground-state popu-
lation is shown as a solid black line.

population transfer into a superposition of 4P, and 4P,
states. If both states are populated coherently, quantum beats
should be observed in the ionization signal as a function of
the probe pulse delay according to the interference term in
Eq. (2). In both the nonadiabatic and adiabatic approaches,
the amplitude of the spectrum of the pump pulses is shaped
by opening both the D, and D, Gaussian windows simulta-
neously. Interference of the D, and D, pulses in the time
domain results in a train of pulses separated by a period of
the quantum evolution of the wave packet. The latter is in-
versely proportional to the fine-structure splitting of 4P state
(1.73 THz) and equals 578 fs. A numerical example of such
pulse train is shown in Fig. 2(b).

First, the spectral phase of pump pulses is kept flat across
the whole double-peak spectrum. In the time domain, flat
spectral phase translates into a train of pulses with constant
carrier oscillation frequency and no extra phase shift between
consecutive pulses [16]. The resulting Rabi oscillations be-
tween the ground state and the excited wave packet are
shown in Fig. 5(a). The two-dimensional plot shows the ion
signal as a function of the time delay (vertical axis) and
effective pulse area (horizontal axis), which in the case of
multiple excitation channels can be used as a convenient
scale of the interaction strength. It is defined as

R
Aer= VAT +A3, (3)

where A, =[7 Q,(r)dt, with Q, being the time-dependent
Rabi frequencies for the ith transition.
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Oscillations along the vertical axis indicate quantum beat-
ing between 4P, and 4P5, states. Both the experimental
and numerical plots [Figs. 5(a) and 5(c)] demonstrate strong
dependence of the result of the excitation on the effective
pulse area. Rabi oscillations between the ground state and
the excited wave packet are manifested by the periodic reap-
pearance of the beat signal. Thus, high beating contrast at
A= disappears almost completely at A= 27, as shown
by the vertical cross sections of the two-dimensional data
(white dashed lines) in plot (b).

We note that both the contrast of the beat signal and its
phase are affected by an increase in the pulse energy. We
attribute this phase change to the energy-dependent ac Stark
shifts of the levels, caused by the strong nonresonant com-
ponents of the polychromatic excitation field (see schematic
illustration in Fig. 1). In the case considered here, the 4P,
level is shifted due to the presence of an off-resonant D,
pulse, whereas the 4P5), level is shifted by an off-resonant
D, field. Since the shifts are in general unequal, the accumu-
lated quantum phase of the two wave functions, |4S,,,) and
|4S5,,), depends on the energy of both pulses. The effect is
reproduced by the numerical calculations shown in Fig. 5(c).

For pulse areas of order 7 and higher, typically needed for
significant population transfers, such dynamic cross talks be-
tween simultaneously driven transitions become substantial
when the pulse bandwidth approaches the energy separation
between the levels. In this case, dynamic Stark shifts cannot
be neglected and multiple interaction channels cannot be
treated independently. This significantly complicates the
nonadiabatic dynamics, making controlled and complete
population transfer hard to achieve. Figure 5(d) demonstrates
the degree to which the dependence of the |b,(¢)|*> and |b,(1)[?
populations on pulse energy deviates from the periodic Rabi
oscillations behavior, once the effective pulse area exceeds
.

In striking contrast to Rabi flopping, when local chirp is
added to both the D, and D, spectral windows [Fig. 3(b)],
the observed quantum beats become insensitive to the pulse
area [Figs. 6(a) and 6(c)]. Using our experimental observa-
tion of separate adiabatic passages into each level (Fig. 4),
we set the frequency chirp to 270 X 10° fs?, for both the D,
and D, pulses. As seen in Fig. 6(b), the contrast of the ex-
perimentally observed quantum beating changes only little
throughout the wide range of pulse areas, A=~ to Ay
~ 3. This demonstrates the stability of the population trans-
fer against pulse energy in agreement with the adiabatic pas-
sage scenario.

Though clearly more stable than in the nonadiabatic re-
gime, the beat signal gives only indirect evidence of the mea-
sure of the robustness of the population transfer. Unfortu-
nately, extracting the absolute values of the population
transferred to 4P, and 4P5,, from the measured beat signal
proved inaccurate. We therefore calculate these populations
numerically. The results, presented in Fig. 6(d), show that the
population ratio varies with the excitation pulse energy. A
number of simple approaches to controlling this ratio are
discussed later in the text. For the time being we note that an
increase in the pulse area leaves the phase of the excited
wave packet intact. This statement is confirmed experimen-
tally and theoretically, as shown in panels (b) and (d), respec-
tively.
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FIG. 6. (Color online) Adiabatic population transfer into a su-
perposition of 4P, and 4P;, states. The two-dimensional plots
[(a) experiment, (c) calculation] show the ion signal (color coded)
as a function of the effective pulse area and pump-probe time delay.
The oscillations along the vertical (time) axis reflect quantum beat-
ing due to the time evolution of the wave packet. The quantum
beats are shown in (b) for pulse areas of 7 (solid blue) and 2
(dashed red), corresponding to the dashed vertical white lines in (a).
In plot (d), we present the calculated populations of the two excited
states, 4Py, (dash-dotted blue) and 4P, (dashed green), and the
relative phase (red dots) between the corresponding wave functions,
as a function of the effective pulse area of the excitation field. The
ground state population is shown as a solid black line.

In contrast to the nonadiabatic dynamics, AP exhibits a
threshold at A = 7, beyond which the ground level remains
empty, even though the population ratio between the excited
levels may vary. This stability of the completeness of popu-
lation transfer against variations in pulse energy is best dem-
onstrated by comparing the numerical results of Figs. 5(d)
and 6(d). It also forms the basis for the proposed schemes of
controlling the population distribution among excited states.
We therefore seek an independent experimental confirmation
of the completeness of population transfer.

In the experiments described above, we have used Rabi
oscillations between the ground state and one of 4P excited
states for calibrating the population transfer efficiency, as-
suming that the first maximum of these oscillations corre-
sponds to a complete transfer. However, even though a
pulse is expected to drive the whole population to the excited
state, it is conceivable that completeness is not fulfilled due
to the sensitivity of the latter to frequency detuning. In order
to perform an independent check of the completeness of the
population transfer, we have carried out the following experi-
ment: We delay the D; pulse by approximately 8 ps with
respect to the D, pulse by inserting a thin piece of glass in
front of the corresponding spectral window in the Fourier
plane of the pulse shaper. If the D, pulse, arriving first,
drives all the atoms to P;, state and depletes the ground
state, the D; pulse, arriving second, will leave the system
unchanged. As all atoms are residing in a single P, state, no
quantum beats would be observed. Alternatively, if the exci-
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FIG. 7. (Color online) Demonstration of the population transfer
completeness. (a) Ton signal as a function of the pump-probe time
delay for a sequence of frequency chirped D; and D, pulses sepa-
rated by 8 ps (the time when the second pulse is present is between
two dashed vertical lines). Filled black (red squares) dots corre-
spond to the signal before (after) the arrival of the second pulse. (b)
Fourier transform of the ion signal before (solid blue) and after
(dashed red) the arrival of the second pulse (log scale). Strong peak
is expected at the frequency of quantum beating (1.73 THz) if both
states are populated.

tation driven by the first pulse is not complete, the second
pump pulse would move the remaining ground-state popula-
tion to Pj, state, resulting in the appearance of quantum
beating.

To verify this, we set the areas of both D and D, pulses
(now separated in time) to 77, and their frequency chirp to
270X 10° fs?. As can be seen in Figs. 4(b) and 4(c), these
parameters are sufficient for reaching maximum population
transfer to either P/, or P5,, when the corresponding pulse is
acting alone. The results of the interaction with a sequence of
two pulses are presented in Fig. 7. The first pulse arrives at
approximately O ps, while the time of arrival of the second
pulse is about 8 ps. Fourier analysis of the ion signal after the
arrival of the second pulse [Fig. 7(c)] shows essentially no
quantum beating, ensuring that the population of 4P,,, state
is below 3%.

As pointed out by us in the past [16], piecewise adiabatic
passage potentially combines the efficiency and robustness
of AP with the ability to excite complex superposition states
(e.g., wave packets) and control the makeup of the excited
state wave function. Control over the phase of a spin-orbit
wave packet in potassium has been previously demonstrated
experimentally in the weak field regime [37]. Here we show
that the relative phase between the two eigenstates of the
target superposition can be controlled even when the field is
strong enough to ensure adiabaticity of the process. Control
over the phase is implemented by adding an extra constant
phase to one of the pulses, D; or D,, on top of the local
frequency chirp in the respective spectral window. The re-
sulting phase profile, attained using the pulse shaper, is
shown in Fig. 8(a) for a relative phase of 0, 7/2 and 7
radian. Two-dimensional energy-time scans for these three
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FIG. 8. (Color online) Experimental control over the quantum
phase of an excited wave packet. (a) To control the relative phase of
the eigenstates in the target superposition state, an extra constant
phase shift of 0 (dotted red), 7/2 (dashed-dotted green) and
radian (solid blue) is added to the spectral phase of D; pulses. Black
dashed line shows the double-peaked spectral amplitude of the
pulse. The introduced phase shift results in a corresponding vertical
shift of the detected quantum beats shown in (b). (c) Vertical cross-
sections of the two-dimensional scans in (b) at pulse area of 7. Blue
diamonds, red squares, and green circles corresponds to 0, 77/2, and
7 phase shifts of D; pulse, respectively.

phase shifts are shown in panel (b). The vertical cross sec-
tions of each two-dimensional plot, displaying quantum beat
patterns corresponding to pulses of area =, are plotted in
panel (c). The phase of the oscillations, which directly re-
flects the relative phase of P, and P;,, eigenstates, closely
follows the extra phase shift introduced via the pulse shaper.

One may expect that the amplitudes of the eigenstates in
the target superposition can be controlled individually, simi-
larly to the phase control described above. As was shown in
[16] for the case of negligible Stark shifts, the state ampli-
tudes at the end of the interaction are simply proportional to
Rabi frequencies of the corresponding transitions. Thus, the
population distribution among excited states (here, 4P, and
4P;,,) can be controlled by changing the relative strength of
the corresponding spectral components of the excitation field
(here, the energies of D; and D, pulses). This simple strategy
fails, however, once the dynamic Stark shifts become com-
parable to the energy bandwidth of the laser pulses. This
situation is illustrated in Fig. 1(b), where one can see that
unequal Stark shifts effectively change the time at which
each adiabatic passage is executed. The farther these APs
from being simultaneous, the bigger the deviation of the
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FIG. 9. (Color online) Quality of population control with piece-
wise adiabatic passage. Numerical simulations demonstrate possible
discrepancy between the achieved population ratio 8 of two 4P
states (vertical axis) and its target value (horizontal axis), for dif-
ferent control methods (see text for symbol description).

population distribution from the expected one.

Poor accuracy in retrieving state populations from the ob-
served beat signal does not allow us to investigate the pos-
sibilities of amplitude control experimentally. Here, we
present numerical analysis of various ways of achieving rea-
sonably high degree of control over the excited state popu-
lations by either avoiding, or compensating for the detrimen-
tal effects of the Stark shifts. The results are summarized in
Fig. 9, in which the calculated ratio B=|b,|*/|b,|* is plotted
versus its target value for different control methods. In all
calculations, the effective pulse area was set to 7, and the
local spectral chirps near D, and D, lines was equal to 270
X103 fs2.

We first note that for the parameters used in our experi-
ments, calculated values of B (red circles) lie within 37.5%
of those expected from a simple model which does not take
Stark shifts into account (diagonal dashed line). Assuming
the correct phases of the state amplitudes, this corresponds to
the transfer fidelity (projection on the target wave packet)
varying between 1 and 0.997. The discrepancy can be further
reduced by narrowing the spectral bandwidth of the excita-
tion pulses. Decreasing it from 1.8 nm (as used here) to 0.18
nm, dramatically improves the quality of amplitude control,
marked as blue diamonds. It is important to note that such
improvement comes at the expense of much longer (by a
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factor of 10) interaction time, and higher spectral resolution
of a pulse shaper, which will be necessary for the frequency
chirping of a spectrally narrower pulse.

Unlike the case of independent adiabatic passages, i.e.,
when Stark shifts can be ignored, the Stark-induced dynami-
cal cross talk between different AP channels makes S sensi-
tive not only to the ratio of D; and D, pulse energies, but
also to their sum. This certainly reduces the robustness of the
proposed method of amplitude control, though not the ro-
bustness of PAP itself. In other words, in PAP, the population
transfer remains complete, even though the shape of the ex-
cited wave packet may change in response to changes in the
overall pulse energy. Utilizing this important property of
piecewise adiabatic passage, we suggest a simple adaptive
strategy of controlling the eigenstate amplitudes in the ex-
cited superposition state. By accurately measuring popula-
tions of the excited states (not available in our current ex-
perimental setup), a correction can be introduced into the
relative energy of each spectral component of the excitation
field, proportional to the deviation of the observed popula-
tion distribution from its target shape. The numerical results
of such an iterative procedure appear as green triangles in
Fig. 9. After only two iterations, the calculated ratio between
|by|* and |b,|? is brought within 0.2% of its target value.
Unlike the more general schemes of adaptive control [38],
the present technique involves only as many control vari-
ables as there are excited states (in our case, two), and con-
verges very quickly due to the inherent robustness of AP.

IV. CONCLUSION

We have presented experimental and numerical studies of
the population transfer using piecewise adiabatic passage
from a single ground state to a superposition of excited
states. As in conventional adiabatic population transfer into a
single state, our method of piecewise adiabatic passage into a
wave packet is insensitive to the driving field amplitude. The
method allows for complete population transfer and offers
control of both the phase and amplitudes of the eigenstates
composing the target superposition state. The latter are re-
trieved by applying bichromatic control to the process of
photoionization.
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