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Photoionization processes for the ground state and n�3 excited states of hydrogenlike ions embedded in a
weakly coupled plasma are investigated in the entire energy range of a nonrelativistic regime. The plasma
screening of the Coulomb interaction between charged particles is described by the Debye-Hückel model. The
energy levels and wave functions for both the bound and continuum states are calculated by solving the
Schrödinger equation numerically by the symplectic integrator. The screening of Coulomb interactions reduces
the number of bound electron states, decreases their binding energies, broadens the radial distribution of
electron wave functions of these states, and changes significantly the phases and the amplitudes of continuum
wave functions. These changes strongly affect the dipole matrix elements between the bound and continuum
states and, hence, the photoionization cross sections. The most significant effects of the screened Coulomb
interactions on the energy behavior of photoionization cross sections are manifested in its low-energy behavior
�Wigner threshold law�, the appearance of multiple shape and virtual-state resonances when the energy levels
of upper bound states enter the continuum after certain critical strength of the screening, and in the �slight�
reduction of the cross section at high photon energies. All these features of the photoionization cross section
are related to the short-range character of the Debye-Hückel potential. The effects of the potential screening on
the Combet-Farnoux and Cooper minima in the photoionization cross section are also investigated. Compari-
son of calculated photoionization cross sections with the results of other authors, when available, is made.
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I. INTRODUCTION

The effects of screened Coulomb interaction between
charged particles in hot dense plasmas on the structure and
collision properties of atomic species have been subject to
numerous studies in the last 30–40 years �see, e.g., �1–3� and
references therein�. These studies have been motivated
mainly by the research in laser produced plasmas, extreme
ultraviolet and x-ray laser development, inertial confinement
fusion, and astrophysics �stellar atmospheres and interiors�.
The densities �n� and temperatures �T� in these plasmas span
the ranges n�1015–1018 cm−3, T�0.5–5 eV �stellar atmo-
spheres�, n�1019–1021 cm−3, T�50–300 eV �laser pro-
duced plasmas�, and n�1022–1026 cm−3, T�0.5–10 keV
�inertial confinement fusion plasmas�. The Coulomb interac-
tion screening in these plasmas is a collective effect of the
correlated many-particle interactions, and to the lowest par-
ticle correlation order �pairwise correlations� it reduces to the
Debye-Hückel potential �for the interaction of an ion of
charge Z with an electron� �1–3�,

V�r� = −
Ze2

r
exp�−

r

D
� , �1�

where D= �kBTe /4�e2ne�1/2 is the Debye screening length, Te
and ne are the plasma electron temperature and density, re-
spectively, and kB is the Boltzmann constant. The represen-
tation of charged particle interaction in a plasma by the po-
tential �Eq. �1�� is adequate only if the Coulomb coupling
parameter �=e2 / �akBTe� and plasma nonideality parameter
�=e2 / �DkBTe� satisfy the conditions ��1, ��1, where a
= �3 / �4�ne��1/3 is the average interparticle distance. There is

a wide class of laboratory and astrophysical plasmas in
which these conditions are fulfilled �Debye plasmas�. Ex-
pressions for the screened Coulomb interaction for strongly
coupled and nonideal plasmas can be found elsewhere �see,
e.g., �1,2��.

The photoionization process is one of the major factors
determining the opacity of stellar objects where it usually
takes place in a plasma environment. It is also a very impor-
tant process in laser produced and inertial confinement plas-
mas taking part in the ionization and energy balance, as well
as in the level population kinetics of plasma atomic species.
The plasma effects on the photoionization process have been
studied in the past under various assumptions about the form
of the screening defined by the plasma conditions �see �1,2�
for references�. Studies of this process in a Debye plasma
were reported in �4–10�, the most elaborate of them being
those in �8–10�. In �4–6�, the wave functions of the bound
and continuum electrons were determined by numerically
solving the Schrödinger equation with the potential �Eq. �1��
but only for a limited number of screening lengths. The em-
phasis in these studies was placed mainly on the threshold
energy region where the Wigner threshold law behavior �11�
was demonstrated and on the appearance of shape resonances
in the cross section �5�. In Ref. �7� the Born approximation
was employed to calculate photoionization cross section for
a number of screening lengths. This approximation is obvi-
ously inadequate for describing the photoionization dynam-
ics except at very high energies. In �8–10� the complex-
coordinate rotation method was used to calculate the
photoionization cross section for a number of screening
lengths. As in �4–6�, the selection of screening lengths in
these papers was guided by the objective to demonstrate the
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main effect of the interaction screening on the cross section:
its drastic reduction in the near-threshold energy region with
respect to the pure Coulomb case. In Ref. �8� the photoion-
ization of H and He+ was studied, in �9� the photoionization
of Li and Na atoms was considered within the one-electron
approximation �with a suitable model potential�, while in
�10� the photoionization of He�1s2s ; 1S� and He�1s2p ; 1P�
was investigated. The lack of a systematic investigation in all
these papers of the detailed behavior of bound-state energies
near the ionization continuum has resulted in overlooking
important aspects of the photoionization dynamics of hydro-
genlike ions in a Debye plasma. Thus, in Ref. �5�, while the
physical basis for the appearance of near-threshold shape
resonances in photoionization cross section was clearly elu-
cidated �as transitions to quasibound states with nonzero an-
gular momentum supported by the centrifugal barrier in the
potential�, no relation was established between their appear-
ance and the critical strength of the screening at which a
particular bound state enters the continuum. In Ref. �5� also
the effects of near-zero-energy �virtual� s states on the cross
section for np→�s transitions were discussed, but, again, no
relation between the appearance of these states and the
screening parameter was established. In Ref. �8�, sharp near-
threshold peaks in the photoionization cross sections for cer-
tain values of the screening were observed, but they were not
associated with the shape resonances. Cooper minima
�12–14� were observed in Ref. �9� in the photoionization
cross sections for Li and Na in Debye plasmas. However,
since the problem was treated in one-electron approximation
and the active electron interaction with the ionic core was
represented by a model potential containing terms similar to
that of Eq. �1� there remains an ambiguity regarding the ori-
gin of the observed Cooper minima. The Combet-Farnoux
minima �15,16�, which are also a specific feature of the
photoionization cross section in the plasma free case, have
not been observed in either of the mentioned studies with a
Debye-Hückel potential.

In the present paper we shall try to present the full picture
of the photoionization dynamics in hydrogenlike ions in the
states with principal quantum number n�3 embedded in a
Debye plasma by choosing appropriately the values of De-
bye screening length. As the near-threshold behavior of the
cross section has already been studied in detail in �4–10�, we
shall focus our attention on the other specific features of the
photoionization cross section: the shape resonances, the Coo-
per and Combet-Farnoux minima, and the broad near-
threshold resonances due to the appearance of virtual s
states. We should note that the shape and virtual-state reso-
nances, as well as the Cooper minima, do not appear in the
photoionization of hydrogenlike ions with a pure Coulomb
interaction �17,18� and can, therefore, be considered as spe-
cific manifestations of the short-range screened Coulomb in-
teraction. A rigorous proof of the nonexistence of Combet-
Farnoux minima in hydrogenlike systems with pure
Coulomb interaction is not known to the present authors.
However, the photoionization cross sections from 1s, 2l, and
3l Coulomb bound states, calculated in the present work for
comparison purposes with the screened case, indicate ab-
sence of Combet-Farnoux minima in the photoionization
cross section of isolated hydrogenlike systems.

We should also mention that the appearance of shape
resonances and Cooper minima in the photoionization of iso-
lated many-electron atomic systems, treated in the indepen-
dent particle approximation, has always been associated with
the nuclear screening by the “passive” electrons and with the
appearance of a centrifugal barrier in the effective potential
for the nonzero angular momentum continuum states �see,
e.g., �19–22� and references therein�. However, the effective
one-particle potential in many-electron atomic systems de-
pends on their specific electronic structure and does not pro-
vide a smoothly varying screening parameter for establishing
a transparent correlation between the photoionization dy-
namics and the Coulomb interaction screening. The potential
�Eq. �1�� does provide such a parameter, the Debye length D.
There is another important difference between the interaction
screening in the isolated many-electron atoms �or ions� and
the screened Debye-Hückel potential �Eq. �1��. While in the
former case the interaction screening experienced by the “ac-
tive” electron is restricted in the radial regions associated
with the dominant electron density distribution in the atom
�ion� �and, thus, in the asymptotic region the interaction re-
tains its Coulomb character�, in the latter case the interaction
screening extends to infinity. This circumstance will obvi-
ously produce certain differences in the photoionization dy-
namics of these two physical cases, as we shall see later in
this work.

For determination of the bound and continuum state elec-
tron wave functions in the Debye-Hückel potential �Eq. �1��
we have employed the fourth-stage fourth-order symplectic
integration scheme �23,24� to solve numerically the radial
Schrödinger equation. This numerical method provides a
high computational accuracy for both the bound-state ener-
gies and bound and continuum electron wave functions �see
Sec. II�. We mention that this method has already been ap-
plied in our previous studies of bound-bound transitions �23�,
electron-impact excitation �26� of hydrogenlike ions, and
photoionization of the ground state and excited Li atom
�treated in the one-electron approximation� �27� in Debye
plasmas.

The paper is organized as follows. In Sec. II we briefly
describe the method of wave function calculations and ana-
lyze the wave function and bound-state energy behavior as
the interaction screening varies. In Sec. III we present the
results of our photoionization cross section calculations and
discuss the relation of characteristic cross section features
with the strength of the interaction screening. In Sec. IV we
give our conclusions.

Atomic units will be used in the remaining part of this
work unless otherwise explicitly stated.

II. COMPUTATIONAL METHOD, WAVE FUNCTIONS,
AND BOUND-STATE ENERGIES

A. Computational method

The radial Schrödinger equation for a hydrogenlike ion
with nuclear charge Z in a Debye plasma is given by
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�−
d2

2dr2 +
l�l + 1�

2r2 + V�r��P�l�r;Z,D� = E�l�Z,D�P�l�r;Z,D� ,

�2�

where P�l�r ;Z ,D� is the radial electron wave function, �
=n for the discrete states �the principal quantum number� and
�=k�=�2�� for the continuum states �the wave number of
continuum electron with energy ��, l is the angular quantum
number, and the potential V�r� is given by Eq. �1� �with e2

=1�.
By making the scaling transformations

	 = Zr, 
 = ZD, ��l�
� = E�l�Z,D�/Z2. �3�

Equation �2� is reduced to the form

�−
d2

2d	2 +
l�l + 1�

2	2 −
exp�− 	/
�

	
�P�l�	;
� = ��l�
�P�l�	;
� ,

�4�

which is the radial Schrödinger equation for the hydrogen
atom in the scaled units. The bound-state radial wave func-
tions are normalized in the standard way,

	
0

�

d	Pnl�	;
�Pn�l�	;
� = 
n,n�, �5�

while the continuum wave functions are normalized to unit
energy interval �28�,

	
0

�

d	P�l�	;
�	
�−��

�+��

P��l�	;
�d�� = 1, �6�

where �� is a small energy interval.
For the short-range potential �Eq. �1��, the asymptotic be-

havior of the continuum radial wave function has the form
�29�

P�l�	;
� � A„k	jl�k	�… − B„k	nl�k	�…


 C�sin�k	 −
l�

2
� + tan �l cos�k	 −

l�

2
�� ,

�7�

where jl�k	� and nl�k	� are the spherical Bessel and Neu-
mann functions, respectively, and �l is the phase shift of the
lth partial wave in the potential �Eq. �1��. The phase shifts �l
can be evaluated by the following formula �29�:

tan �l =
P�l�	b;
�S�	a� − P�l�	a;
�S�	b�
P�l�	a;
�C�	b� − P�l�	b;
�C�	a�

, �8�

where 	a and 	b are two distinct points in the asymptotic
region such that for 		m S�	�=k	jl�k	�
sin�k	− l�

2 � and
C�	�=−k	nl�k	�
cos�k	− l�

2 �. The maximum and minimum
�negative maximum� amplitude values, Amax and Amin, of the
oscillating wave functions in the asymptotic region should be
equal, so that we can find 	m by an iterative procedure and
make the condition

Amax + Amin � �1, 	  	m �9�

to be satisfied, where �1 is sufficiently small and defined by
the requirement on the computational accuracy. Similarly,
any two phase shifts, �l1 and �l2, for the same partial wave
l should be equal in the asymptotic region, which imposes
the condition

�l1 − �l2 � �2, 	  	m, �10�

where �2 has the same meaning as �1. When the conditions
�Eqs. �9� and �10�� are satisfied simultaneously, the normal-
ized continuum wave function is given by

P�l�	;
� =
1

21/4�1/2�1/4
P�l

u �	;
�
Amax

, �11�

where P�l
u is the un-normalized continuum wave function

computed numerically.
The normalized continuum wave function has dimension

�energy�1/2, so that the continuum wave function of hydro-
genlike ion with nuclear charge Z is scaled as

PEl�r;Z,D� = Z−1/2P�l�	;
� . �12�

We have solved Eq. �4� for the discrete and continuous
spectrum by employing the fourth-stage fourth-order sym-
plectic integration scheme. The technical details of the
method are described in detail elsewhere �25,26� and we re-
frain of repeating them here. We only note that the accuracies
provided by this method in its implementation in the present
work are 10−7 for the energies and 10−5 for the wave func-
tions. A similar level of accuracy in solving numerically Eq.
�4� has been achieved in Ref. �30�.

B. Basic properties of energies and wave functions
of Debye-Hückel potential

1. Critical screening lengths and quasibound
and near-zero-energy states

As it is well known �see, e.g., �31��, the potential �Eq.
�1��, which decreases with increasing r faster than −1 /r2,
supports only a finite number of bound states for any finite
value of D. Moreover, the l degeneracy of the energy levels,
characteristic for the pure Coulomb potential, is lifted in the
screened Coulomb potential �Eq. �1��. The finite number of
bound states for any finite value of D implies that with de-
creasing D the electron binding energy decreases and at a
certain critical value Dnl

c it becomes zero. In Fig. 1 we show
the scaled energies �nl of the 1s, 2l, and 3l states as a func-
tion of the scaled screening length 
=ZD. The figure shows
that with decreasing 
 the scaled energies rapidly approach
the continuum edge. The critical scaled Debye lengths, 
nl

c

=ZDnl
c , where �nl�
nl

c �=0, are given in Table I for all the
states with n�6. They are compared with the values ob-
tained in Ref. �30�. There is an excellent agreement between
the two sets of data. As we shall see later, the critical screen-
ing lengths play a crucial role in the appearance of the char-
acteristic features of the photoionization cross section: the
shape and virtual-state resonances and the Cooper minima.

For the states with angular momentum l0 the effective
radial potential in the Schrödinger equation �Eq. �2�� is
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Vef f =
l�l + 1�

2	2 −
1

	
exp�− 	/
� , �13�

which under certain conditions supports quasibound states
�resonances�. The quasibound states in the potential �Eq.
�13�� have been subject to numerous studies in the past
��32–34�, and references therein� and the conditions for their
appearance have been firmly established. In Ref. �34� it was
shown that bound states and resonances in the potential �Eq.
�13�� exist for l�l+1� / �2
��0.367 879, while for
0.367 879� l�l+1� / �2
��0.419 981 the potential supports
only quasibound states. For l�l+1� / �2
��0.419 981 the po-
tential �Eq. �13�� supports neither bound nor quasibound
state. These relations are derived from the mutual positions
of the minimum of the “inner” well of the potential �Eq.
�13�� and the maximum of its centrifugal barrier. For l�l
+1� / �2
�=0.419 981 these two extrema of the potential
merge into one another.

The existence of quasibound states in the effective poten-
tial of Eq. �2� for l0 has obvious consequences for the
near-threshold photoionization: the continuum electron with
l0 can be temporarily trapped in these states and the over-
lap of its wave function with the initial bound-state wave
function can be very large. Therefore, when the screening
length 
 becomes smaller than 
nl

c �l0�, i.e., when a given
nl state �energetically lying above the initial state� enters the
region of its quasibound states, the photoionization cross sec-
tion will exhibit strong enhancement �resonances� at photo-
electron energies below the maximum of the centrifugal bar-
rier, i.e., for ��0.037 870 /
 �33�. The cross section
enhancement will be most pronounced for the lowest quasi-
bound state for which the centrifugal potential barrier pre-
sents the largest width, i.e., the one lying closest to 
nl

c . We
should note that for a given l-continuum wave there exist
many critical screening lengths 
nl

c belonging to different n
�see Table I� below which �i.e., for 
�
nl

c � the bound nl state
becomes quasibound. Each of these series of resonances can
appear in the cross section at energies inversely proportional
to 
nl

c . As mentioned above, the series of quasibound states
associated with a given 
nl

c terminates at 
0�l�= �l�l
+1� /2� /0.419 981. We should note that when passing
through a resonance at a given energy �r, the phase shift �l
of the continuum electron wave function changes by � radi-
ans �17,36� �see also Sec. II B 3�.

For the continuum s-wave functions the effective poten-
tial does not exhibit any barrier. Nevertheless, as it is well
known from the low-energy elastic particle scattering on
short-range potentials �17,36�, the s-wave function can be
significantly enhanced in the interior region of the potential
�	�
� for values of the screening parameter for which the
scattering length as becomes large. This later happens when
the potential supports a bound or virtual �positive energy�
state with near-zero energy. The momenta � of these states
are close to the inverse values of the scattering length ��
�1 /as� and when as0 the state is bound, while when as
�0 the state is virtual �17,36�. This follows from the

FIG. 1. �Color online� Scaled energies of 1s, 2l, 3l bound states
as a function of scaled screening length 
.

TABLE I. Values of the critical scaled screening lengths, 
nl=ZDnl�a0�.

n

l

0 1 2 3 4 5

1 0.839907

�0.839908�a

2 3.222559 4.540956

�3.223� �4.541�
3 7.171737 8.872221 10.947492

�7.171� �8.872� �10.947�
4 12.686441 14.730720 17.210209 20.067784

�12.687� �14.731� �17.210� �20.068�
5 19.770154 22.130652 24.984803 28.257063 31.904492

�19.772� �22.130� �24.985� �28.257� �31.904�
6 28.427266 31.080167 34.285790 37.949735 42.018401 46.458584

�28.423� �31.079� �34.285� �37.950� �42.018� �46.458�
aReference �30�.
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effective-range theory expansion of the s-wave phase shift
�17,36�

k cot �s�k� = −
1

as
+ O�k2� , �14�

which for k→0 defines the poles of the scattering matrix in
the complex plane of the momentum k �lying, in this case, on
the imaginary axis�. We should keep in mind that �s�k� �and
hence as� depends also on 
.

The present calculations have shown �see Sec. II B 3� that
the near-zero-energy s states in Debye-Hückel potential ap-
pear when 
�
ns

c �n1�. When the energy of continuum
s-wave function is close to the energy of these states its
phase shift changes by � radians.

2. Behavior of bound and continuum wave functions

The overlap of the initial and final state wave functions in
the photoionization transition nl→�l� to a large extent deter-
mines the magnitude of the cross section. Therefore, most of
the differences between the photoionization cross section in
the Coulomb and Debye-Hückel potentials can be observed
already on the level of differences in the bound-state and
continuum wave functions. Generally, the bound-state wave
functions in the screened case have smaller peaks �positive
or negative� than in the unscreened case, but shifted toward
higher 	, and the wave function values in the asymptotic
region are larger than those in the unscreened case �30,35�.
These properties become more expressed as the screening
length decreases. As we shall see below, the continuum elec-
tron wave functions in the screened case are “pushed out”
further from the coordinate origin than in the pure Coulomb
case, their amplitudes increase, and frequency decreases with
decreasing 
. These properties become more expressed at
smaller photoelectron energies.

In Figs. 2–5 we show the scaled bound-state wave func-
tions Pnl�	� of the 1s ,2s ,2p states and the scaled continuum
wave functions P�l�	� for l=0,1 ,2 partial waves for the pure

Coulomb and Debye-Hückel potentials with a number of
screening lengths 
. In Fig. 2 we show the wave functions
P1s�	� and P�p�	� for the unscreened case and the screened
case with 
=9a0 and 
=5a0 for photoelectron energies of
0.001 Ry �panel �a�� and 0.03 Ry �panel �b��. In both panels
we see that the bound-state P1s�	� wave functions for these
two screening lengths are very close to that of the unscreened
case. However, both panels also show that the continuum
wave functions P�p�	� for 
=9a0 and 
=5a0 differ substan-
tially from that of the unscreened case both in amplitude and
in phase. The P�p�	� wave function for 
=9a0 in Fig. 2�a�
for the photoelectron energy �=0.001 Ry in the region of 	
close to the coordinate origin has the same gradient as the
wave function of the unscreened case, but after the latter
attains its first maximum the screened case wave function
continues to increase and attains its maximum at a much
larger value of 	. It is obvious from the figure that the over-

FIG. 2. �Color online� Ground state wave function P1s and con-
tinuum wave function P�p as function of 	 for the unscreened case
and the screened cases with 
=9a0 and 
=5a0. Panel �a�: �
=0.001 Ry; panel �b�: �=0.03 Ry. Solid lines: unscreened case;
dotted lines: 
=9a0; and dashed-dotted lines: 
=5a0. The bound-
state wave functions are in black.

FIG. 3. �Color online� Bound-state wave function P2s and con-
tinuum wave function P�p as a function of 	 for the unscreened case
and the screened cases with 
=9a0 and 
=4.5a0. Panel �a�:
�=0.0003 Ry; panel �b�: �=1.0 Ry. Solid lines: unscreened case;
dotted lines: 
=9a0; and dashed-dotted lines: 
=4.5a0. The bound-
state wave functions are in black.

FIG. 4. �Color online� Bound-state wave function P2p and the
continuum wave functions P�s �panel �a�� and P�d �panel �b�� as a
function of 	 for the pure Coulomb case and for the screened case
with 
=8a0. Solid lines: unscreened case; dotted lines: 
=8a0. The
bound-state wave functions are in black.
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lap of P�p�	� and P1s�	� wave functions in the screened case
with 
=9a0 at the considered energy is larger than in the
unscreened case and, consequently, the corresponding photo-
ionization cross section for this energy is larger than in the
unscreened case. For the Debye screening length 
=5a0 the
P�p�	� continuum wave function has much smaller gradient
than that for the unscreened case, its first maximum is
smaller and pushed out to a larger value of 	, so that the
overlap of P�p�	� and P�l�	� wave functions in the screened
case with 
=5a0 is smaller than that in the unscreened case
resulting in a smaller photoionization cross section for this
energy. In Fig. 2�b�, the photoelectron energy is higher, �
=0.03 Ry, the P�p�	� wave functions for both 
=9a0 and

=5a0 have gradients in the region near the coordinate origin
as the P�p�	� wave function of the unscreened case but their
first maxima are significantly larger than that of the Coulomb
wave function and are located at larger values of 	 �as are
their first nodes�. Their overlap with the corresponding
bound-state wave functions is obviously significantly larger
than that in the unscreened case, and so are the correspond-
ing cross sections for this energy. It should be noted, how-
ever, that although the first maximum and the first node of
the P�p�	� wave function in the 
=5a0 screening case are
significantly larger than in the 
=9a0 screened case, that
does not affect significantly their overlap with the corre-
sponding bound-state wave functions and, consequently, the
photoionization cross sections for 
=9a0 and 
=5a0 will be
close for this photoelectron energy. Both panels of Fig. 2
show that the continuum wave functions are much more sen-
sitive to the variation of the screening length than the bound-
state wave functions.

In Fig. 3 we show the wave functions P2s�	� and P�p�	�
for the screening lengths 
=9a0 and 
=4.5a0 for the photo-
electron energies of �=0.0003 Ry �panel �a�� and �=1 Ry
�panel �b��. It can be remarked on these figures that while for

=9a0 the bound-state wave function is close that of the
unscreened case, the P2s�	� wave function for the screened
case with 
=4.5a0 differs from that of the pure Coulomb

case in reduced peak values, their shift to larger 	, and in its
larger radial extension. The P�p�	� continuum wave function
for 
=9a0 in Fig. 3�a� has basically similar behavior as that
in Fig. 2�a� except that its oscillation period is much larger
�due to the much smaller photoelectron energy�. However,
the P�p�	� wave function for 
=4.5a0 in Fig. 3�a� has a
drastically different behavior than that of P�p�	� in Fig. 2�a�
despite the fact that the screening length 
=4.5a0 is not
much different than 
=5a0. The different character of the
behavior of P�p�	� wave function for 
=4.5a0 in Fig. 3�a�
cannot be ascribed to the much lower photoelectron energy
in this case but rather to the fact that the screening length

=4.5a0 is slightly below the critical screening length 
2p

c

=4.541a0 at which the 2p bound state enters the continuum
�see Table I�. Hence, the P�p�	� wave function for 
=4.5a0
in Fig. 3�a� shows the behavior of a continuum wave func-
tion when trapped by a quasibound state of the potential. The
large positive amplitude of this continuum wave function,
extending to distances from the coordinate origin much
larger than the effective extension of the P2s�	� wave func-
tion, ensures a strongly enhanced photoionization cross sec-
tion at appropriate photoelectron energies �resonance�.

In Fig. 3�b� the P2s�	� and P�p�	� wave functions for the
same screening lengths are shown but for an energy of con-
tinuum electron of 1 Ry. The strong oscillations of the con-
tinuum wave functions at this energy make the photoioniza-
tion cross section small. The cross section is determined only
by the behavior of the wave function at radial distances close
to the coordinate origin. In this region, as Fig. 3�b� shows,
the continuum wave functions in the screened case are very
close to that of the unscreened case, while the bound-state
wave functions have amplitudes smaller than that of the un-
screened case. Therefore, the photoionization cross section in
the screened case will be smaller than that in the pure Cou-
lomb case. This conclusion obviously holds also for energies
larger than 1 Ry.

In Fig. 4 the bound-state wave function P2p�	� and con-
tinuum wave functions P�s�	� and P�d�	� �at photoelectron
energies �=0.01 Ry and �=0.002 Ry� are shown in the un-
screened case and in the screened case with 
=8a0. It is
important to observe that in the unscreened case the wave
functions P�s�	� and P�d�	� for these two energies start to
differ from each other only in the region of 	 where their
overlap with the bound-state wave function P2p�	� becomes
negligibly small. In the screened case, however, the diffuse
character of the P�d�	� wave function is clearly pronounced,
especially when the photoelectron energy decreases. In Fig.
4�a� we see that the P�s�	� wave functions for the two ener-
gies in the screened case start to differ from each other only
after reaching their second extremum, i.e., in the region of 	
where their overlap with the P2p�	� wave function is small.
Thus, the cross section for the 2p→�s transition will attain
its maximum value already at energies of about �
=0.002 Ry �and perhaps even below�. In contrast to this, the
diffuse character of the P�d�	� wave function �see Fig. 4�b��
makes its overlap with the P2p�	� wave function at the en-
ergy of �=0.002 Ry very small �and more so for still lower
energies�. As Fig. 4�b� indicates �the curve for �=0.01 Ry�,
the overlap of P2p�	� and P�d�	� wave functions increases
with increasing the energy of ejected electron, and for the

FIG. 5. �Color online� Bound-state wave function P2p and con-
tinuum functions P�s �panel �a�� and P�d �panel �b�� as a function of
	 for the pure Coulomb case �solid lines� and the screening case
with 
=7.1a0 �dotted lines�. The black lines are for the bound
states. The d-wave function for �=5�10−5 Ry is multiplied by 30
times in order to be visible.

QI, WANG, AND JANEV PHYSICAL REVIEW A 80, 063404 �2009�

063404-6



screening length 
=8a0 it will maximize at energies larger
than �=0.01 Ry. This will also be reflected in the cross sec-
tion for the 2p→�d transition. The displacement of the
maxima of the cross sections for 2p→�s and 2p→�d tran-
sitions on the photoelectron energy scale will result in a
minimum in the photoionization cross section of the 2p state
�Combet-Farnoux minimum�. However, since at higher ener-
gies the matrix element for the 2p→�d transition is usually
much larger than that for the 2p→�s transition, the Combet-
Farnoux minimum is not so strongly pronounced if visible at
all.

In Fig. 5 we show the radial dependences of P2p�	�,
P�s�	� �panel �a�� and P2p�	�, P�d�	� �panel �b�� wave func-
tions in the unscreened and the screened cases with 

=7.1a0 for photoelectron energies of 0.01 and 5�10−5 Ry.
As in the case of Fig. 4, the P2p�	� wave functions in the
screened and unscreened cases do not differ much one from
another, neither do so the continuum wave functions in the
unscreened case for the two very different energies �except
for the phase shift increase with decreasing the energy�. One
can see from Figs. 5�a� and 5�b� that at the energy of 0.01 Ry
the screened P�s�	� continuum wave function has much big-
ger overlap with the P2p�	� wave function for small values of
	 than the P�d�	� wave function which can lead to a Combet-
Farnoux minimum in the total photoionization cross section
at energies close to 0.01 Ry. The most remarkable feature in
this figure is, however, the drastic difference in the behavior
of the P�s�	� and P�d�	� screened wave functions for the
photoelectron energy of 5�10−5 Ry. While the magnitude
of P�d�	� wave function in the range of radial distances up to
40a0 is extremely small, the screened P�s�	� wave function
after its first oscillating period shows a dramatic increase of
its amplitude with increasing 	. We should note that the
screening length 
=7.1a0 for this function is slightly below
the critical screening length of the 3s state �
3s

c =7.171a0; see
Table I�, i.e., it is in the region where potential virtual states
can be found provided the energy is small enough. Appar-
ently, the energy of 5�10−5 Ry is still relatively far �larger�
from the energy of the virtual s state since the wave function
in Fig. 5�a� for this energy does not show the typical behav-
ior of a virtual-state wave function that should continuously
increase from the origin �17,36�. Nevertheless, the large am-
plitudes of P�s�	� over the entire region of radial extension
of bound-state wave function ensure a significant enhance-
ment of the 2p→�s photoionization cross section. �As we
shall see in Fig. 9�b�, the maximum of this enhancement
occurs at �1�10−5 Ry for the same value of the screening
length, 
=7.1a0.�

3. Behavior of the phase shifts

As evident from Figs. 2–5, the phase shifts of the con-
tinuum wave functions exhibit significant changes when the
Coulomb potential is screened. The variations of the phase
shifts with the screening length for the s-, p-, and
d-continuum waves are shown in Fig. 6 for photoelectron
energies of 1.0�10−4 Ry �panel �a�� and 1.0�10−3 Ry
�panel �b�� and are expressed in mod �. The figures show
that for a given energy the phase shifts increase with increas-
ing 
. They also show that when 
 approaches certain critical

values, the phase shift passes through � /2 �mod ��. The
region of 
 in which the phase changes for � radians is
narrower for the smaller critical screening lengths than for
the larger ones, this property being much more pronounced
for the smaller photoelectron energy.

It should be noted in these figures that the critical screen-
ing lengths at which the s-wave phase shift passes through
� /2 �mod �� coincide with the critical screening lengths 
ns

c

�see Table I�. Similarly, the critical screening lengths at
which the p-wave and d-wave phase shifts pass through � /2
�mod �� coincide with the critical screening lengths 
np

c and

nd

c , respectively �see Table I�. As we have discussed in Sec.
II B 1 above, the regions 
�
ns

c and 
�
nl
c �l0� are re-

lated to the near-zero-energy s states and the quasibound l
0 states, respectively, responsible for the cross section en-
hancement features. It should also be noted in Fig. 6 that
with increasing 
 the region around 
nl

c in which the phase
shift changes for � radians becomes increasingly broader
�especially for higher energies� which can be related to the
gradual disappearance of mentioned photoionization cross
section enhancement features �i.e., approach to the pure Cou-
lomb case�.

In Fig. 7 we show the energy dependence of the s-wave
and p-wave phase shifts near the critical screening lengths

2s

c =3.223 635a0 �panel �a�� and 
3p
c =8.872 221a0 �panel

�b��, respectively, for a number of near-lying 
 values. The
figures show that the energy behavior of �s and �p phase
shifts near the corresponding critical screening lengths is
quite different. With decreasing the photoelectron energy, the
�s phase shift for 
�
2s

c increases from its high-energy
value � toward 3� /2 and after certain energy it starts again
to decrease toward its zero-energy value �. For 

2s

c the
�s phase shift passes though the value 3� /2 and with de-
creasing the energy tends to its zero-energy value of 2�.
Only for 
=
2s

c the �s phase shift when reaching the value of
3� /2 during the decrease of the energy maintains this value
down to the zero-energy limit. According to Eq. �14�, the

FIG. 6. �Color online� Phase shifts of the continuum s-, p-,
and d-wave functions as a function of screening length 
. Panel �a�:
�=0.0001 Ry; panel �b�: �=0.001 Ry. Black solid line: s wave;
red dotted line: p-wave; and green dashed-dotted line: d wave.
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scattering length for this value of the phase shift becomes
infinite �i.e., the virtual or bound s state for 
=
2s

c has a zero
binding energy� and the photoionization cross section will
diverge at the threshold �as 1 /�� �17,36�.

From the discussion in Sec. II B 1 we know that for 

�
2s

c there is only one bound s state in the atom �namely, the
1s state�, while for 
3s

c 

2s
c there are two such states �1s

and 2s�. Figure 6�a�, thus, demonstrates the validity of
Levinson’s theorem �17,36� for the Debye-Hückel potential.

The phase shift �p �Fig. 7�b�� for a given 
�
3p
c exhibits

at very low photoelectron energies �below �10−6 Ry� a
sharp jump from � to 2� radians and then slowly decreases
when the energy increases. When the difference 
3p

c −
 in-
creases the jump of the phase shift takes place at higher
energies; it becomes less sharp and does not reach the value
of 2� but rather the envelop defined by the phase shift for


=
3p
c . As discussed earlier, in the region 
�
3p

c there are
quasibound states generated by the exit of 3p bound state
into the continuum and the observed �p energy behavior in
Fig. 7�b� is typical for the scattering on such states. For 


3p

c the �p phase shifts continue to increase with increasing

 and all tend to their zero-energy limit 2� when the energy
decreases. We see from Fig. 7�b� that the �p phase shifts for
all 
�
3p

c have a zero-energy value of � radians, consistent
with the Levinson theorem �the only bound p state in this
region of 
 is the 2p state�.

The behavior of s- and p-wave phase shifts near any of
the critical screening lengths 
ns

c and 
np
c , respectively, is

similar to that shown in Figs. 7�a� and 7�b�.

III. PHOTOIONIZATION CROSS SECTIONS

A. Scaled cross sections

The total photoionization cross section of a hydrogenlike
ion with nuclear charge Z in the nl state in the nonrelativistic
approximation is given by �28�

�nl =
8�2�a0

2

3�2l + 1�
�E�lRl−1

2 �Z,D� + �l + 1�Rl+1
2 �Z,D�� , �15�

where � is the fine-structure constant, a0 is the Bohr radius,
�E is the difference energy between the bound and con-
tinuum states, and Rl�1�Z ,D� are the radial matrix elements
for the nl→E, l�1 dipole transition given by �in the length
form�

Rl�1�Z,D� = �Pnl�r;Z,D�rPEl�1�r;Z,D�� . �16�

Here r is the electron radial position, E is the continuum
electron energy, and Pnl�r ;Z ,D� and PE,l�1�r ;Z ,D� are the
bound and continuum electron radial wave functions, respec-
tively.

Using the scaling transformation �Eq. �3�� and the scaled
continuum wave function �Eq. �12��, we obtain the dipole
matrix element for the bound-free nl→El�1 transition in
the total photoionization cross section in scaled form,

Rl�1�Z,D� = �Pnl�r;Z,D�rPEl�1�r;Z,D��

= Z−2�Pnl�	;
�	P�l��	;
�� = Z−2Rl�1�
� ,

�17�

�nl�E,Z,D� = Z−2�nl��,
� . �18�

As a basic check of the numerical accuracy of photoion-
ization cross section calculations serve the f-sum rule �28�,

�
l�
��

n�

fnl,n�l� + 	
0

�

dkfnl,kl�� = 1, �19�

where fnl,n�l� and fnl,kl� are the usual oscillator strength and
oscillator strength density, respectively. The oscillator
strengths for the bound-bound transitions have been calcu-
lated in our previous work �25� using the same symplectic
integration scheme. In Table II we give the f-sum values for
the Lyman series for the unscreened case and for the
screened one for a number of screening lengths. The depar-
ture from one appears at the fourth digit.

(b)

(a)

FIG. 7. �Color online� Energy behavior of s-wave �panel �a��
and p-wave �panel �b�� phase shifts near the critical Debye lengths

2s

c and 
3p
c , respectively. The lines in panel �a� are for 
=3.160a0,

3.180a0, 3.200a0, 3.210a0, 3.220a0, 3.221a0, 3.222a0, 3.223a0,
3.223 635a0, 3.225a03.230a0, 3.240a0, 3.250a0, 3.260a0, 3.270a0,
3.290a0, 3.310a0 counted from bottom to top successively and
those in panel �b� are for 
=8.810a0, 8.820a0, 8.830a0, 8.840a0,
8.850a0, 8.860a0, 8.870a0, 8.871a0, 8.872a0, 8.872 221a0, 8.890a0,
8.930a0 counted from bottom to top.
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In Secs. III B and III C we shall present the results of our
photoionization cross section calculations for the initial 1s,
2l, 3l states for a number of screening lengths and for the
unscreened case for comparison purposes. The calculations
have been performed in the photoelectron energy range from
10−6 to 20 Ry. The selection of screening lengths in each of
these calculations has been made so as to illustrate one or
more of the characteristic features of photoionization cross
section when the electron-ion interaction is screened. We
shall group our calculated cross sections into two groups:
those for which the initial state wave function has nodes and
those for which it does not. The numerous photoionization
cross section calculations for many-electron isolated atoms
�or ions� �14,20–22,37–40� have shown that the Cooper
minima appear only when the initial state wave function has
at least one node. When the atom �ion� is in its ground state
�the case for which most of the calculations have been per-
formed� the additional condition for their appearance is that
nl→�l� transition is of the l→ l+1 type.

B. Initial state wave functions without nodes (n− l−1=0)

In our set of calculations the wave functions of 1s ,2p ,3d
initial states have no nodes. Their total and l�-channel �l
→ l�= l�1� cross sections are displayed in Figs. 8–10 for the
screened case with a number of screening lengths and for the
pure Coulomb case.

In Fig. 8 the 1s→�p photoionization crosses section
�panel �a�� and the corresponding matrix element �panel �b��
for the unscreened and screened cases with Debye lengths

=50a0 ,20a0 ,9a0 ,8.86a0 ,5a0 ,4.52a0 ,1a0. Figure 8�a�
shows that, unlike the cross section in the pure Coulomb case
which has a constant zero-energy value �28� �maintained in
Fig. 8�a� up to photoenergies as high as �10−2 Ry�, the
cross sections with screened Coulomb interaction obey the
Wigner threshold law k2l�+1=k3= �2��3/2 as expected. The en-
ergy at which the Wigner threshold law starts to determine
the low-energy cross section behavior depends on the value
of the screening length 
 and generally decreases with in-
creasing 
. After leaving the threshold energy region, the
cross sections of the screened cases become larger than the

cross section of the pure Coulomb case, but in the asymptotic
energy region �above a few rydbergs� they are slightly
smaller than that of the Coulomb case. As we have discussed
in Sec. II B 2 �see Fig. 3�b��, at these energies the continuum
wave function penetrates deeply in the inner part of the po-
tential which has dominantly Coulomb character. On the
other hand, for very small screening lengths the maximum of
the 1s wave function is substantially reduced which leads to
reduction of the cross section as well �as exemplified with
the cross section for 
=1a0 in Fig. 7�a��.

Perhaps the most remarkable features in Fig. 8�a� are the
two resonances at ��2.58�10−4 Ry and ��1.85
�10−5 Ry for the screening lengths 
=4.52a0 and 

=8.86a0, respectively, whose peaks are about three orders of
magnitude larger than the cross section values of other
screened cases considered. The first of these 
 values lies in
the region of quasibound states associated with the critical
screening length of the 2p bound state �
2p

c =4.541a0 �see
Table I��, while the second one is associated with the quasi-

TABLE II. Oscillator strengths and f-sum rule of the Lyman series for a number of scaled screening
Debye lengths 
�a0�.

1s−np




� 50 20 11 9 5 1

2 0.4162 0.4137 0.4018 0.3718 0.3511 0.1933

3 0.0791 0.0766 0.0659 0.0385 0.0156

4 0.0290 0.0261 0.0145

5 0.0139 0.0107

6 0.0078 0.0044

7 0.0048 0.0014

Discrete spectrum 0.5650 0.5329 0.4822 0.4103 0.3667 0.1933

Continuous spectrum 0.4357 0.4668 0.5176 0.5894 0.6330 0.8065 1.0001

Total 1.0007 0.9997 0.9999 0.9997 0.9997 0.9998 1.0001

FIG. 8. �Color online� �a� Scaled photoionization cross sections
for the ground state 1s as a function of scaled photoelectron energy
for the pure Coulomb case and for the screened case with scaled
screening lengths 
=50a0 ,20a0 ,9a0 ,8.86a0 ,5a0 ,4.52a0 ,1a0. Panel
�b�: dipole matrix elements.
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bound states in the region 
�
3p
c �=8.872a0�. Obviously, in

accordance with our discussion in Sec. II B 1, for any value
of 
 in the region 
0�l=1��
�
np

c �n2, 
0�l=1�
=2.381 06a0 �see Sec. II B 1�� there will be a resonance in
the photoionization cross section the peak values of which
will rapidly decrease with the increase of the difference 
np

c

−
. As Fig. 8�a� demonstrates, the energies at which these
resonance series appear are inversely proportional to the
value of 
np

c �see also Sec. II B 1�.
We should note that energy behavior of the cross section

in Fig. 8�a� mimics the energy behavior of the matrix ele-
ments shown in Fig. 8�b�. This is the case with all photoion-
ization nl→�l� cross sections for which the initial bound-
state wave function does not have nodes.

In Table III we compare our 1s→�p photoionization
cross sections with those in Ref. �8� for 
=5a0 and 
=20a0
for a number of photon energies between 0.33 and 10 a.u. We
observe a very good agreement between the two sets of cal-
culations.

In Fig. 9 we show the total photoionization of 2p state
�panel �a�� and the cross sections for the 2p→�s �panel �b��

and 2p→�d �panel �c�� photoionization channels. The se-
lected screening lengths in this case are 

=50a0 ,20a0 ,17.1a0 ,12.6a0 ,10.7a0 ,8.0a0 ,7.1a0 ,5a0 ,4.7a0.
The total photoionization cross section in Fig. 9�a� is just a

FIG. 9. �Color online� Scaled photoionization cross sections for
the 2p state as a function of the scaled photoelectron energy for the
pure Coulomb case and for the screened case with scaled screening
lengths 
=50a0 ,20a0 ,11a0 ,8a0 ,5a0 ,4.7a0. Panel �a�: total cross
sections; panels �b� and �c�: cross sections for the 2p→�s and 2p
→�d channels, respectively.

FIG. 10. �Color online� Scaled photoionization cross sections
for the 3d state as a function of the scaled photoelectron energy for
the pure Coulomb case and the scaled screening lengths 

=50a0 ,28.2a0 ,22a0,20a0 ,14.6a0 ,12a0. Panel �a�: total cross sec-
tions; panels �b� and �c�: cross sections for the 3d→�p and 3d
→�f channels, respectively.

TABLE III. Photoionization cross sections for H�1s� �in units of
10−16 cm2� for two Debye screening lengths 
 and a number of
photon energies �. The numbers in parentheses are powers of 10.

�
�a.u.�


=5a0 ��1s=0.3268 a.u.� 
=20a0 ��1s=0.4518 a.u.�

Present Ref. �8� Present Ref. �8�

0.338 0.14603 0.14594

0.34 0.14674 0.14665

0.453 0.07272 0.07268 0.08233 0.08227

0.455 0.0719 0.07186 0.08022 0.08017

1 0.00861 0.0086 0.00926 0.00926

10 7.78001�−6� 7.77958�−6� 8.18091�−6� 8.1638�−6�
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sum of 2p→�s and 2p→�d channel cross sections which
we shall briefly analyze now.

The 2p→�s channel cross sections �Fig. 9�b�� for all se-
lected screening lengths in a broad energy region around
their maxima are significantly larger than the cross section in
the unscreened case, with peak values of about one to two
orders larger than the Coulomb cross section. The cross sec-
tions for the screening lengths 
=50a0 ,20a0 ,12.6a0 ,7.1a0
exhibit broad resonances at photoelectron energies below
�10−4 Ry, while those for the other values of the screening
length start to obey the Wigner threshold law �k2l�+1=k� al-
ready at energies a few times 10−4 Ry. The appearance of
broad low-energy resonances in the 2p→�s channel cross
sections for the above listed values of 
 is due to the fact that
all these are close to the zero-energy values of the bound 3s,
4s, 5s, and 8s states whose critical screening lengths are

3s

c =7.171a0, 
4s
c =12.687a0, 
5s

c =19.772a0 �see Table I�, and

8s

c =50.44a0 �see �30��. Except for the 
=20a0 case where
this value is slightly larger than 
5s

c , in all other cases the
selected screening length is slightly smaller than the corre-
sponding 
ns

c . As discussed in Sec. II B 1, these near-zero-
energy �virtual� states are the cause for the observed broad
resonances in the near-threshold energy region of np→�s
cross section, as further evidenced by the change of the
s-wave phase shift by � radians when 
 passes the values 
ns

c

observed in Fig. 5. At energies well below the broad reso-
nance, the photoionization cross section will, of course,
again follow the Wigner threshold law.

It is interesting to observe in Fig. 9�b� that the cross sec-
tions for 
=5a0 and 
=4.7a0 have maxima in the energy
range of 10−3–10−2 Ry as large as those of the broad reso-
nances. These screening length values are close to the critical
screening length of the initial 2p state �
2p

c =4.541a0� where
its binding energy is very small and, consequently, the over-
lap of 2p wave function with the s-continuum wave is large.

In Fig. 9�c� shown are the cross sections for the 2p→�d
photoionization channel for the same screening lengths and
for the unscreened case. The well known fact from the
photoionization studies for isolated atoms that the cross sec-
tion for np→�d channel is about one order of magnitude
larger than that for the np→�s channel is confirmed also in
the present screened case. Except for the screened cases with

=10.7a0 and 
=17.1a0, the cross section behavior for other
screened cases in Fig. 9�c� is typical, being above the cross
section of the unscreened case in the photoelectron energy
range around the cross section maximum and decreasing at
low energies according to the Wigner law �in the present case
k5�. The resonance behavior of the cross sections for 

=10.7a0 and 
=17.1a0 at the energies of �8.66�10−4 and
�9.27�10−5 Ry, respectively, is due to the fact that these
values of the screening length are in the regions of the qua-
sibound states associated with the critical screening lengths

3d

c =10.947a0 and 
4d
c =17.210a0 �Table I�.

The total photoionization cross section from the 2p state
�Fig. 9�a�� obviously reflects the combined features of the
2p→�s and 2p→�d channel cross sections. The minima in
the total cross section for 
=7.1a0 and 
=12.6a0 at �3
�10−3 and �4�10−4 Ry, respectively, can be interpreted,
in a broader sense, as Combet-Farnoux minima, although the

main role in their appearance plays the broad resonances for
these screening lengths in the 2p→�s channel. The small
plateau in the 
=8a0 total cross section around the photo-
electron energy of �10−3 Ry is a trace of a proper Combet-
Farnoux minimum as well.

In Fig. 10 we present the energy dependence of total
photoionization cross sections for the 3d state �panel �a��, the
3d→�p, and 3d→�f cross sections �panels �b� and �c�, re-
spectively�, for the unscreened case and for the screened
cases, with 
=50a0 ,28.2a0 ,22a0 ,20a0 ,14.6a0 ,12.0a0. The
critical screening length of the 3d bound state is 
3d

c

=10.947a0. An important new element to be noted in these
figures is the appearance of shape resonances in the 3d
→�p cross section �Fig. 10�b�� for the screening length val-
ues 
=14.6a0 and 
=22.0a0 at the photoelectron energies of
�4.44�10−5 and �1.36�10−5 Ry, respectively. Shape
resonances in the l→ l−1 transitions have rarely been ob-
served in the isolated atom photoionization cross sections.
These screening lengths are slightly below the critical
screening lengths of 4p and 5p bound states �
4p

c =14.731a0,

5p

c =22.130a0� and reflect the existence of quasibound states
there. The resonances in Fig. 10�c� for the 3d→�f for 

=20a0 �at ��8.79�10−5 Ry� and 
=28.2a0 �at ��2.43
�10−5 Ry� are due to the quasibound states in the vicinity
of critical screening lengths 
4f

c =20.068a0 and 
5f
c

=28.257a0. All these resonances are observed in the total
cross section in Fig. 10�a� as well. Their displacement on the
energy scale creates the observed minima in the total photo-
ionization cross section. The plateau in the total cross section
for 
=12a0 in the energy range of ��1–3��10−3 Ry is a
reflection of a proper Combet-Farnoux minimum.

C. Initial state wave functions with nodes (n− l−10)

We now present the photoionization cross sections for the
2s, 3s, 3p states that have one or more nodes.

In Fig. 11 we show the energy dependence of the photo-

FIG. 11. �Color online� �a� Scaled photoionization cross sections
for the 2s state as a function of the scaled photoelectron energy for
the pure Coulomb case and for the screened case with scaled
screening lengths 
=50a0, 20a0, 11a0, 8.86a0, 5a0, 4.52a0, 4.2a0,
3.8a0. Panel �b�: dipole matrix elements.
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ionization cross sections �panel �a�� and dipole matrix ele-
ments �panel �b�� for the 2s initial state in the pure Coulomb
interaction case and for the screened cases with Debye
lengths 
=50a0 ,20a0 ,11a0 ,8.86a0 ,5a0 ,4.52a0 ,4.2a0 ,3.8a0.
The most remarkable feature in Fig. 11�a�, besides the four
resonances at lower energies, is the minima in the cross sec-
tions for 
=4.52a0, 4.2a0, and 3.8a0 in the energy range �
��0.8–2.5��10−2 Ry. These are the Cooper minima, asso-
ciated with the zeroes of the 2s→�p matrix element for
these values of 
 and for well defined energies in the above
range, as shown in the inset of Fig. 11�b�. It should be noted
that each of these minima is preceded on the energy scale by
a resonance corresponding to the same value of 
. The reso-
nances for 
=4.52a0, 4.2a0, and 3.8a0 are associated with the
quasibound states that appear when the 2p bound state
emerges in the continuum at 
2p

c =4.541a0. These quasibound
states have the same nodal structure as the initial 2s state. As
we have argued earlier, when 
 varies in the resonant region
the position of the resonance varies as well: the larger the
difference 
2p

c −
 is the smaller the resonance peak is and the
larger the energy is at which it appears. Consequently, the
Cooper minima associated with these resonances also move
to larger energies with decreasing 
 below 
2p

c , as observed
in Fig. 11�a�. The moving of the Cooper minimum in Fig.
11�a� to higher energies when 
 decreases below 
2p

c �or,
equivalently, the moving of the zero of the 2s−�p dipole
matrix element� can be easily understood from the variation
of the p-phase shift �p when 
 varies. From Fig. 7�b� we see
that when 
 ��
2p

c � decreases, the phase shift �p also de-
creases. In order to keep the zero of the 2s−�p matrix ele-
ment unchanged, the argument of the continuum p-wave
function must not change, which requires increase of the
wave number to compensate for the decrease of �p when 

decreases. The connection of the Cooper minima with the
shape resonances has also been previously discussed in the
isolated multielectron atom case �40� and terms of the
change of the phase shift near the top of the centrifugal bar-
rier.

Within the present picture of association of the Cooper
minima with the shape resonances whose quasibound states
have the same nodal structure as the initial bound state, the
appearance of “multiple” Cooper minima seen in Fig. 11�a�
looks quite natural. In fact, as we shall see later in other
examples, when 
 continuously decreases in the resonant re-
gion 
0�l��
�
nl

c the phase shift of the �l+1�th wave will
also smoothly decrease �see Fig. 7�b� for the particular case
of the p wave� and the dipole matrix element for the l→ l
+1 transition can be kept zero by appropriately increasing
the wave number k= �2��1/2. Therefore, the Cooper minima
form a continuum over the 
0�l��
�
nl

c range of 
 and a
corresponding photoelectron energy range.

Multiple Cooper minima have been seen in the l→ l+1
photoionization channel cross sections of excited Cs�5d� �41�
�two minima� and Cs�9d� �42� �three minima� calculated in
one-particle approximation with Hartree-Slater central-field
potential however without clear association with shape reso-
nances. Two minima in the photoionization cross sections of
Cs�nd� �n=5,9 ,11� were also found in Ref. �43� by using
the Hartee-Fock potential and the random phase approxima-
tion with exchange �RPAE�. It was demonstrated in this work

that the number, the shape, and the energy position of the
Cooper minima are highly sensitive to the approximation in
which the calculations are performed.

The cross section for 
=8.86a0 in Fig. 11�a� also exhibits
a resonance at ��2�10−5 Ry associated with the quasi-
bound states for 
 below 
3p

c =8.873a0. The 2s−�p matrix
element in this case, however, does not have a zero �see Fig.
11�b�� and the resonance is not followed by a Cooper mini-
mum in the cross section. It should be remarked that the
quasibound states formed in the region 
�
3p

c do not have
the same nodal structure as the initial 2s state and so does the
temporarily captured p wave whose phase shift is now in-
creased by � radians with respect to the 
�
2p

c values. This
makes the matrix element to be positive.

The 3s→�p photoionization cross sections for the un-
screened and screened cases with


 = 50a0,20a0,14.5a0,11a0,9a0,8.86a0,8.8a0,8.5a0

are shown in Fig. 12 �panel �a�� together with the corre-
sponding dipole matrix elements �panel �b��. The resonances
for 
=8.86a0 ,8.8a0 ,8.5a0 and associated with them Cooper
minima are related to the quasibound states of the 3p state
entering the continuum at 
3p

c =8.872a0. The resonance for

=14.5a0 is related to the quasibound states of the 4p state
�
4p

c =14.731a0�. The only new feature to be noted in Fig.
12�a� that is not present in Fig. 11�a� is the Cooper minimum
for 
=9a0 at ��1.8�10−3 Ry. The value 
=9a0 lies
slightly above 
3p

c , i.e., outside the region of 3p quasibound
states. This Cooper minimum is of the type commonly ap-
pearing in the isolated multielectron atomic systems and its
appearance can be related to the change of the p-wave phase
shift near the top of the centrifugal barrier �20–22,37–40�.
However, the fact that it appears for a screening length just
before the 3p state enters the continuum deserves further
investigation, as similar Cooper minima appear in other l
→ l+1 cross sections �see next figure�.

FIG. 12. �Color online� �a� Scaled photoionization cross sections
for the 3s state as a function of scaled photoelectron energy for the
pure Coulomb case and for the screened case with scaled screening
lengths 
=50a0 ,20a0 ,14.5a0 ,11a0 ,9a0 ,8.86a0 ,8.8a0 ,8.5a0. Panel
�b�: dipole matrix elements.
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The total, 3p→�s and 3p→�d, photoionization cross
sections for the unscreened and screened cases with 

=50a0 ,20a0 ,17.1a0 ,12.6a0 ,11.2a0 ,11a0 ,10.7a0 are dis-
played in Fig. 13 �panels �a�–�c��, respectively. The cross
sections for the 3p→�s photoionization channel �Fig. 13�b��
show a very similar energy behavior as those for the 2p
→�s transition in Fig. 9�b�. The broad low-energy reso-
nances of the cross sections for 
=50a0, 20a0, and 12.6a0 are
due to the closeness of these screening lengths to the critical
screening lengths of the bound states 8s �
8s

c =50.44a0 �30��,
5s, and 4s �
5s

c =19.772a0, 
4s
c =12.687a0 �Table I��, respec-

tively, as discussed in Sec. III B. The cross sections for the
3p→�d photoionization channel �Fig. 13�c�� for 
=10.7a0
and 
=17.1a0 exhibit resonances at ��1�10−3 Ry and �
�1�10−4 Ry, respectively, associated with the quasibound
3d and 4d states in the continuum �
3d

c =10.947a0, 
4d
c

=17.210a0�. For the reasons discussed above, the resonance
for 
=10.7a0 is followed by a Cooper minimum �at ��3.2
�10−3 Ry�, while that for 
=17.1a0 is not. Cooper minima
are present, however, also in the cross sections for 
=11a0
�at ��2�10−3 Ry� and 
=11.2a0 �at ��1�10−3 Ry�

which are slightly larger than the critical screening length 
3d
c

�i.e., outside the 
 region of quasibound 3d states�. It should
be noted that for these values of the screening length the
binding energy of the 3d state is very small and its diffuse
wave function has a large overlap with the continuum. It is
obvious that when 
 increases continuously in the region

3d

c �
�
t, the position of the Cooper minimum will also
move continuously in the direction of smaller photoelectron
energies and at 
=
t it will reach the threshold. In fact, the
continuum of the Copper minima associated with the shape
resonances in the region 
0�l��
�
nl

c and that of the Coo-
per minima in the region 
nl

c �
�
nl
t for the l→ l+1 transi-

tions smoothly join at 
=
nl
c , as shown in Fig. 14 for the 2p,

3p, 3d, and 4f initial states. For 
=
nl
c , the shape resonance

and its associated Cooper minimum appear at the same pho-
toelectron energy. The values of screening lengths 
nl

t at
which the Cooper minimum appears at the threshold for the
transitions 2s→�p, 3s→�p, 3p→�d, and 4d→�f are
4.846a0, 9.454a0, 11.386a0, and 20.607a0, respectively �cf.
Fig. 14�.

It is worthwhile to note that the Cooper minima in the
3p→�d channel do not show up in the total 3p photoioniza-
tion cross section �Fig. 13�a�� due to the large values of 3p
→�s channel cross sections at the energy positions of these
minima.

The shape resonances observed in the considered photo-
ionization channel cross sections for the selected screening
lengths can all be represented by the Breit-Wigner formula
�17,36�

�r = �0
��/2�2

�E − Er�2 + ��/2�2 , �20�

where the values of their energy position �Er� and width ���
are given in Table IV.

We have performed cross section calculations also for the
4d→�p, 4d→�f photoionization channels hoping to find
Cooper minima also in the 4d→�p cross section when 

varies. However, we were unable to find such minima in the
4d→�p photoionization channel. Such minima have been
observed in the Cs�5d→�p� �41�, Cs�9d→�p� �42�, and
Cs�nd� �n=5,9 ,11� �43� photoionization cross section calcu-
lations performed within the independent particle approxi-
mation with a Hartree-Slater central potential �41,42� and the
RPAE �43�, respectively. The appearance of Cooper minima
in isolated excited atomic systems in l→ l−1 photoionization
channels and their absence in the case of ground-state atoms
and in the Yukawa potential are apparently related to the
much stronger screening experienced by the initial state
wave function in the later two cases than in the former one.

IV. CONCLUSIONS

In the present work we have performed a systematic study
of the dynamics of the photoionization process of a hydro-
genlike ion with screened Coulomb interaction in the form of
a Debye-Hückel �or Yukawa� potential. �We note that the
potential �Eq. �1�� represents the static plasma screening of
the charged particle interaction. Only if the ion velocity is

FIG. 13. �Color online� Scaled photoionization cross sections
for 3p state as a function of the scaled photoelectron energy for the
pure Coulomb case and for the screened case with scaled screening
lengths 
=50a0 ,20a0 ,17.1a0 ,12.6a0 ,11.2a0 ,11a0 ,10.7a0. Panel
�a�: total cross sections; panels �b� and �c�: cross sections for the
3p→�s and 3p→�d channels, respectively.
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comparable or higher than the thermal plasma electron ve-
locity dynamical plasma screening effects in the electron-ion
interaction appear �44�. In the Debye plasmas with close
electron and ion temperatures the effect of dynamical screen-
ing is of the order of electron–ion mass ratio.�

The presence of a smoothly varying parameter in the po-
tential �the screening strength or, its inverse equivalent, the
Debye length� has allowed us to investigate the dynamics of
the process in a much more transparent way than it is pos-
sible in the isolated atoms or ions. In the isolated atom �ion�
case the electron screening of the nuclear Coulomb potential

is irregular when increasing the atomic number due to the
well-known peculiarities in the filling of electronic subshells
when the nuclear charge increases. We have found that the
most important role in the photoionization dynamics plays
the emergence of the discrete nl states in the continuum for
certain critical screening lengths, 
nl

c , and the associated ap-
pearance of quasibound �for l0� or virtual �for l=0� states
in the neighborhood of 
nl

c , responsible for the shape and
broad resonances in the photoionization cross sections. The
appearance of the Cooper minima is also closely related to
these critical values of the screening length �see Sec. III C
and Fig. 14�, but this connection has still not been estab-
lished in a clear and transparent way. We have found that for
the nl→�l� photoionization channel, series �or a continuum�
of shape resonances appear for 
�
n�l�

c for n��n and l�
= l�1 �l�0�, the most pronounced of which in the cross
section are those with n�=n, l�= l+1. In this �n�=n, l�= l
+1� case each shape resonance is accompanied by a Cooper
minimum, i.e., the resonance in the cross section smoothly
goes over into a Cooper minimum with increasing �some-
times slightly� the energy �see Figs. 11–13�. The resonance
series associated with the critical screening lengths of the
states having n�n are not followed by Cooper minima.
Another continuum of Cooper minima attached to the critical
screening length 
n,l+1

c appears in the region of Debye lengths

n,l+1

t �
�
n,l+1
c which terminates at the threshold. Present

calculations have also demonstrated the other properties of a
short-range potential: the Wigner threshold law for inelastic
processes and the Levinson theorem.

FIG. 14. �Color online� Cooper minima in the n , l→� , l+1 photoionization cross section as the function of the screening length. Panel
�a�: 2s→�p; panel �b�: 3s→�p; panel �c�: 3p→�d; and panel �d�: 4d→�f .

TABLE IV. The energy position Er and width � of the shape
resonances for the photoionization cross, Er and �, are in units of
Ry. The numbers in parentheses are powers of 10.

Transition 
�a0�
Er

�Ry�
�

�Ry�
�0

�10−16 cm2�

1s→�p 4.52 2.58�−4� 5.49�−5� 9.09�2�
8.86 1.85�−5� 2.99�−6� 1.82�2�

2p→�d 10.70 8.66�−4� 7.09�−5� 1.87�2�
17.10 9.27�−5� 2.53�−6� 7.70�2�

3d→�p 14.60 4.44�−5� 2.40�−5� 1.25�1�
22.00 1.36�−5� 6.36�−6� 3.08�0�

3d→�f 20.00 8.79�−5� 1.31�−8� 2.12�6�
28.20 2.43�−5� 2.58�−9� 1.57�6�
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We hope that the results presented here will be of interest
in the studies of laboratory and astrophysical plasmas in
which the plasma screening of Coulomb interaction can be
described by the Debye-Hückel potential. The most impor-
tant result from the application point of view is the finding
that due to the shape and broad low-energy resonances, the
photoionization cross section in a Debye plasma can be sev-
eral orders of magnitude larger than that in the pure Coulomb
case for a broad range of photon energies and plasma param-
eters.
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