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The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using
a combination of semianalytical and numerical models, with a particular emphasis at finite-size scaling effects.
Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions
of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions,
the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the
melting temperature follows the rule expected for three-dimensional dense particles, with a depression scaling
linearly with the inverse radius.
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I. INTRODUCTION

The storage of cold ions in electrostatic and magnetic
fields �Penning traps� or in radio-frequency electric fields
�Paul traps� has become possible with the advent of laser
cooling techniques �1–4�. For few-particle systems in quad-
rupole traps, this has lead to many applications ranging from
high-resolution spectroscopy and optical frequency standards
�5,6� to quantum information �7–9� and tests on the possible
variations of the fundamental constants �10,11�. While these
effective harmonic traps allow focusing the ions at the center,
a greater number of ions with reduced rf-driven motion can
be stored in higher-order confinements, with possible uses as
microwave clocks for deep space navigation �12� or to con-
trol cold chemical reactions �13� of astrophysical relevance.

Large samples of ions also offer a practical realization of
the classical many-body Coulomb problem with interesting
collective properties such as phase transitions. Crystalliza-
tion of ion clouds has been observed in quadrupole traps
�14–16�, in Penning traps �3,17�, and theoretically studied by
several groups �18,19�. There, ion clouds crystallize into
well-defined shells at small sizes �18�, and then into the bcc
Wigner crystal in samples exceeding about 104 ions �19�.
Melting can be experimentally triggered by varying the trap
parameters �20�, and proceeds by separate radial and orien-
tational mechanisms in small clusters �21�. Schiffer �22� re-
ported from molecular-dynamics �MD� simulations that the
large clouds melt from the surface, resulting in a melting
temperature that varies linearly with inverse cluster radius.

In comparison, the properties of cold ion clouds in higher-
order traps are much less documented, despite specific inves-

tigations for octupole traps �23,24�. Using various semiana-
lytical and numerical methods, we show in this article that
the stable structures of ion clouds in octupole traps are gen-
erally made of multiple distinct shells only when the number
of ions does not exceed a few thousands. Above this approxi-
mate size, layering is progressively lost except in the outer-
most regions of the cloud. We also found that these clusters
melt from the core and, quite unexpectedly, exhibit a depres-
sion in the melting point that scales linearly with the cloud
radius.

In the next section, the model is described and the struc-
tural properties of clusters are investigated. In Sec. III, the
finite temperature aspects are covered, and some concluding
remarks are finally given in Sec. IV.

II. MODEL AND STATIC PROPERTIES

The system we are investigating consists of N identical
ions with charge q and mass m, confined in an isotropic
octupole trap. We denote by � the radiofrequency of the
electric field and by E�r� its amplitude at position r. We
assume that the adiabatic approximation holds and that the
macromotion is driven by the so-called pseudopotential
�T�r� as

�T�r� =
q2

4m�2 �E�r��2. �1�

We further assume that the rf-driven motion that superposes
with the macromotion can be neglected for the present pur-
poses. For simplicity of the following analysis, the electric
field derives from a purely radial three-dimensional octupole
potential E=−grad V with V=V0�r4, r being the distance
from the trap center and V0 a constant. The pseudopotential*fcalvo@lasim.univ-lyon1.fr
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then scales as r6 and the potential energy felt by an assembly
of ions can thus be written as

���ri�� = �T��ri�� + �C��ri�� ,

=A�
i

ri
6 + B�

i�j

1/rij , �2�

where we have denoted by ri and rij the distances of ion i to
the center of the trap and to particle j, respectively. The
constants A and B in the previous equation can be removed

by scaling of the quantities r→ r̃=�r and �→�̃=� /�B,
with �= �A /B�1/7. In the following, reduced units are thus
chosen for both distances and energies, which amounts to
using A=B=1 in Eq. �2�.

We have first located the structures that globally minimize
Eq. �2� at fixed size N�200, employing the basin-hopping
Monte Carlo method �25� successfully used in previous re-
lated work �26�. The ions arrange into a single spherical thin
shell for N�109, and two shells above this size. This shell
structure can be fruitfully used to predict the minima for
larger clouds, assuming that the radial density is written as a
sum over M concentric shells of zero thickness. Such a shell
model was initially developed for the quadrupole trap �27�
and improved for intrashell correlations �28�. The energy to
be minimized, �shell, is a function of the radii �Ri� of the
shells, each shell i carrying Ni ions �plus one possible ion at
the center, N0�,

�shell��Ri,Ni�� = �
i=1

M
EC

intra�Ni�
Ri

+
Ni

Ri
�Ri

7 + �
j�i

Nj	 . �3�

In the above equation, we have denoted by EC
intra�N� the in-

trashell Coulomb energy in which the particles lie on the unit
sphere. This energy is minimized at the solutions of the Th-
omson problem �29�, which have been tabulated up to rather
large sizes �30�,

EC
intra�N� = ETh�N� . �4�

Alternatively, for large numbers of ions, an asymptotic ex-
pression can be substituted for the intrashell Coulomb energy
�31� as

EC
intra�N� =

N�N − �
N�
2

, �5�

where the �
N contribution accounts for intrashell correla-
tions �neglecting correlations in a mean-field approach would
yield N�N−1� /2�. Following the recent results of Cioslowski
and Grzebielucha �31� the parameter � was taken as 1.10610.
The above energy �shell��Ri ,Ni�� can be exactly minimized,
resulting in the expression for the radius of shell i,

Ri = �1

6�EC
intra�Ni�

Ni
+ �

j�i

Nj	�1/7

. �6�

The remaining minimization of �shell with respect to the �Ni�
must then be carried out numerically under the constraint of
a fixed total number of ions.

When the tabulated optimal Thomson energies are used in
place for EC

intra�N�, the minimization problem is variational

and provides rigorous upper bounds to the exact values. If
the asymptotic expression of Eq. �5� is employed instead,
energies lower than the numerically exact minima may be
reached due to the approximate nature of this asymptotic
form. The optimized energies, outer radius, and shell ar-
rangements obtained from Monte Carlo minimization are
listed in Table I for selected cluster sizes. In this table, the
predictions of the shell models in which the intrashell ener-
gies are either taken from the tabulated Thomson minima
�30� �discrete model� or from the asymptotic expression
�continuous model� are also given.

Energies, shell radius, and ion arrangements agree very
well between the three methods; the shell models sometimes
producing differences of 	1 ion in the shells for the larger
clusters containing 180 ions or more. Energies and radii ob-
tained from the tabulated Thomson minima are in very good
agreement with the exact results until two shells are formed
above 100 ions. The agreement is not as good when the
asymptotic form for the Thomson energies is used, the en-
ergy being slightly underestimated. This underestimation
suggests that the value of the parameter � used in the shell
model, which was taken from extrapolations of the Thomson
model to the large sizes regime �31�, may be slightly exces-
sive at small sizes. The greater validity of the current value
of � to large sizes is also indicated by the relative error
between the shell energy and the Monte Carlo data, which
for the systems considered in Table I decreases from 0.5% to
less than 0.01% as the number of ions increases from 10 to
200. Despite this systematic error, we generally find that the
exact energy obtained by minimization lies in between the
predictions of the two shell models, and that the outer radius
is correctly reproduced �within 0.2%� by both models.

At this point, it is important to stress that the agreement
between the shell models and global optimization is essen-
tially due to the correct account of correlations, which are
implicitly included in the Thomson energies ETh�N� or ex-
plicitly in the asymptotic expression of Eq. �5� through the
term 
N=�
N. For comparison, the mean-field treatment
with 
N=1 predicts that the structure of the 100-ion cluster
would have nine shells.

The asymptotic shell model can be further exploited in the
larger sizes regime 103�N�105, where the optimal Thom-
son energies are not systematically available. The shell radii
predicted by this model are represented as a function of the
number of ions in Fig. 1. The average radii obtained from
globally optimized structures, superimposed for selected
sizes N=10k, k=1–4, correctly match Eq. �6� until about
1000 ions are reached, larger clouds showing clear devia-
tions in the inner shells. However, the cloud radius �outer-
most shell� and the minimum energy are both accurately re-
produced. One prediction of the continuous shell model is
the size at which new shells appear. In contrast with the
quadrupole case, where shells are essentially added over an
existing core �18,19�, shells for octupole clusters grow both
on the outside and on the inside. The shell capacitance may
then be defined as the maximum number of ions that a shell
can sustain, and above which a new shell appears. The con-
tinuous shell model predicts the onset of new shells at
N=109, N=442, N=1129, N=2264, N=3992, N=6466,
N=9709, N=13967, and N=19249. The model also predicts
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that the 105-ion cluster should have 17 shells but, as will be
seen below, structural minimization yields a more contrasted
picture. These transitions occur at much larger sizes than in
the quadrupole case �18,19�, where for instance the 13- and

58-ion clusters adopt the �1,12� and �1,12,45� shell struc-
tures, respectively �32�.

Up to 108 ions, the most stable configurations are the
same as the Thomson minima �29,30�, within some minor
radial relaxations. The Thomson shell model also performs
rather well for predicting structures of clusters containing
two shells. This agreement suggests using the known Thom-
son minima for optimizing the atomic structure of multishell
systems as well, as long as all shells remain very thin. Such
an idea is also supported by a recent investigation by
Cioslowski on a modified but similar Thomson model �33�.
We have guided Monte Carlo global minimization by com-
bining the results of the shell model with the available solu-
tions to the Thomson problem �30�. In this approach, the
continuous shell model is used to predict the optimal number
of layers and the individual numbers of ions per layer �the
discrete shell model could also be used�. The coordinates of
the ions in each layer are then scaled from the corresponding
solution to the Thomson problem to have a radius given by
the predictions of the shell model, and the only remaining
degrees of freedom are two Euler angles ��i ,�i� for each
layer. The new Monte Carlo optimization consists thus in
first locating the low-energy regions in these angles space,
and to locally minimize the resulting structures by relaxing
all ionic positions. This method was found to perform very
satisfactorily with respect to brute force basin-hopping mini-
mization for several sizes in the range N=100–1000, leading
to low-energy structures often identical, or higher but by
only a few 10−3 percents.

TABLE I. Lowest energy EN and outer-shell radius RN found for ion clusters in the octupole trap, as obtained from Monte Carlo global
minimization �left columns�, from the discrete �Thomson� or continuous �asymptotic� shell models �central and right columns, respectively�.
The ion arrangements into shells predicted by the three methods are also indicated.

Size

Minimization Thomson shell model Asymptotic shell model

Energy Outer radius Arrangement Energy Outer radius Arrangement Energy Outer radius Arrangement

10 41.624 0.917 �10� 41.624 0.917 �10� 41.399 0.916 �10�
20 170.363 1.033 �20� 170.363 1.033 �20� 170.026 1.033 �20�
30 380.045 1.104 �30� 380.045 1.104 �30� 379.611 1.104 �30�
40 666.975 1.156 �40� 666.975 1.156 �40� 666.467 1.156 �40�
50 1028.596 1.197 �50� 1028.596 1.197 �50� 1027.998 1.197 �50�
60 1462.912 1.231 �60� 1462.912 1.231 �60� 1462.210 1.231 �60�
70 1968.278 1.261 �70� 1968.278 1.261 �70� 1967.484 1.261 �70�
80 2543.311 1.287 �80� 2543.311 1.287 �80� 2542.467 1.287 �80�
90 3186.982 1.310 �90� 3186.983 1.310 �90� 3185.995 1.310 �90�

100 3898.102 1.331 �100� 3898.103 1.331 �100� 3897.051 1.331 �100�
110 4675.652 1.355 �2,108� 4675.858 1.355 �2,108� 4674.619 1.355 �2,108�
120 5518.467 1.375 �4,116� 5518.839 1.376 �4,116� 5517.415 1.374 �3,117�
130 6425.708 1.395 �6,124� 6426.152 1.396 �6,124� 6424.708 1.396 �6,124�
140 7396.731 1.413 �8,132� 7397.271 1.414 �8,132� 7395.796 1.414 �8,132�
150 8430.934 1.433 �12,138� 8431.678 1.433 �12,138� 8430.054 1.432 �11,139�
160 9527.713 1.448 �14,146� 9528.564 1.449 �14,146� 9526.851 1.447 �13,147�
170 10686.607 1.464 �17,153� 10687.544 1.464 �17,153� 10685.664 1.463 �16,154�
180 11906.937 1.479 �20,160� 11907.934 1.477 �18,162� 11905.975 1.478 �19,161�
190 13188.284 1.492 �22,168� 13189.315 1.492 �22,168� 13187.303 1.492 �22,168�
200 14530.226 1.506 �26,174� 14531.342 1.504 �24,176� 14529.198 1.506 �25,175�
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FIG. 1. �Color online� Shell radii versus cluster size, as pre-
dicted from the correlated shell model �solid lines; different curves
correspond to successive shells� and from global optimization �open
circles�. The largest shell radius follows a N1/7 scaling law. Inset:
lowest energy versus cluster size, as obtained from the correlated
shell model �dashed line� and from global optimization �open
circles�.
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Provided that correlations are included in the evaluation
of EC

intra�N�, the above results show that the combined
shell model +Monte Carlo optimization should be espe-
cially useful for large systems, for which successful basin-
hopping runs would be prohibitive, and this even allowed us
to explore clusters containing up to N=105 ions. At large
sizes, Fig. 1 shows that the cloud radius R and its minimum
energy � scale as RN1/7 and �N13/7, respectively. Both
scaling laws readily follow from a simple cold fluid approxi-
mation, which is expected to be valid for large sizes �34,35�.
The maximum radius R of the cloud naturally relates to the
total number N of ions through a n�r�r4 radial density. For
the energy �, the Coulomb and trapping components are
related to each other through the virial theorem as �C
=6�T
at any local minimum configuration where the gradient van-
ishes. Hence � is proportional to the trapping energy only,
which is simply integrated over the radial density n�r� as
�=7�TR13N13/7.

The validity of the cold fluid theory is better manifested
on the radial effective density profile. From the stable ionic
configurations obtained for the sizes N=10k, k=3–5, we
have calculated the minimum pair distance rij

min between a
given ion i and all other ions j, which is related to the local
density n�r� through rij

minn−1/3. Figure 2 shows the correla-
tion between this quantity and the radial distance ri of ion i
for the three sizes. The r−4/3 dependence highlighted in Fig. 2
thus confirms that the cold fluid theory holds increasingly
well for these ion clouds, deviations being more noticeable
in the less populated �but more fluctuating� inner regions.
The most striking feature of Fig. 2 is the broadening of the
shells when the number of ions increases from 103 to 104,
especially noticeable for the inner shells. Above a few thou-
sands of ions �an estimate based on mixed-shell–Thomson
optimization yields N�4000�, this broadening is sufficient
for some shells to overlap into a more continuous radial dis-
tribution of ions below the outermost layer, which is the only
one to remain thin, even for the largest size considered,

N=105. This mixed continuous or discrete behavior is better
seen on the accumulated fraction ��r� of ions inside a sphere
of radius r. The variations in � with increasing r, depicted as
an inset in Fig. 2, exhibit spectacular changes as the size
reaches 104. The sharp steps found in small clouds or at large
radii are characteristic of new shells, but are progressively
softened in the inner regions of the 104-ion system and even
replaced by a nearly continuous profile in the largest cluster.
In an octupole trap, crystallization should then be understood
as the formation of an outermost thin layer with a softer
decreasingly dense but thick inner layer. Surface effects,
which play a major role in reducing the melting point of ion
clouds in harmonic potentials �22�, could thus have a very
different influence in the case of the octupole trap.

III. FINITE TEMPERATURE PROPERTIES

Whereas the previous section considered the stable struc-
tures and static issues, we now discuss the thermodynamical
and dynamical behavior of selected ion clusters in octupole
traps. Classical MD simulations have been carried out at
various energies to compute several thermodynamical and
structural observables. Order-disorder transitions have been
monitored using the root-mean-square bond-length fluctua-
tion or Lindemann index 
, as well as the particle-resolved
diffusion constant Di from the integrated velocity autocorre-
lation function. The rms bond-length fluctuation index has
been computed for collective parts of the clouds �intrashell
indices� or from pairs of ions belonging to different shells in
the stable structure �intershell index�. The variations in the
shell-resolved Lindemann indices with the kinetic tempera-
ture are shown in Fig. 3 for the 512-ion system made of three
shells. This size is small enough for the inner shells to be
well defined and not overlapping with each other. All Linde-
mann indices exhibit smooth variations at low and high tem-
peratures, and one sharp increase above 
�0.15 in a narrow
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FIG. 2. �Color online� Minimum pair distance versus radial dis-
tance in stable structures containing 103–105 ions. Inset: fraction of
ions inside a sphere of given radius. The most stable configuration
of the 1000-ion cluster is also depicted, with the front quarter
removed.
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temperature range, allowing an accurate estimation of the
corresponding melting temperature. From Fig. 3, the global
melting of the 512-ion system can therefore be located near
Tm�1.1�10−2. However, the additional Lindemann indices
clearly reveal that the interior shell exhibits some prelimi-
nary softening already above T�10−3 before fully melting
near Tm

�1��3�10−3. Melting of this inner shell impacts the
distance fluctuations within the other shells, as seen from the
slight increase in the corresponding Lindemann indices.
However, these shells clearly undergo their own distinct
melting transitions at Tm

�2��8.5�10−3 �second shell� and
Tm

�3��1.4�10−2 �outermost shell�. The intershell Lindemann
index follows similar variations as the intrashell index of the
intermediate second shell. This agreement is not fortuitous:
melting of the second shell occurs while the interior shell is
already disordered, and the present results show that these
two shells tend to mix, to some extent, while the outermost
layer remains rigid.

The melting mechanisms can be analyzed in more details
by looking at the ions motion at various temperatures. The
correlations between the average radial distance �ri� and the
diffusion constant Di are shown in Fig. 4 for the 2048-ion
system at four characteristic temperatures. For this system,
the melting point obtained from the variations in the global
Lindemann index lies near Tm�0.023. At T=0.011, the four
shells are clearly seen as narrow vertical spots with low val-
ues for Di at radii close to 1.32, 1.68, 1.97, and 2.20. The
intershell motion and occasional hops of ions between neigh-
boring shells are seen at T=0.018; they are associated with a
much higher diffusion constant. Note that Di exhibits a
steady decrease with the radial distance, in agreement with
the previously found softening of internal layers. At
T=0.028 the global diffusivity is also higher, and the shell
structure seems essentially lost. A similar trend is found at
the highest temperature considered here, T=0.048, with a
single broad spot centered around a radius of 2.02. The pe-
culiar core melting effect is a consequence of the lower den-
sity of the inner shells, and is similar in this respect to the
general surface melting process in solid state and nanoscale
materials �36�. At first sight, this phenomenon may preclude
from unambiguously defining the melting temperature of the

entire system since, strictly speaking, the system is not yet
fully melted when the global Lindemann index barely ex-
ceeds 0.15. However, because the relative number of ions in
the external regions grows with size as N1/7 according to the
cold fluid model, the definition of the global index 
 should
reflect more and more closely the value of the outermost
layer. The melting point Tm was thus defined for all sizes as
the temperature at which 
 exceeds 0.15. For the present
clouds in octupole traps, the variations in Tm have been rep-
resented in the inset of Fig. 3 as a function of inverse cluster
radius. Not surprisingly, fluctuations are seen at small sizes,
and the 32-ion system �1 /R�0.61� seems extra resistant to
melting relative to its neighboring sizes. Since the 31- and
33-ion systems have a much lower melting point, the special
stability of the 32-ion cluster indicates a magic character,
further confirmed by its high icosahedral symmetry. As N
reaches 256 �1 /R�0.45�, Tm increases linearly as the in-
verse radius decreases. This linear depression, though not
anticipated for these highly heterogeneous core-melted sys-
tems, allows some straightforward extrapolation to the infi-
nite size limit 1 /R→0, leading to T��0.076. Even though it
is hard to figure out what a cloud confined in an octupole
trap would physically represent at the bulk limit, the present
simulation results should be very useful for estimating melt-
ing temperatures in system sizes of the order of 105 or more,
as experimentally studied in other groups �15�.

IV. CONCLUDING REMARKS

Despite their obvious differences, ion clouds in octupole
and quadrupole confinements share several remarkable fea-
tures. First, the onset of the transition from a multishell
structure to the bcc Wigner crystal in quadrupole trap was
estimated to be around 104 ions �19�. In octupole traps the
shell structure becomes blurred above a few thousands of
ions. Second, for both cases, the depression in the melting
point with respect to the bulk limit follows a linear scaling
with inverse cluster radius �22�. Third, in small systems, a
clear differential melting between the inner and outer shells
seems to take place in both confinements. These similarities
may well extend past the specific octupole trap, hold also in
higher-order traps, and even be universal. As the exponent
p=6 in Eq. �2� takes higher integer values, the stable shell
structure should be qualitatively preserved, only with fewer
shells. Therefore the transition to a softened core should be
delayed as p increases, but one cannot exclude that the same
melting mechanisms will remain, and in particular that the
melting temperature will display linear variations with in-
verse radius.

Because ion clouds in octupole traps remain poorly stud-
ied, the present work could be extended along many lines.
Keeping the isotropic case as a model of a more realistic
three-dimensional trap, it would be interesting to examine
more specifically dynamical properties involving the vibra-
tions and normal modes �37,38� or the transitions between
regular and chaotic regimes �39,40�. Extension of analytical
models �31,33� developed for the quadrupole case to higher-
order traps would also be useful.

Finally, at the price of introducing additional parameters
in the model, one natural step beyond the present work
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time average radius, in the 2048-ion cluster at four temperatures.
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would be to look at clusters in linear octupole traps, such as
those discussed by Okada and co-workers �24�. In these sys-
tems, confinement along the symmetry axis is harmonic in
nature, whereas confinement perpendicular to the axis is oc-
tupolar. The stable structures are hollow tubes of ions �24�,
and it is unclear how the combined contributions of the har-
monic and octupolar confinements will determine the cluster
properties. Even aware of these complications, the multishell
structure and core-melted phase predicted here, as well as the
scaling laws connecting size, radius, and melting tempera-
ture, should all become amenable to experimental compari-
son in the near future. May such measurements also help us
understanding the collective properties of these exotic states
of Coulombic matter.

Note added in proof. Recently, Okada and coworkers, Ref.
�41�, have observed crystallized ion clouds in linear octupole
traps.
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