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Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory �PT�,
keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach,
we present an ab initio parametrization of the ionized electron angular distribution �AD� using rotational
invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the
carrier envelope phase �CEP�, the polarization of the pulse, and on the ionized electron momentum direction,
p̂. For the general case of an elliptically polarized pulse, we show that interference of the first- and second-
order transition amplitudes causes a CEP-dependent asymmetry �with respect to p̂→−p̂� and both elliptic and
circular dichroism effects. All of these effects are maximal in the polarization plane and depend not only on the
CEP but also on the phase of dynamical atomic parameters that enter our parametrization of the AD. Within the
single active electron model of an atom, for an initial s or p state we define all dynamical parameters in terms
of radial matrix elements �analytic expressions for which are given for the Coulomb and zero-range potentials�.
For ionization of the H atom by linearly polarized pulses, our PT results are in excellent agreement with results
of numerical solutions of the time-dependent Schrödinger equation of Peng et al. �New J. Phys. 10, 025030
�2008��. Also, our numerical results show that the asymmetries and dichroism effects at low electron energies
have a different physical origin from those at high electron energies. Moreover, our results for Gaussian and
cosine-squared pulse shapes are in good qualitative agreement. Finally, we show that our analytic formulas
may prove useful for determining few-cycle extreme ultraviolet �xuv� pulse characteristics, such as the CEP
and the polarization.
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I. INTRODUCTION

Rapid progress in the generation of ultrashort laser pulses
over the past decade has enabled experimentalists to produce
few-cycle laser pulses in both the femtosecond ir �1� and the
attosecond extreme ultraviolet �xuv� �2–4� temporal and fre-
quency domains with stable �and even tunable� carrier enve-
lope phases �CEPs�. The ultrashort duration of even many-
cycle xuv attosecond pulses makes them an ideal tool for
probing electron motion in atoms and molecules �4–8�, for
imaging molecular orbitals �9�, and for measuring the instan-
taneous electric field of a few-cycle ir pulse �10,11�. The
successful use of an attosecond xuv pulse in such pump-
probe applications requires knowledge of the dependence of
its interaction with matter on the pulse parameters. For
nearly all experimental applications up to now, the only im-
portant parameters for a typically weak xuv attosecond pulse
have been the carrier frequency and the pulse’s duration and
polarization. The experimental achievement of few-cycle at-
tosecond pulses having ultra short duration ��100 as� and
large bandwidth ��10 eV� requires an understanding of the
effects of additional pulse characteristics, such as the pulse
shape and the CEP, i.e., the phase between the maxima of the
pulse envelope and the monochromatic carrier wave. These
characteristics will become of crucial importance when the
intensity of attosecond xuv pulses increases by about one
order of magnitude beyond current experimental capabilities
�i.e., to intensities of order �1015 W /cm2� so that nonlinear
effects become significant �12�. Even for intensities up to
�1016 W /cm2, however, the interaction of xuv pulses with

atoms and molecules can be treated with high accuracy using
perturbation theory �PT� �13–15�. Note that the importance
of CEP effects for few-cycle ir pulses has been demonstrated
experimentally �16–18� and has been the subject of theoret-
ical works focused on above-threshold ionization �ATI�
�19,20�, high-order harmonic generation �HHG� �21�, and
multiphoton excitation and ionization �22,23�. In particular,
Cormier and Lambropoulos �19� have analyzed numerically
the dependence of the asymmetry of the ionized electron
angular distribution on the CEP at electron energies between
neighboring ATI peaks and explained these asymmetries in
terms of the interference between the transition amplitudes
for successive ATI peaks. Moreover, a perturbative analysis
in Ref. �19� resulted in an analytic expression for the CEP
dependence. Retrieval of the CEP of a few-cycle ir laser
pulse from asymmetries in the ionized electron angular dis-
tributions has also been the subject of recent experimental
investigations �17,18�. A general formulation of CEP effects
�for the case of linearly polarized pulses� by Roudnev and
Esry �24� has shown that these effects originate from the
interference between different photon amplitudes. In addi-
tion, it has been shown in Ref. �12� by direct numerical so-
lution of the time-dependent Schrödinger equation �TDSE�
that the asymmetry in the angular distribution of electrons
ionized by an attosecond xuv pulse depends on the pulse
intensity as I3/2. This fact supports the idea that such asym-
metries originate from the interference between amplitudes
of different order in the electric field of the pulse �e.g., be-
tween the first and second orders in the case of the process
investigated in Ref. �12��.
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In this paper we present a perturbative treatment of the
problem of ionization �or detachment� of an atomic system
by a few-cycle attosecond pulse, which allows a more com-
plete description of the process than is possible in the strong-
field nonperturbative regime. In Sec. II we present formal
expressions for the first- and second-order �in the pulse elec-
tric field� transition amplitudes and express the ionization
probability in terms of the CEP of the pulse, showing the
connection of our results to the nonperturbative treatment of
Ref. �24�. General expressions for the doubly differential
ionization probability are given in terms of the physical vec-
tors of the problem, i.e., the pulse polarization, e, and the
ionized electron momentum direction, p̂. Special cases of
this general result are given for each of the three major pulse
polarizations �i.e., elliptical, circular, and linear�. In terms of
a few dynamical parameters, these formulas exhibit the ex-
plicit dependence of the ionization probability on the CEP
and the ionized electron’s momentum direction. Moreover,
for the cases of elliptical or circular pulse polarization, our
formulas predict two kinds of dichroic effects. Adopting a
single active electron model for the atom and restricting our
analysis to initial s or p states, in Sec. III we then derive
explicit quantum expressions for the dynamical parameters
introduced in Sec. II.

In Sec. IV we present numerical results of our various
formulas for the special case of an initial s electron. For the
H atom and the case of a linearly polarized pulse we com-
pare the results of our perturbative treatment to results of
Peng et al. �12� obtained by direct numerical solution of the
time-dependent Schrödinger equation; agreement is shown to
be excellent. We compare results for two different pulse en-
velope shapes, finding little significant difference between
them. Asymmetries for electrons ionized from a Coulomb
potential are compared to those for an electron detached
from a zero-range potential �ZRP�. We then present a variety
of results on the asymmetries in the ionized electron angular
distributions for different pulse polarizations, intensities, and
CEPs.

Finally, in Appendixes A and B, we give explicit analytic
formulas for the dynamical parameters in our general formu-
las for initial s states for the cases of a ZRP and a Coulomb
potential. In Appendix C, we analyze the contribution of cer-
tain photon emission processes to the doubly differential ion-
ization probability.

II. GENERAL PARAMETRIZATION OF THE IONIZATION
PROBABILITY

We consider the electric-dipole interaction of an atom
with a few-cycle pulse having a time envelope F0�t�, carrier
frequency �, full width at half maximum �FWHM� �, CEP
�, and a fixed time-independent polarization described by
the polarization vector e. In general, the vector e is complex
�e ·e�=1� and may be parameterized as for the case of a
monochromatic light wave,

e = ��̂ + i��̂�/�1 + �2, �1�

where −1���1, �̂= �k̂� �̂�, and k̂, �̂, and �̂ indicate, re-
spectively, the propagation direction of the pulse and the

major and minor axes of the polarization ellipse. For later
use, we define also the degrees of linear and circular polar-
ization of the pulse, � and �:

� � �1 − �2�/�1 + �2� = �e · e� , �2�

�� 2�/�1 + �2� = i�k̂ · �e� e��� , �3�

�2 + �2 = 1. �4�

�Thus, e.g., linear polarization corresponds to �=0 or �=1
and �=0; right and left circular polarization corresponds to
�=�1 or �=0 and �=�1.� The electric field of the pulse
may thus be expressed as follows:

F�t� = F0�t�Re�ee−i��t+��� =
1

2
F0�t��ee−i��t+�� + e�ei��t+��� ,

�5�

and its Fourier transform is defined as F̂�	�, i.e.,

F̂�	� = �
−





F�t�ei	tdt . �6�

This Fourier transform comprises two terms,

F̂�	� = e�F̂+�	� + e�
� F̂−�	� , �7�

where the factors F̂��	� are the CEP- and polarization-
independent scalar parameters of the pulse,

F̂��	� =
1

2
� F0�t�ei�	���tdt, F̂−�	� = �F̂+�− 	���, �8�

and the single complex unit vector e� �e� ·e�
� =1� contains

the dependence on the CEP and the polarization:

e� = ee−i�. �9�

Assuming that the strength of the pulse electric field is
sufficiently weak so that time-dependent PT in powers of the
pulse electric field may be employed, our goal is to param-
etrize the differential probability for ionization of a single
electron with momentum p into the solid angle d� and the
energy interval dE,

d2W

d�dE
� W , �10�

where E= p2 / �2m�. Within the PT approach, the dependence
of W on the CEP, the pulse polarization, and the ejected
electron direction p̂ can be parametrized ab initio using ro-
tational invariance and symmetry arguments without specifi-
cation of a particular atom �cf. similar analyses for ionization
by a monochromatic light wave in Refs. �25,26��. For sim-
plicity, we assume the target atom to be randomly oriented
�i.e., unpolarized and unaligned� and that neither the spin
state of the electron nor the angular momentum state of the
residual ion are detected �though these restrictions are not
essential, cf. Ref. �25��. In this case, the problem involves
only two vectors: the electron momentum unit vector p̂ and
the complex vector e� that is responsible for the polarization
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and CEP effects, while the atomic properties are described
by true scalar parameters. Note that the problem also in-
volves a pseudoscalar quantity, the degree of circular polar-
ization � �see, e.g., Ref. �27��.

The parametrization of the CEP dependence of W follows
from very general considerations concerning the ionization
amplitude, AN, which is Nth order in the electric dipole in-

teraction, V̂=−D̂ ·F�t�, where D̂ is the dipole moment of the

atom. Using Eq. �5�, V̂ has the form

V̂ = −
1

2
F0�t��e� · D̂e−i�t + e�

� · D̂ei�t� . �11�

The amplitude AN is thus an N-linear form in the vectors e�
and e�

� , i.e., each interaction V̂ introduces into the amplitude
AN the phase factors e−i� and ei�. Therefore, W has the form
of a linear combination of terms involving cos�n�� and
sin�n�� with n�2N. Moreover, the terms cos�n�� and
sin�n�� have opposite parities under time inversion �t→−t�
since the phase � is a t-odd quantity �cf. Eq. �5��. Therefore,
in order that all terms in W have the same temporal symme-
try, the factors multiplying the terms in W proportional to
sin�n�� should also be t odd, which will occur if these fac-
tors involve an interference between the real and imaginary
�i.e., non-Hermitian� parts of different constituents of the
ionization amplitude �cf. Refs. �25,26��. From these consid-
erations, we conclude that in the nonperturbative regime �in
which all orders of PT contribute to the ionization amplitude�
the general expression for W can be presented as a Fourier
series in the CEP �, in agreement with the nonperturbative
quantum-mechanical analysis in Ref. �24� for a linearly po-
larized few-cycle pulse. �Note that our analysis above for the
CEP dependence of W is general and is not limited to the
case of a randomly oriented target.�

The carrier wave frequency of a few-cycle pulse deter-
mines the complexity of any parametrization of the ioniza-
tion probability W of an atom. For the case of an elliptically-
polarized few-cycle pulse having a carrier frequency in the
optical regime, the polarization-angular structure of the PT
result for W is cumbersome because even the lowest-order
ionization amplitude is of high order in the field F�t�. For the
case of few-cycle xuv pulses, however, in which the carrier
frequency � is such that �En+���0 �where En is the en-
ergy of an outer electron of the atom�, ionization is possible

already in first-order PT in the pulse-atom interaction V̂. A
general parametrization of the first-order PT result for W,

W1, follows from the general form �11� of the operator V̂: it
can involve only pairs of the four vectors, e�, e�, e�

� , and e�
� ,

which should form scalar products either with each other or
with the vector p̂. Only four independent scalar products can
be composed from these vectors:

e� · e�
� = 1, 	e� · p̂	2 = 	e · p̂	2, �12a�

e� · e� = �e−2i�, �e� · p̂�2 = �e · p̂�2e−2i�, �12b�

where the combinations �Eq. �12b�� are complex and thus
equivalent to four real terms. Thus, the general parametriza-
tion for W1 has the following invariant form:

W1 = C
1 + �0�3	e · p̂	2 − 1�/2 + Re
e−2i���1� + �2�e · p̂�2��� ,

�13�

involving six scalar parameters �C, �0, Re �1, Im �1, Re �2,
and Im �2� that depend only on the pulse shape and the
atomic dynamics, while the entire dependence on the CEP �,
the pulse polarization e, and the ionized electron direction p̂
have been extracted explicitly. The first two terms in the
parametrization �Eq. �13�� have the form of the usual differ-
ential cross section for photoionization of a randomly ori-
ented target by a monochromatic field, in which case 4�C is
the total photoionization cross section and �0 is the “asym-
metry parameter” �see, e.g., Refs. �25,28,29��. The other two
terms in Eq. �13� are nonzero only for a short pulse as they
originate from the interference of the amplitudes for two ion-
ization pathways to the same continuum state of energy E.
Specifically, they correspond to the contribution of the prod-

uct of the scalar parameters F̂+ and F̂− in Eq. �7� to the
first-order ionization probability. Since each of these param-

eters in the operator V̂ is accompanied by one of the phase
factors �e−i� or ei��, the CEP dependence of their interfer-
ence is obvious. Note that in the case of LS-coupling �in
which the orbital and spin angular momenta are separately
conserved� the number of atom-specific scalar parameters in
Eq. �13� reduces to three �C ,Re �2 , Im �2� when the total
orbital angular momenta of both the target atom �L0� and the
residual ion �Li� are zero. Indeed, in this case the transition
amplitude AN in any PT order is a scalar �instead of the direct
product of spherical tensors with ranks L0 and Li in the gen-
eral case� so that an invariant parametrization in terms of the
vectors of the problem exists directly for A1,

A1 = �+�e� · p̂� + �−�e�
� · p̂� . �14�

For this case, Eq. �13� for W1� 	A1	2 simplifies, since �0=2
and �1=0 �cf. Ref. �30��. Note finally that Eq. �13� shows
that the angular distribution in the lowest PT order is sym-
metric with respect to the substitution p̂→−p̂. An asymme-
try only appears in the high-order PT corrections to W1,
which we consider next.

The general analysis of higher-order PT corrections to W1
leads to cumbersome expressions for W, for which reason
we carry out this analysis by making three simplifying as-
sumptions: �i� we assume that the pulse bandwidth is less
than 	En−�	 �i.e., we exclude extremely short pulses� so
that the first-order ionization amplitude is dominated by the

“positive frequency” component �F̂+� of the Fourier-

transform F̂�	� in Eq. �7�; �ii� as follows from assumption �i�,
in the second-order PT amplitude A2 we neglect terms in-

volving two successive “negative frequency” �F̂−� compo-

nents of F̂�	�; �iii� we restrict our considerations to only the

next-order �in V̂� correction to the lowest-order PT result for
W, i.e., we neglect the absolute square of the second-order
PT amplitude A2 and take into account only its interference
with the first-order amplitude A1. �In Sec. IV below, our nu-
merical results for a two-cycle ��100 as� pulse with �
�36 eV show that these three assumptions are well justified
up to a peak pulse intensity of the order of 1016 W /cm2.�
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To parametrize the interference ��Re�A1
�A2�� of the first-

and second-order ionization amplitudes, we note that A1
�

�e�
� �according to assumption �i��, while A2 involves two

pairs of vectors e�: e� ,e� and e� ,e�
� . �The pair e�

� ,e�
� does

not contribute owing to assumption �ii�.� Thus the interfer-
ence term involves all independent scalar products composed
from the electron momentum unit vector p̂ and the following
two triads of pulse polarization vectors: e�

� ,e� ,e� and
e�

� ,e� ,e�
� . It is convenient to use the following three combi-

nations of scalar products:

�e� · e�
� ��e� · p̂� = �e · p̂�e−i�, �15a�

�e� · e���e�
� · p̂� = ��e� · p̂�e−i�, �15b�

�e� · p̂�	e� · p̂	2 = �e · p̂�	e · p̂	2e−i�. �15c�

As a result, the parametrization of W taking into account the
lowest two orders of PT may be presented in two equivalent
forms,

W = w1 + Re
e−i����1 + �2	e · p̂	2��e · p̂� + �3��e� · p̂���

�16a�

=w1 + Re
�e · p̂����1 + �2	e · p̂	2�e−i� + �3
��ei��� ,

�16b�

where

w1 = C�1 + �0�3	e · p̂	2 − 1�/2� . �17�

Three complex numbers �i in Eqs. �16� comprise six real
dynamical parameters that depend on the pulse shape and the
atomic structure and may be expressed in terms of interfer-
ence between radial parts of the first-order amplitude A1 and
different constituents of the second-order ionization ampli-
tude A2 �see Sec. III�. Equations �16� make obvious two ma-
jor results of our general phenomenological analysis:

�i� For a given few-cycle xuv pulse �Eq. �5��, a measure-
ment �or calculation� of the parameters �i for a fixed electron
energy E and fixed CEP � �say, �=0�, allows one to repro-
duce the ionized electron angular distribution for any � by
using Eq. �16�. �This result is consistent with corresponding
results of nonperturbative quantum-mechanical analyses for
the cases of linearly �24� and circularly �31� polarized few-
cycle pulses.�

�ii� Equation �16b� shows that all asymmetries in the elec-
tron angular distributions are described by the scalar product
�e · p̂�, which changes sign when p→−p and which depends
on the pulse polarization. As is clear from our parametriza-
tion �Eq. �1�� for e, �e · p̂� is proportional to sin � �where � is

the angle between p and k̂�. Thus these asymmetries vanish
in the direction of the pulse propagation and achieve their
maximum in the polarization plane ��=� /2�.

A. Ionization probability for an elliptically polarized pulse

By writing the scalar product �e · p̂� in the form

�e · p̂� =
cos � + i� cos �

�1 + �2
=

�1 + ��cos � + i� cos �
�2�1 + ��

,

�18�

the explicit angular and polarization dependence of W in
Eqs. �16� may be presented in the most compact form in
terms of the angles � and � between the electron momentum

p and the major ��̂� and minor ��̂� axes of the polarization
ellipse, respectively �cf. Fig. 1�. Using also the related ex-
pression, obvious from Eq. �18�,

2	e · p̂	2 = �1 + ��cos2 � + �1 − ��cos2 � , �19�

Eq. �16a� takes the following form:

W = w1 +
1

�2�1 + ��
��1 + ��cos � Re
��1 + �2	e · p̂	2

+ �3��e−i�� − � cos � Im
��1 + �2	e · p̂	2 − �3��e−i��� ,

�20�

where the polarization and angular dependence of the lowest-
order term w1 �cf. Eq. �17�� follows from Eq. �19�.

An alternative to the parametrization of W in Eq. �20� in
terms of the spherical coordinate angles, � and �, of the
vector p �in a reference frame with z axis along the pulse

propagation direction k̂ and x axis along �̂ �cf. Fig. 1�� is
sometimes useful. In this case, W has form �20� with the
substitutions cos �=sin � cos � and cos �=sin � sin �,
while Eq. �19� transforms to

2	e · p̂	2 = sin2 ��1 + � cos 2�� . �21�

These two alternative parametrizations simplify and become
equal in the polarization plane ��=� /2�, in which case �
=� /2−� and �=�:

z

k

ζ

ϕ

p

x

y
ε

∧

∧

θ

α β ∧

FIG. 1. �Color online� The physical vectors of the problem: the

electron momentum p, the major ��̂� and minor ��̂� axes of the

polarization ellipse, and the propagation direction k̂ of the pulse, as
well as the angles between them.
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W = C�1 + �0�1 + 3� cos 2��/4� +
1

�2�1 + ��
��1 + ��

�cos � Re
��1 + �2�1 + � cos 2��/2 + �3��e−i��

− � sin � Im
��1 + �2�1 + � cos 2��/2 − �3��e−i��� .

�22�

B. Circular and elliptic dichroism effects

Equation �20� gives the explicit dependence of the elec-
tron angular distribution on the degrees of circular and linear
polarization, � and l, of an elliptically polarized few-cycle
pulse. This dependence has the following form:

W = �0 + ��CD + ���ED, �23�

where �0 is invariant under a change in sign of � �i.e., under
the transformation e→e��, while the other two terms are
dichroic �i.e., they change sign when �→−��. The term pro-
portional to � represents the circular dichroism �CD� effect,
while the term proportional to �� describes the elliptic di-
chroism �ED� effect, which �unlike the CD effect� vanishes
for purely circular polarization, i.e., �=�1 and �=0. The
parameters �0, �CD, and �ED depend on the dynamical param-
eters �i defined in Eq. �16a� and the CEP � via the real and
imaginary parts of �ie

−i�, as follows:

�0 = w1 + ��1 + ��/2cos � Re
��1 + �2	e · p̂	2 + �3��e−i�� ,

�24�

�CD = −
1

�2�1 + ��
cos � Im
��1 + �2	e · p̂	2�e−i�� , �25�

�ED =
1

�2�1 + ��
cos � Im
�3e−i�� . �26�

Both CD and ED effects are maximal for cos �=1, i.e., when
the electron momentum p lies in the polarization plane along
the minor axis of the polarization ellipse.

The terms �� and ��� in Eq. �23� describe the difference
in the ionized electron angular distributions for opposite he-
licities of the elliptically polarized pulse field F�t�. This dif-
ference is counterintuitive since it is well known that di-
chroic effects do not occur in ordinary photoionization of a
randomly oriented atomic target. In the present case, how-
ever, these effects originate from the strong-field corrections
to the first-order ionization amplitude and so should not be
surprising. �For a brief review of dichroic effects in photo-
processes with unpolarized atomic targets, see Ref. �32��.
Nevertheless, there is a significant difference between di-
chroic effects for monochromatic and few-cycle pulses. In
the former case, the dichroic effects have a purely dynamical
origin �“dynamical dichroism”� since they originate from an
interference between the real and imaginary parts of �gener-
ally, non-Hermitian� transition amplitudes �cf. Ref. �32� for
details�. This non-Hermiticity of the transition amplitudes is
the reason that our phenomenological parameters �i are com-
plex. Thus the “dynamical” parts of the CD and ED param-

eters in our case are given, respectively, by the terms in Eqs.
�25� and �26� that are proportional to cos �. However, there
are the additional “kinematical” �or CEP-induced� parts of
the parameters �CD and �ED that are proportional to sin � and
involve the real parts of the dynamical atomic parameters �i.
Based on these considerations, we can conclude that few-
cycle pulse calculations using the standard strong-field ap-
proximation �in which case the transition amplitudes are Her-
mitian� can only reproduce the CEP-induced part of dichroic
effects in strong-field photoprocesses.

C. Ionization probability for a linearly polarized pulse

The general parametrization �Eq. �20�� simplifies signifi-
cantly for the cases of linear ��=0� and circular ��=0� po-
larizations. In the former case, one has �e · p̂�=cos � so that
the angular distribution depends only on the angle � between
the polarization axis and the ionized electron momentum di-
rection. Using Eqs. �19� and �20�, the ionization probability
in this case becomes

W = C�1 + �0�3 cos2 � − 1�/2�

+ cos � Re
��1 + �2 cos2 � + �3�e−i�� . �27�

The asymmetry in the ionized electron angular distribution
stems only from the interference term in Eq. �27�, which is
odd in cos �. The asymmetry is maximal along the polariza-
tion axis and may be written as follows:

d�

dE
� W	�=0 − W	�=� = 2 Re���1 + �2 + �3�e−i�� �28�

=2	�1 + �2 + �3	cos�� −�L� , �29�

where �L�arg��1+�2+�3�. We emphasize that, as for dy-
namic dichroism effects, the “shift angle” �L vanishes for
the case of real parameters �i.

D. Ionization probability for a circularly polarized pulse

For the case of circular polarization, it is convenient to
use the spherical coordinate angles � ,� to describe the an-
gular distribution since for �=0 Eq. �21� gives

2	e · p̂	2 = sin2 � , �30�

while �e · p̂� may be presented as follows:

�e · p̂� = 	e · p̂	ei�� = �1/�2�sin �ei��, � = � 1. �31�

As a result, we have

W = C�1 − �0�3 cos2 � − 1�/4� + �1/�2�

�sin � Re
��1 + �1/2��2 sin2 ��ei���−��� �32�

or in the polarization plane ��=� /2�,

W = C�1 + �0/4� + �1/�2�	�1 + �2/2	cos��� − � +�C� ,

�33�

where
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�C � arg��1 + �2/2� . �34�

�Note that Eq. �32� may be presented in a form similar to Eq.
�33� but with a �-dependent “shift angle” �C���.� Using Eq.
�33� and the relations cos����=cos � and sin����=� sin �,
the CD parameter �Eq. �25�� for purely circular polarization
may be written in the polarization plane in the following
form:

�CD = �1/�2�	�1 + �2/2	sin ��sin � cos �C − sin �C cos �� ,

�35�

showing explicitly the dynamical ��sin �C� and CEP-
induced ��sin �� contributions to the parameter �CD.

A remarkable feature of Eqs. �32� and �33� is that in both
cases the angular distributions depend on the angle �, the
CEP �, and the sign of � �=�1� only through the combina-
tion ��−�. This fact is a consequence of the symmetry of
the TDSE in a circularly polarized pulse �31� so that chang-
ing the CEP � to �+�� is equivalent to a rotation of the
three-dimensional angular distribution around the direction
of pulse propagation by the angle ��, counterclockwise for
right circularly polarized light ��=1� or clockwise for left
circularly polarized light ��=−1� �cf. Ref. �31��. The CEP �
thus has no absolute meaning in the case of a circularly po-
larized pulse, i.e., its value depends on the choice of the
laboratory coordinate system. Indeed, in this case the major
axis of the polarization ellipse �̂ can be chosen arbitrarily.
Nevertheless, the asymmetry in the ionized electron angular
distribution stems from the asymmetry of the few-cycle
pulse. �Since the target atoms are randomly oriented, there is
no preferred direction in the atomic medium.� Thus, the CEP
in the case of a circularly polarized pulse may be character-
ized by means of the azimuthal angle at which the pulse
reaches its maximum magnitude �in a fixed laboratory coor-

dinate system with z axis along the vector k̂�. For example, if
we choose �̂ along the x axis and assume that the pulse
reaches its maximum magnitude at t=0, then according to
Eq. �5� the components of the pulse electric field are given
by Fx�0�= 1

�2
F0�0�cos � and Fy�0�=� 1

�2
F0�0�sin �. Hence,

for a pulse having a degree of circular polarization �=�1,
the pulse electric field reaches its maximum value 1

�2
F0�0� at

the angle �=��.

III. ANALYTICAL EXPRESSIONS FOR THE DYNAMICAL
PARAMETERS

To derive explicit expressions for the dynamical param-
eters C, �i, and �i introduced in the previous section, we
begin from the quantum mechanical expression for W in Eq.
�10� within a perturbative approach �in the pulse electric
field�. For simplicity, we adopt the single active electron ap-
proximation and assume that �nlm describes the initial bound
state of the electron with energy En and that �p

�−� describes a
final continuum state with electron momentum p and energy
E= p2 /2, both of which are solutions of the time-independent
Schrödinger equation for an electron in a potential U�r�
�atomic units are employed in the rest of this paper, unless
otherwise noted�:

�− �2/2 + U�r���nlm�r� = En�nlm�r� , �36�

�− �2/2 + U�r���p
�−��r� =

p2

2
�p

�−��r� . �37�

The ionization probability for an ionized electron ejected in
the direction � with energy E= p2 /2 is given by

W =
p

2l + 1
m

	A1 + A2 + ¯	2

�
p

2l + 1
m

�	A1	2 + 2 Re�A1
�A2� + ¯� . �38�

Here A1 and A2 are the first and second-order transition am-
plitudes �in the electric dipole approximation�:

A1 = ��p
�−�	F̂�E − En� · r	�nlm� , �39�

A2 = −
1

2�
�

−





d	��p
�−�	F̂�E − 	� · r

�G	�r,r��F̂�	 − En� · r�	�nlm� , �40�

where G	 is a stationary Green’s function for the electron:

G	�r,r�� = 
kl�m�

	�kl�m����kl�m�	

Ek − 	
+� dp

	�p
�−����p

�−�	
p2/2 − 	 − i0

.

�41�

The amplitude A2 may also be expressed in terms of the
nonstationary Green’s function G�r ,r� ; t− t��:

A2 = �
−





dteiEt�
−


t

dt�e−iEnt�

���p
�−�	F�t� · rG�r,r�;t − t��F�t�� · r�	�nlm� , �42�

where

G�r,r�;t − t�� = −
1

2�
� dEGE�r,r��e−iE�t−t��. �43�

For a spherically symmetric potential U�r�, the initial and
final states can be expanded in spherical harmonics,

	�nlm� = Ylm�r̂�	nl� , �44a�

��p
�−�	 =

1

p

lm

�− i�lei�lYlm�p̂�Ylm
� �r̂��pl	 , �44b�

where �l is the lth partial wave phase shift, 	nl� and �pl	 are,
respectively, the radial parts of the bound and continuum
state wave functions �with the latter having momentum nor-
malization, i.e., �pl 	 p�l�=��p− p���, and r̂ and p̂ are, respec-
tively, the unit vectors along the radial, r, and electron mo-
mentum, p, directions. Substituting Eq. �43� into Eqs.
�38�–�40� and following the procedure described in detail in
�25,26� one can extract analytically the dependence of W on
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the physical vectors of the problem for an arbitrary angular
momentum, l, of the initial state. For simplicity, we consider
in this paper only ionization from initial s and p states.

A. Amplitudes for an initial s state

In this case it is possible to parametrize not only 	A1	2 and
Re�A1

�A2� but also the first- and second-order transition am-
plitudes A1 and A2 themselves �see text above Eq. �14��:

A1 = �+�e · p̂�e−i� + �−�e� · p̂�ei�, �45�

A2 = M0+2
+− − 3M2

+−	e · p̂	2 + ��M0+2
++ − 3M2

++�e · p̂�2�e−2i�

+ ��M0+2
−− − 3M2

−−�e� · p̂�2�e2i�, �46�

where

�� = Ap1F̂��E − En� , �47�

Ml
++ =� d	F̂+�E − 	�F̂+�	 − En�Mpl�	� , �48�

Ml
−− =� d	F̂−�E − 	�F̂−�	 − En�Mpl�	� , �49�

Ml
+− =� d	�F̂+�E − 	�F̂−�	 − En�

+ F̂−�E − 	�F̂+�	 − En��Mpl�	� , �50�

M0+2
�� = M0

�� + M2
��, M0+2

+− = M0
+− + M2

+−. �51�

The parameters Ap1 and Mpl�	� �l=0,2� depend on the par-
ticular atomic system considered. In general, they can be
expressed in terms of radial matrix elements:

Ap1 = −
iei�1

�4�p
�p1	r	n0� , �52�

Mpl�	� = −
ei�l

12�3/2p
�pl	rg1�	;r,r��r�	n0� . �53�

Here g1�	� is the radial part of the Green’s function for the
atomic system:

GE�r,r�� = 
lm

gl�E;r,r��Ylm�r̂�Ylm
� �r̂�� . �54�

For the cases of a ZRP and a Coulomb potential, the atomic
parameters Ap1, Mp0�	�, and Mp2�	� can be calculated ana-
lytically, as discussed in Appendixes A and B, respectively.
The numerical evaluation of the first-order amplitude A1 is
simple, but the numerical evaluation of the second-order am-
plitude A2 is quite difficult, especially for the case of a Cou-
lomb potential �owing mainly to the integration over the in-
termediate state energy 	�. Nevertheless, the numerical
procedure for our perturbative treatment is much faster and
easier than would be the case for a direct numerical solution
of the TDSE.

Taking into account the assumptions discussed in the pre-
vious section �i.e., �i� neglecting the “negative frequency”

component �F̂−� in the first-order ionization amplitude and
�ii� neglecting terms involving two negative frequency com-

ponents �F̂−� in the second-order PT amplitude�, one obtains

Ã1 � �+�e · p̂�e−i�, �55�

Ã2 � M0+2
+− − 3M2

+−	e · p̂	2 + ��M0+2
++ − 3M2

++�e · p̂�2�e−2i�.

�56�

Substituting Eqs. �55� and �56� into Eq. �38� and comparing
the result with Eqs. �16� and �17�, we obtain the following
expressions for the dynamical parameters in the latter equa-
tions:

C =
p

3
	�+	2, �0 = 2, �57�

�1 = 2p�+M0+2
+−�, �58�

�2 = − 6p��+M2
+−� + �+

�M2
++� , �59�

�3 = 2p�+
�M0+2

++ . �60�

Although the approximate amplitudes in Eqs. �55� and
�56� are quite accurate and much simpler for analytical work,
we note that in all numerical calculations presented in this
paper we have used the exact amplitudes in Eqs. �45� and
�46�. A detailed discussion of the significance of the terms �−
and Mi

−− �which are neglected in the approximate Eqs. �55�
and �56�� is given in Appendix C. In addition, we note that in
our numerical calculations we have included also the term
	A2	2 �cf. Eq. �38��. Although 	A2	2 is in general small com-
pared to both 	A1	2 and 2 Re�A1

�A2� and is of the same order
in the laser pulse intensity as the term Re�A1

�A3�� I2 �where
A3 is the third-order amplitude�, we have kept this term in
order to ensure positive values for the ionization probability,
W, which can otherwise take negative values for final-state
energies at which 	A1	2 is small �so that higher orders of PT
are needed to describe ionization at such energies correctly�.
In Fig. 11 we illustrate for a particular case the magnitudes
of not only the terms we do include in our analytic formulas
but also those that we do not include, with the latter shown to
be quite small. We can thus use the above approximate ana-
lytic formulas to analyze and interpret CEP effects in ionized
electron angular distributions produced by few-cycle attosec-
ond xuv pulses. Most important, of course, is the second-
order PT amplitude in Eq. �56� since its interference with the
first-order amplitude is what gives rise to these CEP effects.

B. Dynamical parameters for an Initial p state

For an initial p state we obtain the following expressions
for the dynamical parameters in Eqs. �16� and �17� �using the
same assumptions and procedures as for an initial s state�:

C =
1

36�p
�R0

2 + 2R2
2�	F̂+�E − En�	2, �61�
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�0 = 2
1 − 2�R0/R2�cos��0 − �2�

1 + 2�R0/R2�2 , �62�

where Rl= �pl	r	n1�.
The dynamical parameters for the interference term are

�1 = A++ + A−+� + �B−+ + B+−�� + �C−+ + C+−�� + D+−� + D++,

�63�

�2 = − 5��C−+ + C+−�� + C++� , �64�

�3 = A+−� + B++ + C++ + D−+�, �65�

where

A�� =
1

3
�10�7�5R10

0�� − 2R10
2��� + 5�4�7 + 3�R12

0��

− �26�7 − 3�R12
2�� + 15R30

2�� + 6�9�7 − 2�R32
2��� ,

�66�

B�� = 2�7�5R10
2�� − 5R12

0�� − 11R12
2�� − 6R32

2��� , �67�

C�� = 5R12
0�� + R12

2�� + 5R30
2�� − 4R32

2��, �68�

D�� = 10�7R10
2 − 5�2�7 − 1�R12

0 + �8�7 + 1�R12
2 + 5R30

2

+ 2�9�7 − 2�R32
2 , �69�

Rll�
L�� =

i

600�21�2p
ei��l−�l���pl�	r	n1�F̂+�E − En�

�� d	F̂��E − 	�F̂��	 − En��pl	rgL�	;r,r��r�	n1� .

�70�

Since the CEP-dependent terms in Eq. �16� have the same
form for initial s and p states, in Sec. IV we present numeri-
cal results only for an initial s state.

IV. RESULTS AND DISCUSSION

The above very general analysis for ionization of ran-
domly oriented atoms by an attosecond xuv pulse �whose
intensity is such that a PT analysis is appropriate and whose
bandwidth is not too large� has shown that �i� interference of
the first and second-order �in the pulse electric field� ioniza-
tion amplitudes results in an asymmetry of the electron an-
gular distribution and in dichroic effects; �ii� the CEP depen-
dence of the ionization probability can be extracted
analytically for arbitrary polarization of the pulse.

In this section we illustrate the predictions of our various
PT formulas numerically. Specifically, we analyze the results
for accuracy and compare our PT predictions for different
atomic systems and for different pulse polarizations. Unless
otherwise noted, our PT predictions are obtained by evaluat-
ing the ionization probability in Eq. �38� using the ampli-
tudes defined in Eqs. �45�–�51�.

A. Comparison with TDSE results for the H atom

In Fig. 2 we compare our PT predictions for the asymme-
tries in the ionized electron angular distribution for the hy-
drogen atom with results of a numerical solution of the
TDSE �12�. Both results are for ionization by few-cycle xuv
pulses that are linearly polarized along the z axis and have a
cos2 envelope, i.e.,

A�t� = A0�t�ez cos��t + ��, F�t� = −
1

c

�A�t�
�t

, �71�
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FIG. 2. �Color online� Comparison of the present PT results with TDSE results of Ref. �12� for the probability of ionization of the H atom
by linearly polarized, two-cycle xuv pulses. Panels �a� and �b�: pulse has carrier frequency �=36 eV, CEP �=0, and peak intensity I0

=5�1015 W /cm2; panels �c� and �d�: pulse has carrier frequency �=72 eV, CEP �=0, and peak intensity I0=2�1016 W /cm2. Each pulse
has a cos2 envelope. Results in panels �a� and �c� are for ionization of electrons parallel to the polarization axis ��=0�; those in panels �b�
and �d� are for ionization of electrons antiparallel to the polarization axis ��=��.
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A0�t� =
c�I0

�
cos2��t/��, − �/2� t� �/2, �72�

where c is the speed of light. We present results for two
carrier frequencies ��=36 eV and �=72 eV�, two intensi-
ties �I0=5�1015 W /cm2 and I0=2�1016 W /cm2�, and a
CEP �=0. The duration �=2�N /� of each pulse is N
=2 cycles, which in the case of �=36 eV corresponds to a
pulse duration of 230 as. One sees clearly that the results of
our analytic PT formulas and those of direct numerical solu-
tions of the TDSE are in excellent agreement. This is not
surprising despite the fact that the xuv pulses have quite high
intensities. Indeed, the applicability of the PT description of
ionization is governed not only by the intensity but also by
the smallness of the parameter �=up / ��� �=I / �4�3� in a.u.�,
where up=e2F2 / �4m�2� is the ponderomotive energy
�33–35�. �For �=1, the divergence of the PT series becomes
obvious in view of the closing of the lowest open ionization
channel by the ponderomotive potential.� For pulses with
frequencies 36 and 72 eV and peak intensities I0=5
�1015 W /cm2 and I0=2�1016 W /cm2, respectively, the
parameter � is of the order of 10−2, thus indicating that we
are clearly in the perturbative regime.

B. CEP dependence of angular asymmetries

In Fig. 3 we illustrate the CEP dependence of the asym-
metries in the ionized electron energy distributions for ion-
ization along and opposite to the direction of linear pulse
polarization. More specifically, we present the probabilities
vs electron energy for ionization of the H atom by a linearly
polarized attosecond pulse with carrier frequency �

=36 eV, intensity I0=5�1015 W /cm2, duration �
=2 cycles, and a cos2 envelope for two different CEPs: �
=0 and �=� /2. The inset figures show the vector potential
�Eq. �71�� of the attosecond pulse in each case. One sees that
the asymmetry in the ionized electron angular distribution is
maximal for the CEP �=0 �as is the case also for the corre-
sponding asymmetry in the energy-integrated results, as
shown below in Fig. 6�. This is in agreement with the TDSE
results of Ref. �12�. �Note, however, that in Ref. �12� the
vector potential A�t� for the case of a linearly polarized two-
cycle pulse is defined in terms of a sine function rather than
the cosine function used here �cf. Eq. �71�� so that results in
this paper for a CEP �=0 correspond to results in Ref. �12�
for a CEP �=� /2.� This finding that the asymmetry in the
ionized electron angular distribution for the case of linear
polarization is maximal for ��0 and minimal for ��� /2
applies also for other carrier frequencies �. Hence, in most
of the calculations below we used a CEP �=0. Note that
there is an interesting correspondence between the asymme-
try of the vector potential of the pulse �i.e., between the
maximum magnitudes of its positive and negative values�
and the asymmetry in the electron angular distribution: the
vector potential is also most asymmetric for a CEP of �=0.

C. Sensitivity of CEP-dependent asymmetries to the potential
U(r)

Comparison of the PT results for the hydrogen atom with
those for an electron bound in a ZRP having the same bind-
ing energy �En=−1 /2 a.u.� is given in Fig. 4. In each case
the linearly polarized xuv pulse has a cos2 envelope, a dura-
tion of 2 cycles, and a carrier frequency �=36 eV. The re-
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FIG. 3. �Color online� Ionization probability for the H atom by a linearly polarized pulse with �a� CEP �=0, �b� CEP �=� /2, carrier
frequency �=36 eV, and intensity I0=5�1015 W /cm2. Each pulse has a duration �=2 cycles and a cos2 envelope. Solid and dashed lines:
ionization probabilities for electron ejection along ��=0� and opposite to ��=�� the direction of linear polarization, respectively. The inset
figures show the z axis component of the vector potential A�t� in each case.
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FIG. 4. �Color online� Comparison of ionization probability results for the Coulomb potential �H atom� and the ZRP �with the same
binding energy, En=−1 /2 a.u.� for ionization by a linearly polarized pulse with carrier frequency �=36 eV, CEP �=0, intensity
I0=5�1015 W /cm2, duration, �, of two cycles, and a cos2 envelope. Results in each panel are given for ionization of electrons both along
��=0� and opposite to ��=�� the direction of linear polarization. For purposes of comparison, the first-order PT result, which is spherically
symmetric, is also shown.
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sults for the ZRP are two orders of magnitude smaller than
those for the Coulomb potential owing to the fact that the
wave function for the H atom Coulomb potential is much
more localized near the origin compared to that for the ZRP.
However, the CEP-dependent asymmetry in the ionized elec-
tron angular distribution is much more pronounced in the
case of the ZRP, because the second-order term of PT �and
hence the first- and second-order interference term� is signifi-
cantly larger compared to the first-order term. The clear im-
plication of this fact is that for a given pulse intensity nega-
tive ions �which can be accurately modeled by a ZRP� are
likely to have larger CEP-induced asymmetries than neutral
atoms �at least in the region of applicability of PT�.

D. Pulse shape and duration dependence of CEP-dependent
asymmetries

We demonstrate the dependence of the ionized electron
asymmetries on the shape and duration of the xuv pulse en-
velope in Fig. 5, which compares results for xuv pulses hav-

ing a cos2 envelope with those having a Gaussian envelope.
In each case the results are for xuv pulse ionization of an
electron bound in a ZRP with energy En=−1 /2 a.u. for lin-
early polarized pulses having carrier frequency �=36 eV,
intensity I0=5�1015 W /cm2, and different pulse durations.
The Gaussian envelope for the vector potential of the xuv
pulse is defined as

A0�t� =
c�I0

�
exp�− 4 ln 2

t2

�2� . �73�

Note that while the duration of the cosine squared pulse is
defined as the full duration of the pulse, the duration for the
Gaussian pulse is defined as its FWHM, which is the reason
for the ratio of two between the durations for the two cases.
Note, however, that the energy per pulse is the same for the
two pulse shapes in each row of the figure, which shows
results for four different durations for each pulse shape. The
results in Fig. 5 show clearly that the shorter the pulse dura-
tion, the larger the asymmetry in the ionized electron distri-
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FIG. 5. �Color online� Dependence of the asymmetry of the ionized electron probability distribution �vs energy� on the shape and
duration of the xuv pulse envelope for two pulse shapes �cosine squared and Gaussian� and four pulse durations �for each pulse shape�. All
results are for ionization of an electron bound in a ZRP �with energy En=−1 /2� by a linearly polarized xuv pulse having carrier frequency
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show respectively the ionization probability along �i.e., �=0� and opposite to �i.e., �=�� the pulse polarization axis.
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butions. As discussed in our PT analysis in Secs. II and III
above, the reason is that the shorter the pulse duration, the
larger the energy region over which there is overlap of the
“one-photon” and “two-photon” ionization amplitudes. For
pulse durations of 3.5 cycles in the case of a cos2 envelope
and 1.75 cycles FWHM in the case of a Gaussian envelope,
the asymmetry almost disappears. One observes also that the
ionized electron energy spectra and their asymmetries along
the pulse polarization axis are not very sensitive to the pulse
shape although a Gaussian envelope gives an ionized elec-
tron energy distribution with slightly smaller bandwidth. We
conclude that, to a good approximation, either pulse shape
can be used to predict results for comparison with experi-
mental data.

E. CEP-induced asymmetry in the energy-integrated angular
distribution

In Fig. 6 we present the CEP dependence of the energy-
integrated asymmetry in the electron distribution along or
opposite to the direction of linear polarization �cf. Eq. �28��,

� =� d�

dE
dE = 2� Re���1 + �2 + �3�e−i��dE

= 	K	cos�� + arg K� , �74�

where

K � 2� ��1 + �2 + �3�dE . �75�

Of course, � equals also the asymmetry in the ion yield. The
main features of the results in Fig. 6 �and their variation for
other system parameters� are easily explained from Eq. �74�
for � and from the definitions of �i in Eqs. �58�–�60�. First,
one sees that the CEP dependence of the asymmetry � is
sinusoidal, i.e., ����=−���+��. Second, the amplitude of
the oscillation, K, depends on intensity as I3/2. Third, the
value of the CEP � at which �=0 depends on arg K, i.e., on
the ratio of the real and imaginary parts of K. Fourth, an
experimental measurement of the CEP dependence of � can
be used to determine the real and imaginary parts of K.

F. Angular distributions for elliptically and circularly
polarized few-cycle pulses

In order to characterize the asymmetry in the polarization
plane for the cases of elliptical and circular polarization, we
define the weighted momentum direction �WMD� of the ion-
ized electron distribution,

�p̂� = �
0

2�

p̂Wd� , �76�

where � is the angle in the polarization plane. The meaning
of the WMD becomes clearer after substituting in Eq. �76�
the ionization probability in Eq. �22� for the general case of
elliptical polarization. Defining ����� as

����� =
�

�2
��1 +

1

4
�2� ���2� ��3� , �77�

one obtains

�p̂�x = �1 + � Re��+���e−i�� , �78�

�p̂�y =
�

�1 + �
Im��−���e−i�� , �79�

	�p̂�	 = ��p̂�x
2 + �p̂�y

2 = ��1 + ��Re��+
2���e−2i��

+ �1 − ��Im��−
2���e−2i���1/2, �80�

tan ��p̂� =
�p̂�y

�p̂�x

=
�

1 + �

Im��−���e−i��
Re��+���e−i��

. �81�

1. Numerical results for an elliptically polarized pulse

In Fig. 7 we demonstrate the polarization dependence of
the ionized electron angular distribution in the polarization
plane �perpendicular to the direction of light propagation� for
a fixed final-state energy, E=32 eV, and a pulse having a
two-cycle duration, a cos2 envelope, a carrier frequency �
=36 eV, an intensity I0=5�1015 W /cm2, and a CEP �=0.
The arrows in Fig. 7�a� indicate the WMDs �p̂� for five val-
ues of the degree of circular polarization, �. The fact that the
WMDs for values of � having opposite signs are different
indicates that the probability distribution exhibits a dichroic
effect, both for elliptical and for circular polarization. �Note
that for 0� 	�	�1 both elliptical and circular dichroism ef-
fects are present; see Sec. II B.� As may be clearly seen in
Fig. 7�b�, the magnitude 	�p̂�	 is maximal for linear polariza-
tion ��=0� and reaches its minimum for circular polarization
�	�	=1�. Also, one can see that the dependence of the angle
��p̂� on the degree of circular polarization, �, is monotonic,
thus providing a means to determine the polarization of the
pulse.

2. Numerical results for a circularly polarized pulse

For the special case of circular polarization �	�	=1, �
=0�, we express the WMD �p̂� in terms of its magnitude,
	�p̂�	=�	�1+�2 /2	 /�2, and its angle in the polarization
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∆
(1

0−
4

a
.u

.) 5.00 × 1015 W
cm2

3.15 × 1015 W
cm2

7.94 × 1015 W
cm2

FIG. 6. �Color online� CEP dependence of the energy-
integrated asymmetry in the ionized electron distribution for the
H atom along or opposite to the direction of linear polar-
ization of an xuv pulse with carrier frequency �=36 eV, two-cycle
pulse duration, cos2 pulse shape, and three different peak in-
tensities: I0=5�1015 W /cm2, I0=3.15�1015 W /cm2, and I0

=7.94�1015 W /cm2.
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plane, tan ��p̂��� Im���1+�2 /2�e−i�� /Re���1+�2 /2�e−i��
=� tan��+arg��1+�2 /2��. As discussed above, the CEP for
circular polarization may be set to zero, �=0, by rotation of
the laboratory system of coordinates. In this case the angle
��p̂� characterizes the ratio of the imaginary and real parts of
�1+�2 /2.

In Fig. 8 we show results for circularly polarized two-
cycle pulses, each having a cos2 envelope, carrier frequency
�=36 eV, intensity I0=5�1015 W /cm2, and CEP �=0.
The first and second rows of Fig. 8 correspond, respectively,
to right and left circular polarizations. The first column
shows the ionized electron distribution in the polarization
plane for several different final-state energies. The asymme-
try in the ionized electron angular distribution manifests it-
self as a shift of the distribution away from the center of
coordinates as well as a deformation from a perfect circle
�which would be the case in the absence of the interference
term�. Values of the WMDs for each of the final-state ener-
gies are shown as the arrows in Figs. 8�a� and 8�c�.

The energy dependences of the magnitude 	�p̂�	 and the
angle ��p̂� of the WMD defined in Eqs. �80� and �81� are
given for the cases of right and left circular polarization in
Figs. 8�b� and 8�d�. The ionized electron distribution for
right circular polarization is symmetric under reflection �with
respect to the �horizontal� x axis� with the distribution for left
circular polarization, as may be seen from Eq. �33�. Indeed,
changing the sign of circular polarization is equivalent to
changing the sign of the angle �, i.e., �→−�. The magni-
tude 	�p̂�	 has a minimum around E=20 eV, which is why
the arrow representing the WMD for this energy is not vis-
ible in Figs. 8�a� and 8�c�. Also, for energies E�20 eV, the
angle ��p̂� is nearly constant, implying that the ratio of the
imaginary and real parts of �1+�2 /2 is nearly constant.

The results in Figs. 8�a� and 8�c� show also that the maxi-
mum of the ionization probability for a given final-state en-
ergy is shifted from the direction at which vector potential,
A�t�, reaches its maximum. The shift angle equals �C−� �cf.
Eqs. �33� and �34��, where �C depends on the energy of the

final state. The values of �C are given in Figs. 8�b� and 8�d�
since for a CEP �=0 the WMD angle ��p̂�=�C. This angular
shift originates from the dichroic part of the interference
term in the ionization probability, i.e., the term �� in Eq.
�22�. It is the analog of the one found numerically in Ref.
�36� by solving the TDSE for ATI by a few-cycle circularly
polarized 800 nm laser pulse.

G. Dependence of the asymmetry d� ÕdE on electron energy

For a linearly polarized pulse, �p̂�y =0 and �p̂�x in Eq. �78�
is proportional to the difference of the ionization probabili-
ties along ��=0� and opposite to ��=�� the polarization axis
�cf. Eqs. �28� and �29� and Fig. 1�:

2

�
�p̂�x =

d�

dE
= 2	�1 + �2 + �3	cos�� + �L� . �82�

This asymmetry in the electron distribution along the direc-
tion of linear polarization is in fact exactly twice the inter-
ference term in Eq. �38� evaluated at �=0. In Fig. 9 we
present this asymmetry as a function of the ionized electron’s
kinetic energy, E. The asymmetry d� /dE reaches its maxi-
mum and minimum values at energies E�5.5 eV and E
�32.5 eV, respectively; it equals zero at E�19 eV. For
these three energies, we present in Table I the real and imagi-
nary parts of the first- and second-order matrix elements, ��
and Mi

�� �cf. Eqs. �45�–�51��, as well as the first- and
second-order amplitudes, A1 and A2, for ionization along the
direction of linear polarization �i.e., �=0� of an xuv attosec-
ond pulse with carrier frequency �=36 eV, peak intensity
I0=5�1015 W /cm2, two-cycle pulse duration, and a cos2

pulse shape.
Table I shows that those matrix elements corresponding to

emission of one photon in the first-order amplitude A1 �i.e.,
�−� and to emission of two photons in the second-order am-
plitude A2 �i.e., Mi

−−� are small compared to the other matrix
elements so that they can be neglected. Specifically, �− con-
tributes only about 0.4% to the real and imaginary parts of A1
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FIG. 7. �Color online� Polarization dependence of the doubly differential ionization probability of the H atom in the polarization plane.
The ionizing xuv pulse has a two-cycle duration, a cos2 envelope, a carrier frequency �=36 eV, an intensity I0=5�1015 W /cm2, a CEP
�=0, and a degree of circular polarization �. All results are for a fixed final-state electron energy, E=32 eV. Figure �a� shows the angular
dependence of the doubly differential ionization probability for five values of �, with the five arrows indicating the weighted momentum
direction �WMD� �p̂� �cf. Eq. �76�� for each distribution. Figure �b� shows the magnitude and angle of the WMD �p̂� of the ionized electron
distribution as a function of �.
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at all three energies, while M0+2
−− −3M2

−− contributes less than
0.3% to the real and imaginary parts of A2, except at the
energy E=19 eV �at which d� /dE�0� where its contribu-
tion is 1.8% of a very small value of Re A2. �For a more
detailed description of the role of the emission terms, see
Appendix C.�

The contribution of single-photon emission �accompanied
by single-photon absorption� to the second-order amplitude

A2, however, is significant, as shown by the matrix elements
in Table I and by the amplitudes, ionization probabilities, and
asymmetries shown in Fig. 10. Specifically, in the region of
small electron energies at which the asymmetry takes its
maximum positive value �E=5.5 eV� �cf. Fig. 10�c��, the
largest contributions to the second-order amplitude A2 come
from the terms involving emission-absorption plus
absorption-emission of two photons: M0+2

+− −3M2
+− �cf. Fig.

10�a��. In contrast, in the region of high electron energies at
which the asymmetry takes its maximum negative value
�E=32.5 eV�, the dominant contribution to A2 comes from
terms involving absorption of two photons, M0+2

++ −3M2
++.

This difference in the most important contributions to A2 at
low and high energies may be understood quite simply: at
higher energies, the electron energy E is closer to the two-
photon resonance, En+2�, at which the two-photon absorp-
tion amplitude is largest; at the lower energy, the electron
energy E is closer to the initial state energy, En+�−�, at
which the absorption-emission terms are largest. The large
bandwidth of the few-cycle pulse allows interference be-
tween A1 and these two very different second-order contri-
butions to A2.
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FIG. 8. �Color online� Ionization probability of the H atom by right and left circularly polarized, two-cycle xuv pulses having cos2

envelopes, carrier frequency �=36 eV, intensity I0=5�1015 W /cm2, and CEP �=0. Panels �a� and �c� show the electron angular distri-
bution for right and left circular polarization, respectively, for each of three final-state energies as a function of ejection angle in the
polarization plane. The arrows in these figures indicate the weighted momentum direction �WMD� �p̂� �cf. Eq. �76�� for each distribution.
Panels �b� and �d� show the energy dependences of the magnitude, 	�p̂�	, and the phase, arg��p̂�����p̂�, of the WMD �p̂� for right and left
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FIG. 9. �Color online� Asymmetry d� /dE �cf. Eqs. �28� and
�82�� in the distribution of electrons ionized with kinetic energy E
from the H atom along or opposite to the direction of linear polar-
ization of an xuv pulse with carrier frequency �=36 eV, peak in-
tensity I0=5�1015 W /cm2, two-cycle pulse duration, cos2 pulse
shape, and CEP �=0.
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At E�19 eV the interference term �from which the
asymmetry originates� is zero �cf. Figs. 10�b� and 10�c��, i.e.,
Re A1

�A2=Re A1 Re A2+Im A1 Im A2=0. Note that although
the amplitude A2 is almost an order of magnitude smaller at
this energy than at energies at which the interference term
reaches its maximum magnitudes, the real and imaginary
parts of A2 are usually never zero simultaneously, i.e., 	A2	
�0. From Table I one sees that the change in sign of the
asymmetry �or interference term� around E�19 eV is due to
a change in sign of the real and imaginary parts of the
second-order amplitude A2 with increasing energy. The am-
plitude A1 does not change sign over this range of energies.

Finally, as shown in Fig. 10�a�, near E�19 eV, the magni-
tudes of the absorption-and-emission and the two-photon ab-
sorption contributions to 	A2	 are equal in magnitude.

As demonstrated by the results for the doubly differential
ionization probabilities in Fig. 3 and by the energy-integrated
asymmetry �cf. Eqs. �74� and �75�� in Fig. 6, the asymmetry
in the ionized electron distribution along the linear polariza-
tion axis of the pulse takes its largest magnitude at the CEP
�=0. This fact may be explained using Eq. �82� and the data
in Table I for A1, A2, and �L �for the angle �=0� at the three
values of E given there. Note first that pA1

�A2 	�=0=�1+�2
+�3 and that the sign of the asymmetry is given by that of

TABLE I. Real and imaginary parts of the first- and second-order transition amplitudes A1 and A2 �cf.
Eqs. �38�, �45�, and �46�� and their respective component matrix elements A� �cf. Eq. �47�� and Mi

�� �cf.
Eqs. �48�–�51�� for ionization of atomic H with ejection of electrons at the angle �=0 along the direction of
linear polarization of an xuv pulse with carrier frequency �=36 eV, peak intensity I0=5�1015 W /cm2,
two-cycle pulse duration, and a cos2 pulse shape.

E

5.5 eV 19 eV 32.5 eV

104�Re 104� Im 104�Re 104� Im 104�Re 104� Im

�+ −678.962 813.847 −788.087 329.215 −426.310 127.685

�− −2.961 3.549 −2.780 1.161 1.814 −0.543

A1 −681.923 817.396 −790.867 330.376 −424.496 127.142

M0+2
++ 0.959 3.970 −7.025 2.249 −10.975 −2.752

M0+2
+− −36.254 16.828 −7.036 1.173 −0.515 −0.030

M0+2
−− −0.006 0.075 0.012 −0.006 −0.030 −0.003

−3M2
++ 7.298 −20.848 53.546 −18.037 88.565 −7.560

−3M2
+− −15.734 60.665 −36.740 21.959 −16.150 5.813

−3M2
−− −0.004 −0.103 −0.036 0.007 0.011 −0.001

A2 −43.741 60.587 2.722 7.344 60.933 −4.530

�L �deg� −4.0 −87.7 −167.6

	A1
�A2	�104 7.955 0.671 2.708
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FIG. 10. �Color online� Contribution of terms involving emission-absorption plus absorption-emission of two photons �i.e., Mi
+− terms in

Eq. �46�� to the second-order amplitude A2 for ionization of the H atom by a few-cycle xuv pulse having the same parameters as in Fig. 9.
�a� The two most important contributions to the second-order amplitude for electron ejection along �=0: the solid �black� line is 	A2	 with
only Mi

+− terms �for absorption and emission� included; the dashed �blue� line is 	A2	 with only Mi
++ terms �for two-photon absorption�

included. �b� The ionization probability, W, without Mi
+− terms in A2 is compared to the result with all terms included in A2. �c� The

asymmetry �see Eq. �28�� corresponding to each of the two ionization probabilities shown in panel �b�.
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cos��+�L�. The numerical values of �L and 	A1
�A2	 for three

electron kinetic energies E are given in the last two rows of
Table I. For E=5.5 eV and �L=−4.0° so that cos��+�L�
�1 for a CEP �=0 and cos��+�L��0 for a CEP �=� /2.
For E=19 eV and �L=−87.7° so that cos��+�L��0 for a
CEP �=0 and cos��+�L��1 for a CEP �=� /2; however,
	A1

�A2	 is very small at this energy so the asymmetry is small.
For E=32.5 eV and �L=−167.7° so that cos��+�L��−1 for
a CEP �=0 and cos��+�L��0 for a CEP �=� /2. Thus, the
magnitude of the asymmetry is maximal around �=0 and
minimal around �=� /2, which is why many of the results
we have presented are for pulses having �=0.

V. SUMMARY AND CONCLUSIONS

In summary, in this paper we have analyzed the ionization
of an atomic system by a few-cycle attosecond pulse using a
PT approach. Our main analytical results include: �i� a gen-
eral parametrization of the ionization probability �using rota-
tional invariance and symmetry arguments� in terms of the
physical vectors of the problem, i.e., the polarization vector e
and the direction of the ionized electron momentum p̂, as
well as the CEP of the pulse �cf. Eqs. �16� and �17��; �ii�
identification of circular and elliptic dichroism terms in the
general expression for the ionization probability �cf. Eqs.
�23�–�26��; �iii� in the general case of elliptic polarization �cf.
Eq. �20�� as well as in the special cases of linear �cf. Eq.
�29�� and circular �cf. Eq. �33�� polarizations, the asymme-
tries in the ionized electron angular distributions are shown
to depend not only on the CEP of the pulse, but also on the
phase of certain dynamical parameters; �iv� in Sec. III we
express the dynamical parameters in terms of radial matrix
elements �within a single-active-electron model of the atom�
for the cases of initial s and p states, and in Appendixes A
and B we give analytic expressions for these radial matrix
elements for both a ZRP and a Coulomb potential, respec-
tively.

In Sec. IV we have presented numerous numerical results
based on our analytically derived formulas in Secs. II and III.
Our main ones include: �i� comparison of results of our PT
analysis with results of numerical solution of the time-
dependent Schrödinger equation in Ref. �12� show excellent
quantitative agreement, indicating the validity of a PT ap-
proach �for the pulse intensities considered�; �ii� results for
two different pulse shapes �cosine-squared and Gaussian�
show good qualitative agreement, indicating that either may
be employed in comparisons with experimental results; �iii�
for the case of an arbitrary pulse polarization, Fig. 7�b�
shows that the weighted momentum direction �cf. Eq. �76��
in the polarization plane is monotonically related to the xuv
pulse polarization, thus providing a means to determine this
polarization; �iv� for the case of circular polarization, Fig. 8
shows that the asymmetry in the angular distribution in the
polarization plane is governed not only by the CEP but also
by the phase of the relevant dynamical parameters; �v� in
Fig. 10 we have shown that the asymmetry in the electron
angular distributions originates from different contributions
to the second-order transition amplitude at low and high
electron energies, i.e., at low energies the emission-

absorption contributions dominate, whereas at high energies
the two-photon absorption contribution dominates; more-
over, in Appendix C we evaluate the magnitudes of all other
terms involving photon emission, showing that they make
only very small contributions to the ionization probability.

We emphasize that although our numerical results in this
paper were presented for a fixed carrier frequency � of the
pulse F�t� in Eq. �5�, all our ab initio parametrizations in
Sec. II, as well as explicit quantum expressions for the dy-
namical parameters in Sec. III, are valid also for chirped
pulses, i.e., those with time-dependent carrier frequency, �
=��t� �since the carrier frequency enters only into the Fou-

rier components F̂��	� in Eq. �8��. Significant modifications
of the asymmetries in ionized electron angular distributions
for the case of chirped pulses has been demonstrated recently
based on the numerical solution of the TDSE for ionization
of the H atom by a linearly polarized chirped xuv pulse �39�.
Application of our PT formulas to the analysis of chirped-
pulse attosecond photoionization will be published else-
where.

In conclusion, in this paper we have analyzed a number of
physical phenomena in a new regime: nonlinear attosecond
science. Specifically, we have analyzed those phenomena ap-
plicable to ionization of an atom by a few-cycle attosecond
pulse that originate from interference of first- and second-
order transition amplitudes. As is well known, this interfer-
ence, which depends on transition amplitude phases, pro-
vides the possibility for quantum control of electron motion.
Experimental study of these phenomena, however, will re-
quire achieving xuv pulses of somewhat higher intensity than
is currently possible. Given the rapid progress in experimen-
tal attosecond science, we are hopeful that achieving such
intensities is only a matter of time.
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APPENDIX A: ANALYTICAL RESULTS FOR THE
ZRP

For the case of the ZRP, which supports a single bound s
state with energy E0=−�2 /2, ���r�=�� / �2��r−1 exp�−�r�,
the first- and second-order transition amplitudes can be cal-
culated analytically. For the second-order amplitude A2, we
performed these calculations using Eq. �42� in terms of the
non-stationary Green’s function G�r ,r� ; t− t�� for a ZRP
without use of the Fourier expansion for F�t�. The resulting
parametrizations for A1 and A2 are as follows:

A1 = −
i��

2�E2 �p · F̂�E�� , �A1�
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A2 = a0D�0��E� + a1
i,j

p̂ip̂jDi,j
�0��E� + b0D�1��E� + b1

i,j
p̂ip̂jDi,j

�1�

��E� + c0C�E� , �A2�

where E=E−E0= �p2+�2� /2,

a0 = −
2��
3�E2�1 −

i�p

�� + ip�2�, a1 =
��p2

�E3 , �A3�

b0 =
��

6�E2��4 + p4

2E
+ i�p�, b1 = −

��p2

2�E2 , �A4�

c0 =
i�2�

3��� + ip�
, �A5�

Di,j
�0��E� =

i

2�
�

−





dt�
0




d�Fi�t�Fj�t − ��eiE�t−��, �A6�

Di,j
�1��E� =

1

2�
�

−





dt�
0




d�Fi�t�Fj�t − ��eiE�t−��� , �A7�

D�0��E� = 
i

Di,i
�0��E�, D�1��E� = 

i

Di,i
�1��E� , �A8�

C�E� = �
	E0	


 F̂�E − E�� · F̂�E��
�E� − E − i0�2E�2 �E� − 	E0	�3/2dE�. �A9�

The connection of these ZRP results to the general expres-
sions �45�–�53� for A1 and A2 involving the radial matrix
elements is as follows:

Ap1 = −
i��

2�E2 , �A10�

� d	�F̂�E − 	� · F̂�	 − En���Mp0�	� + Mp2�	��

= a0D�0� + b0D�1� + c0C�E� , �A11�

− 3� d	�p̂ · F̂�E − 	���p̂ · F̂�	 − En��Mp2�	�

= a1
i,j

p̂ip̂jDi,j
�0� + b1

i,j
p̂ip̂jDi,j

�1�, �A12�

where the integrals over the intermediate state energy 	 were
evaluated analytically. We verified the validity of Eqs. �A11�
and �A12� using known analytic results for the second-order
radial matrix elements in Mpl�	� �cf. Eq. �53�� for the case
of a ZRP �26�.

As is seen from Eqs. �A1�–�A9�, for the case of a ZRP the
dependence of the amplitudes A1 and A2 on the atomic and
laser parameters factorizes, with the exception of the scalar
parameter C�E� in Eq. �A9�, which cannot be so factorized
and depends on the binding energy 	E0	. In particular, the D
functions characterize the second-order characteristics of the

pulse; specifically, they are a convolution or cross correlation
of the pulse with a weighting factor. �The first-order charac-
teristics are represented by the Fourier transform of the
pulse.� For the case of a monochromatic field, i.e., F�t�
=F0 Re�ee−i�t�, the D functions become proportional to delta
functions:

Di,j
�0��E� =

eiej

�
��E − E0 − 2�� , �A13�

Di,j
�1��E� = −

eiej

�2 ��E − E0 − 2�� . �A14�

These delta functions enforce energy conservation for ab-

sorption of two photons. Since F̂�E� in Eq. �A1� is propor-
tional to ��E−E0−�� for a monochromatic field, it is obvi-
ous that the interference of the amplitudes A1 and A2
decreases rapidly with decreasing pulse bandwidth and van-
ishes for a monochromatic pulse.

APPENDIX B: ANALYTICAL RESULTS FOR THE
COULOMB POTENTIAL

For the case of ionization of the 1s state of a Coulomb
potential with nuclear charge Z to a continuum state with
energy E= p2 /2 and angular momentum l=1, the first-order
radial matrix element �Eq. �52�� has the following analytic
form:

Ap1 = −
4i

�p3

Cp1a5/2

�a2 + 1�3� ia − 1

ia + 1
�ia

, �B1�

where

a = Z/p, Cpl = �2pe�a/2��l + 1 − ia� . �B2�

The second-order matrix elements in Eq. �53� for the case
of ionization of the 1s state of the Coulomb potential are a
combination of hypergeometric functions of two variables
�the Appell functions F1�a ;b ,c ;d ;x ,x�� �37��, as shown,
e.g., by Eq. �51� in Ref. �38�, which is applicable for two-
photon ionization of the 1s state. �Note that in Ref. �38� the
matrix elements are given in the velocity gauge and are re-
lated to the matrix elements in the length gauge through the
relation given after Eq. �35� in Ref. �38�.� Using these rela-
tions, the second-order radial matrix elements in Eq. �53� for
the 1s state of the Coulomb potential are given by

Mp0�	� = −
8i

3�2p3/2
Cp0a5/2

�E − 	��	 + Z2/2�

���1 − ia��2 − ia�F�0� − �1 + ia��2 + ia�F�2�� ,

�B3�

Mp2�	� =
8�2i

3�2p3/2
Cp2a5/2

�E − 	��	 + Z2/2�
�F�0� − F�2�� ,

�B4�

where 	 is the intermediate state energy, E= p2 /2, and
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F�m� =
�5

�2 − Z���1 + Z��4

�� − i/p�ia−3+m

�� + i/p�ia+1+m

�F1�2 − Z�;− ia + 3 − m,ia + 1 + m;3 − Z�;x,x�� ,

�B5�

� =
1

�− 2	 − i0
, �B6�

x =
Z� − 1

Z� + 1

� + i/p
� − i/p

, x� =
Z� − 1

Z� + 1

� − i/p
� + i/p

. �B7�

In a similar way, using the results in Ref. �38�, second-order
radial matrix elements �pl	rgL�E ;r ,r��r�	n1� in Eq. �70� for
attosecond photoionization from an initial p state can also be
presented in terms of the Appell functions F1.

APPENDIX C: ROLE OF TERMS REPRESENTING
PHOTON EMISSION

We analyze here the contributions to the ionization prob-
ability of terms in the first- and second-order ionization am-
plitudes involving, respectively, one and two negative fre-
quency components of the Fourier transform of the pulse,
which are omitted in the approximate Eqs. �55� and �56�. We
rewrite the exact Eqs. �45� and �46� for the first- and second-
order transition amplitudes �which, we emphasize, were used
to obtain all numerical results presented in this paper� as
follows:

A1 = Ã1 + �A1 = e−i��e · p̂��+ + ei��e� · p̂��−, �C1�

A2 = Ã2 + �A2 = e−2i��M0+2
++ + M0+2

+− + e2i��M0+2
−−

− 3��e · p̂�2e−2i�M2
++ + 	e · p̂	2M2

+−

+ �e� · p̂�2e2i�M2
−−� , �C2�

where Ã1 and Ã2 are the approximate amplitudes defined in
Eqs. �55� and �56�, �A1=ei��e� · p̂��− and �A2=e2i��M0+2

−−

−3��e� · p̂�2e2i�M2
−−�. In terms of these contributions to the

exact first- and second-order amplitudes, the ionization prob-
ability �cf. Eq. �38�� can be written as

W = p
	A1	2 + 2 Re��A1��A2� + 	A2	2�

= p
	Ã1	2 + 2 Re
Ã1
�Ã2� + 2 Re
Ã1

��A1� + 	�A1	2

+ 2 Re
Ã1
��A2� + 2 Re���A1��Ã2� + 2 Re���A1���A2�

+ 	Ã2	2 + 2 Re���A2��Ã2� + 	�A2	2� . �C3�

The first two terms in Eq. �C3�, 	Ã1	2+2 Re
Ã1
�Ã2�, are the

largest ones and are the only ones taken into account in the
theoretical part of this paper. One observes that there are
many additional terms, and thus it is important to evaluate
their relative importance. Clearly, the approximate first-order

amplitude, Ã1, which describes absorption of one photon, has
the largest magnitude, followed by the approximate second-

order amplitude, Ã2, which describes absorption of two pho-

tons plus absorption and emission of two photons. �A1 de-
scribes emission of one photon; it is suppressed in

comparison with the approximate amplitudes Ã1 and Ã2. The
amplitude for emission of two photons, �A2, has the smallest
magnitude. It turns out, as we shall show, that of all the

additional terms in Eq. �C3�, only the terms 2 Re
Ã1
��A1� and

	Ã2	2 are somewhat significant. To demonstrate this, we
present in Fig. 11 the contributions of all terms in Eq. �C3�.
One sees that the contribution of the term 2 Re
Ã1

��A1�,
which describes the interference of the one photon emission
and one photon absorption amplitudes, gives a contribution
of �5% at low final-state energies  20 eV. The two photon

absorption term, 	Ã2	2� I2, is somewhat significant in the re-
gion 40–70 eV, although, as mentioned in the theoretical sec-
tion above, for high final-state energies, where the first-order
transition amplitude is very small, one should take into ac-
count higher orders of PT, such as, e.g., the interference be-
tween the first- and third-order amplitudes, Re�A1

�A3�, which
also varies with intensity according to �I2. However, the
term Re�A1

�A3� can only be important in an energy region
where both A1 and A3 are significant, which is the energy
region of one photon absorption �for the first-order ampli-
tude� and of absorption of two photons accompanied by
emission of one photon �for the third-order amplitude�. In the

region of two photon absorption, it is expected that 	Ã2	2
�	A2	2 remains dominant. In addition 	A2	2 ensures positive
values for the ionization probability, which may become
negative without it �see the region above 50 eV in Fig.
11�b��. All other additional terms in Eq. �C3� are insignificant
and are not visually different from zero on the scale of Fig.
11.
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1δA1)

2pRe(Ã∗
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FIG. 11. �Color online� Contributions of different terms in Eq.
�C3� to the probability W for ionization of the H atom with elec-
trons ejected at an angle �=0 by a linearly polarized, two-cycle,
cos2 pulse having �=36 eV, I0=5�1015 W /cm2, and CEP �=0.
Panel �b�: same results as in panel �a�, but on an enlarged scale.
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These considerations allow us to present an improved the-
oretical expression �compared to Eqs. �16a� and �17�� for the
ionization probability in which the CEP, pulse polarization,
and angular dependence are explicit:

W = p�	Ã1	2 + 2 Re
Ã1
�Ã2� + 2 Re
Ã1

��A1� + 	Ã2	2�

= W1 + Re
e−i����1 + �2	e · p̂	2��e · p̂� + �3��e� · p̂���

+ p	Ã2	2. �C4�

Note that Eq. �C4� contains the exact W1 �cf. Eq. �13�� and

the second-order term p	Ã2	2. For an initial s state

�1 = 0, �2 = 2p�+�−
� , �C5�

while the other dynamical parameters are defined in Eqs.

�57�–�60�, respectively. The parametrization of the term 	Ã2	2

follows from Eq. �56�; it involves the CEP dependence
through the factors cos 2� and sin 2�. For brevity, we
present the results for only the two most important cases: for
linear polarization,

	Ã2	lin
2 = 	l+	2 + 	l−	2 + 2 Re
e−2i�l+l−�� , �C6�

where

l+ = M0+2
++ − 3M2

++ cos2 �, l− = M0+2
+− − 3M2

+− cos2 � ,

and for circular polarization,

	Ã2	circ
2 = 	c+	2 + 	c−	2 − 2 Re
e−2i���−��c+c−�� , �C7�

where

c+ = �3/2�M2
++ sin2 �, c− = M0+2

+− − �3/2�M2
+− sin2 � .
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