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Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine
the atom-surface interaction. The method is applied to He atoms colliding with a LiF�001� surface along axial
crystallographic channels. The projectile-surface potential is obtained from an accurate density-functional
theory calculation, which includes polarization effects and surface relaxation. For the description of the colli-
sion process we employ the surface eikonal approximation, which takes into account quantum interference
between different projectile paths. The dependence of projectile spectra on the parallel and perpendicular
incident energies is experimentally and theoretically analyzed, demonstrating the range of applicability of the
proposed model.
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I. INTRODUCTION

Diffraction of thermal atoms from crystal surfaces has
been extensively studied over the years �1–11�, becoming a
common tool for surface analysis. Recently, new experi-
ments �12–15� have shown interference effects also for graz-
ing scattering of fast atoms from surfaces, where classical
mechanics was supposed to be adequate. This unexpected
diffraction phenomenon was found to be very sensitive to the
projectile-surface interaction �14–18�, which opens the way
for a method to probe surface potentials with high accuracy.

The aim of this work is to find out to what extent surface
potentials derived from state-of-art ab initio methods are ca-
pable of reproducing experimental diffraction patterns for
grazing scattering of swift He atoms from a LiF�001� sur-
face. The He-LiF surface interaction is derived here by using
the SIESTA �19� implementation of the density-functional
theory �DFT�, which is a self-consistent method for perform-
ing first-principles calculations on systems with a large num-
ber of atoms. This DFT method has been successfully used to
study a variety of nanoscale problems �20�. In order to de-
scribe the interference process, we employ a distorted-wave
model—the surface eikonal approximation �16�—using the
eikonal wave function to represent the elastic collision with
the surface, while the motion of the fast projectile is de-
scribed classically by considering axially channeled trajecto-
ries for different initial conditions. The surface eikonal ap-
proximation is valid for small de Broglie wavelengths of
incident atoms �21�, as considered here, which are several
orders of magnitude smaller than the interatomic spacings in
the crystal. This method was shown to provide an adequate
description of the interference effects for atoms colliding
with insulator surfaces under axial surface channeling �22�.

Eikonal projectile angular distributions derived from us-
ing the DFT surface potential are compared with the experi-
ment for different energies of incident projectiles. From this
comparison, we deduce the validity range of the potential
model, which involves polarization and surface rumpling.

The paper is organized as follows. The experimental method
and the theoretical formalism are summarized in Secs. II and
III, respectively. Results are presented and discussed in Sec.
IV, and in Sec. V, we outline our conclusions. Atomic units
�a.u.� are used unless otherwise stated.

II. EXPERIMENTAL METHOD

In our experiments, we have scattered neutral 3He and
4He atoms with kinetic energies Ei ranging from 0.3 to 25
keV from a clean and flat LiF�001� surface at room tempera-
ture under grazing angles of incidence 0.4��i�1.5°. Fast
He+ ion beams were produced in a 10 GHz electron cyclo-
tron resonance �ECR� ion source �Nanogan Pantechnique,
Caen, France�. The neutralization of the He+ ions was
achieved via charge transfer in a gas cell mounted in the
beam line of the accelerator operating with He gas and sub-
sequent deflection of remaining ions by an electric field. A
base pressure of some 10−11 mbar was achieved in our ul-
trahigh vacuum chamber by a turbomolecular pump in series
with a titanium sublimation pump, where the pressure gradi-
ent with respect to the beam line of the accelerator was main-
tained by two differential pumping stages. Pairs of slits at
both ends of these stages were used for the collimation of the
incident beam to a divergence of �0.03°. This high collima-
tion is necessary for diffraction in order to maintain the de-
gree of coherence in the scattering process from LiF�001�.

The LiF�001� surface was prepared by cycles of grazing
sputtering with 25 keV Ar+ ions at 250 °C where the ionic
conductivity of LiF is sufficiently enhanced in order to
avoided macroscopic charging up and subsequent annealing
to temperatures of about 350 °C. The scattering experiments
were performed in the regime of axial surface channeling,
i.e., the azimuthal setting of the surface plane was chosen
such that the direction of the incident beam was parallel with
atomic strings along low indexed directions in the surface
plane.
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Two-dimensional angular distributions of scattered pro-
jectiles were recorded by means of a commercially available
position-sensitive multichannelplate detector �MCP� with a
delay-line anode �DLD40, Roentdek Handels GmbH� located
66 cm behind the target. This provides a simple and very
efficient procedure for recording data where complete dif-
fraction patterns as shown below can be recorded in a time of
typically minutes. Since only about 104 He atoms per second
hit the target surface, fast atom diffraction is nondestructive
and can be applied in studies on insulator surfaces �neutral
projectiles� �12,13�, as well as adsorption phenomena at
metal surfaces �15,18�.

Since aside from the absolute angular positions of diffrac-
tion spots, their relative intensities are important here, one
has to carefully correct the recorded diffraction patterns with
respect to inhomogeneities in the detection efficiency across
the sensitive area of the MCP. This correction is performed
by means of a wobbling technique where the projectile beam
is scanned across the MCP active area with two orthogonal
oriented electric fields using frequencies in the kHz domain.

III. THEORETICAL MODEL

When an atomic projectile �P� impinges under grazing
incidence on a crystal surface �S� the T-matrix element asso-
ciated with the elastic scattering can be defined in terms of
the scattering state of the projectile, �i

+, as

Tif =� dR� P� f
��R� P�VSP�R� P��i

+�R� P� , �1�

where VSP is the surface-projectile interaction, R� P denotes
the position of the center of mass of the incident atom, and
� j�R� P�= �2��−3/2exp�iK� j ·R� P�, with j= i�f�, being the initial
�final� unperturbed wave function and K� i�f� the initial �final�
projectile momentum. Taking into account that in the range
of impact energies the de Broglie wavelength of the incident
projectile, �=2� /Ki, is sufficiently short compared to the
characteristic distance of the surface potential, we approxi-
mate the scattering state �i

+ by means of the eikonal Maslov
wave function �21� as follows:

�i
+�R� P� � �i

�eik�+�R� P� = �i�R� P�exp�− i��R� P�� , �2�

where

��R� P�t�� = �
−	

t

dt�VSP„R� P�t��… + 
M �3�

is the eikonal Maslov phase, which depends on the classical
position of the incident atom R� P at a given time t. This phase
includes the Maslov correction term 
M =�� /2 that takes
into account the phase change suffered by a wave as it passes
through a focus, with � the Maslov index defined as in Refs.
�23�. Note that the dependence of the eikonal phase on the
component of the velocity parallel to the surface becomes
evident from Eq. �3� by changing the integration variable by
the component of R� P along the incidence channel. By insert-
ing Eq. �2� in Eq. �1�, after some algebra, the eikonal transi-
tion matrix reads �16�

Tif
�eik� =� dR� os aif�R� os� , �4�

where R� os determines the initial position of the projectile on
the surface plane and

aif�R� os� =
1

�2��3�
−	

+	

dt�vz�R� P��

�exp�− iQ� · R� P − i��R� P��VSP�R� P� �5�

is the transition amplitude associated with the classical path
R� P�R� os , t�. In Eq. �5�, Q� =K� f −K� i is the projectile momentum
transfer and vz�R� P� denotes the component of the projectile
velocity perpendicular to the surface plane, with ẑ directly
along the surface normal, toward the vacuum region.

The differential probability, per unit of surface area, for
elastic scattering with final momentum K� f in the direction of
the solid angle  f ��� f ,� f�, is obtained from Eq. �4� as

dP /d f = �2��4mP
2 �T̃if

�eik��2, where T̃if
�eik� denotes the eikonal

T-matrix element, normalized per unit area, mP is the projec-
tile mass, and � f and � f are the final polar and azimuthal
angles, respectively, with � f measured with respect to the x̂
axis, along the incidence direction in the surface plane. De-
tails are given in Refs. �16,22�.

Projectile-surface interaction

The surface potential was determined by performing first-
principles calculations for the LiF�001� surface. We used the
SIESTA �19� implementation of density-functional theory
within the local density approximation �LDA� �24� to obtain
the effective interaction potential between a He atom and a
slab of 10 atomic planes of LiF. Periodic boundary condi-
tions were used in the �001� plane, and in order to prevent
the interaction between images of the He atoms, a 	�2�
�	�2� supercell was considered in the �001� plane, giving a
total of 112+1 atoms in the simulation box.

We model the core electrons with norm-conserving
pseudopotentials of the Troullier-Martins type �25�, describ-
ing valence electrons with numerical double-zeta polarized
atomic orbitals as the basis set. We explicitly included semi-
core states for Li �1s2� in the valence band and added two
extra layers of “ghost orbitals” with the same quality, cen-
tered at the ideal positions of Li and F above the surface, to
increase the basis set description of the surface electronic
wave-functions.

The structure was optimized until the forces on all atoms
were smaller than 0.03 eV /Å. The slight underestimation
for the in-plane lattice constant obtained in our slab geom-
etry �3.94 Å, experimental 4.02 Å �9�� is typical of LDA
calculations. Different relaxation of the Li and F atoms at the
surface called rumpling is apparent in the first two atomic
layers, with F atoms in the surface plane being slightly
pushed out and Li atoms slightly depressed by a distance d1
measured with respect to the unreconstructed surface. For the
topmost atomic layer, we obtained d1=0.046 a.u., while the
displacement corresponding to the second layer is substan-
tially smaller and in opposite direction �d2=−0.010 a.u.�.
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These values are slightly higher than those reported from a
low energy electron diffraction analysis �26� but still within
the experimental errors.

The surface potential V�z� for a given position �x ,y� on
the surface plane was obtained from calculations of the total
energy of the system composed by the LiF slab and the He
atom placed a distance z from the last atomic layer of the
slab �taken as the average between Li and F positions�. The
standard correction �27� due to basis set superposition errors
�BSSE� was considered for the computed V�z�

V�z� = E�LiF + He�z�� − E�He�z��LiF − E�LiF�He�z�, �6�

where E�A�X denotes the energy of the system A considering
not only the basis orbitals of A, but also those that corre-
spond to the subsystem X. Once V�z� is known for selected
nine in-plane high-symmetry positions in a mesh of z points,
an interpolation scheme is used to derive VSP�R� � at any point
in the vacuum region.

IV. RESULTS

Experimental angular distributions of He0 projectiles elas-
tically scattered from a LiF�001� surface under axial surface
channeling conditions are presented here as a benchmark for
the DFT projectile-surface potential.

First, we analyze the dependence of final projectile distri-
butions on the incidence energy Ei, split into two terms Ei
=Ei
 +Ei�, where Ei
 =Ei cos2 �i �Ei�=E sin2 �i� is associ-
ated with the component of the initial velocity parallel �per-
pendicular� to the axial channel, with �i being the incidence
angle measured with respect to the surface plane. In Fig. 1,
we show diffraction patterns for 4He atoms impinging along
the �110� direction with two different energies—Ei=2.2 and
7.5 keV—but via the settings of the angle of incidence with
the same perpendicular energy, Ei�=1.04 eV. In both cases,
the distribution for scattered projectiles lies inside an annulus
of radius �i, presenting maxima symmetrically placed with
respect to the incidence direction �i.e., � f =0�. The high in-

tensity for the outermost peaks �marked with lines� is due to
rainbow scattering under the rainbow angle �rb at maximal
deflection, which can be explained classically. Between the
outer rainbow peaks further peaks show up, which can be
explained as quantum mechanical diffraction effects in close
analogy to the origin of supernumerary rainbows �14�. Su-
pernumerary rainbows originate from quantum interference
between projectiles that follow different classical pathways
with the same final momentum. The order m of a supernu-
merary corresponds to the multiple of � in path length dif-
ference for constructive interference. For grazing scattering,
such structures in the angular distributions were predicted by
Andreev �28�. The black dots in Fig. 1 represent the theoret-
ical positions of the maxima from the eikonal model, which
closely agree with the experimental data.

In Fig. 2, we show the intensity inside the annulus of
radius �i from Fig. 1 as a function of the deflection angle �,
defined as �=arctan�� f /� f�. Position and number of the su-
pernumerary maxima are independent of Ei at the same Ei�.
Similar structures are predicted by the eikonal model, al-
though in the vicinity of the classical rainbow angle �rb the
relative intensity is overestimated. This has its origin in the
eikonal model, which is a semiclassical method based on
classically calculated trajectories, showing a sharp maximum
at the classical rainbow, where intensity increases sharply for
�→�rb and is zero for ���rb. In a more elaborate quan-
tum treatment, the classical rainbow peak will be replaced by
a smoothed maximum for m=0 at ���rb, with decaying
intensity on the dark side of the classical rainbow ���rb
�28–30�. The maximum for m=0 is the “quantum surface
rainbow” �31�.

Just like in the experiment, eikonal patterns as a function
of the deflection angle � are independent of Ei for the same
Ei�. This is more evident from Fig. 3, where deflection
angles corresponding to supernumerary rainbows are plotted
as a function of the total energy Ei while keeping Ei� con-
stant. Even though VSP�R� � takes into account the complete

FIG. 1. �Color online� Two-dimensional intensity distributions,
as recorded with a position-sensitive detector, for 4He atoms scat-
tered from LiF�001� along a �110� direction with two different pro-
jectile energies, Ei=2.2 and 7.5 keV, but with the same perpendicu-
lar energy �Ei�=1.04 eV�. Color code: red=high and blue=low
intensity. Positions of rainbow angles �rb are indicated by straight
lines. Black dots represent theoretical positions of maxima from the
surface eikonal model.

FIG. 2. �Color online� Projected intensities inside annuluses in
Fig. 1, as a function of the deflection angle �, for Ei=7.5 keV
�gray circles� and 2.2 keV �blue squares� and corresponding differ-
ential probabilities derived from the surface eikonal approach
�black dashed and red full curves�. m denotes the order of the su-
pernumerary rainbow.
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corrugation on the surface plane, without averaging the
projectile-surface potential along the incidence direction, the
eikonal projectile distribution is practically unaffected by the
modulation of the potential along the channel. Thus, the dif-
ferential probability dP /d� is independent of Ei
 for a given
perpendicular energy. On the other hand, the positions of
supernumerary maxima are found to be extremely sensitive
to the shape of the surface potential across the channel, es-
pecially for higher orders m, which correspond to small de-
flection angles �14,16,17,22�. From Fig. 3, we conclude that
the DFT surface potential reproduces fairly well the angular
positions of the supernumeraries.

Different perpendicular energies Ei� probe a different z
range of VSP. To investigate in detail the atom-surface poten-
tial across the �110� channel, we plot in Fig. 4 the angular
positions of maxima of the experimental distribution as a
function of Ei� ranging from 0.03 to 3 eV. In this case, 3He
projectiles are used. For low perpendicular energies, i.e.,
Ei��1 eV, the experimental spectra show maxima at Bragg
angles �n, which fulfill the condition

d sin �n = n��, �7�

d being the width of the axial channel, n the diffraction or-
der, and ��=2� /Kiz the de Broglie wavelength associated
with the perpendicular motion. As discussed in Refs. �14,32�,
interference patterns for grazing scattering stem from two
different mechanisms. The first one, related to the supernu-
merary rainbows, is produced by the interference of trajecto-
ries whose initial positions R� os differ by a distance smaller
than d, carrying information on the shape of the interaction
potential across the channel. The second one originates from
the interference of trajectories whose initial positions R� os are
separated by the spacial lattice periodicity d, resulting in
“Bragg peaks” providing information on the spacing between
surface atoms. The intensities of Bragg peaks depend on the

position of the supernumeraries. The Bragg peak of order n,
which is closest to the angular position of a supernumerary
of order m, is most intense. Since the Bragg angles �n de-
crease with Ei� while the angular position of the supernu-
meraries increases, the order n of the intense Bragg peak
increases successively.

Signatures of both interference processes can be observed
in the simulated spectrum as well. In Fig. 5, the eikonal
probability dP /d� is plotted as a function of the deflection

FIG. 3. �Color online� Deflection angles � corresponding to
maxima of angular distributions, as a function of the projectile en-
ergy Ei, for 4He atoms scattered from LiF�001� along the direction
�110�. The perpendicular energy is kept as a constant �Ei�

=1.04 eV�. Circles, experimental data; curves, quantum rainbow
m=0 and supernumerary rainbows m=1 to 4 derived within the
surface eikonal approximation.

FIG. 4. �Color online� Similar to Fig. 3, but as function of the
perpendicular energy Ei�, for 3He atoms scattered from LiF�001�
along the direction �110�. Full colored curves, quantum rainbow
m=0, and supernumerary rainbows m=1 to 4 derived within the
surface eikonal approximation based on the present DFT potential;
dashed curves, positions of supernumerary rainbows in hard-wall
approximation �Eq. �8�� using the effective corrugation �z of the
DFT potential across the �110� channel; thin gray curves, theoreti-
cal positions of maxima of order n from Bragg condition �Eq. �7��.
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FIG. 5. �Color online� Eikonal results for 3He atoms scattered
from LiF�001� along the direction �110� for the perpendicular en-
ergy Ei�=0.5 eV. Dashed �red� line, eikonal differential probabil-
ity derived by integrating the initial position over an unit cell; solid
�blue� line, similar by using an extended integration area, as ex-
plained in the text. Dotted vertical lines, theoretical peak positions
based on Bragg condition �Eq. �7��.
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angle for Ei�=0.5 eV. If in Eq. �4� the initial projectile po-
sition R� os is integrated over a unit cell, supernumerary
maxima are present in the angular projectile distribution
only. But when the integration area is extended in order to
include the first order nearest neighbor target ions, the eiko-
nal spectrum displays internal structures in the supernumer-
ary maxima, which stem from resolved Bragg peaks.

Since we are interested in studying the modulation of the
potential inside an unit cell, we have plotted in Fig. 4 eikonal
curves corresponding to the center of supernumerary
maxima, neglecting the Bragg interference that appears as a
superimposed structure at low perpendicular energies. The
eikonal curves obtained by using the DFT atom-surface in-
teraction follow closely the experimental results for supernu-
meraries m=1 to m=4 with only slight deviations for the
quantum rainbow m=0 at low Ei�. Supernumerary rainbows
are sensitive to the corrugation of the equipotential surfaces
but not to their positions. Each potential with the same ef-
fective corrugation along the �110� direction would agree as
well. In order to demonstrate the consistency of our poten-
tial, we compare the theoretical results with the experiment
for a further �symmetrically different� channeling direction.

In Fig. 6, we show a comparison of experimental super-
numerary rainbows with eikonal results for scattering of 3He
along a �100� direction of LiF�001�. The eikonal curves with
the DFT potential agree with the experimental values except
for m=0 at low energies Ei��1.0 eV. Also for this case, the
eikonal approximation as a semiclassical theory fails in the
vicinity of the classical rainbow �rb. The angular position of
the quantum rainbow m=0 is smaller than the classical rain-
bow angle �rb when �� becomes large �31�. Since the inten-
sity at �rb is overestimated, the peak maximum m=0 is
shifted to larger deflection angles at lower Ei�. For a correct
description of the intensity at �rb, a “uniform approxima-
tion” �29,30� is necessary, but supernumeraries are not af-
fected by this deficiency. Since the positions of the supernu-
meraries agree well in both channeling directions and since a
change in the corrugation of the He-LiF�001� interaction po-
tential by 0.02 Å induces a clear shift in the position of the
supernumeraries �14,22�, we conclude that the DFT He-
LiF�001� potential is adequate here.

By employing the hard-wall model from Garibaldi et al.
�31� valid for sinusoidal small corrugated potential surfaces,

we obtain good agreement as well. Hard-wall approxima-
tions were applied successful for description of scattering of
He from LiF�001� with thermal energies �2,6,33,34�. Due to
the large parallel velocity of the He projectile, the effective
potential is averaged along the chains of atoms in the chan-
neling direction. The potential contours of the effective po-
tential for scattering along �110� for low energies are well
approximated by sine functions. For a sinusoidal hard wall,
the intensity In of a Bragg peak of order n is given by

In = Jn
2��z

��

�1 + cos �n�� , �8�

with Jn being the Bessel function of order n, �n

=arccos	1− �n�� /d�2, the deflection angle of order n, and
�z the full corrugation of the sinusoidal hard wall, i.e., the
normal distance between the maximum and the minimum of
an equipotential surface. In Ref. �35�, it was shown that the
solution given by Eq. �8� is in agreement with the exact
quantum mechanical solution in a wide range of ��. Since
we are interested in the angular positions of the supernumer-
ary rainbows, we treat n in Eq. �8� as �R and search for the
maxima of this oscillating function by searching the zeros of
the derivation of Eq. �8� where for �z�Ei��, the effective
corrugation of the present DFT potential across the �110�
channel was used. Results are displayed in Fig. 4, showing
good agreement with the experiment and with the eikonal
approach. This allows us to conclude that the hard-wall
model is a good approximation here.

We then apply the hard-wall approximation in order to
describe the different relative intensities of the Bragg peaks
as shown in Fig. 7. We fit a sum of Lorentzian peaks to the
diffraction pattern, where the peak positions are given by the
Bragg relation �Eq. �7��. We assume, that the peak width is
the same for all diffraction spots �36�. Resulting relative peak
heights are compared with the relative intensities given by
Eq. �8� with �z as a fit parameter. The resulting intensity
distributions are shown as full curves in Fig. 7. The values
for �z obtained from the best fit are given in each panel.
Since �z is almost constant, the differences in the intensities
are due to the different de Broglie wavelength �� only.

The effective corrugation �z of the potential across the
�110� channel deduced from Bragg peak intensities for scat-
tering of 3He and 4He under different angles of incidence is
plotted as a function of the perpendicular energy Ei� in Fig.
8 by open symbols. Each data point corresponds to a best fit
with Eq. �8� as in Fig. 7. Although the diffraction patterns are
different for the He isotopes and for different angles of inci-
dence, the data are well described by Eq. �8� with an almost
constant corrugation �z. We compare the experimentally de-
rived values with the effective corrugation of the present
DFT potential �full curve in Fig. 8� defined as the normal
distance between the maximum and minimum of the equipo-
tential surface obtained by averaging the surface potential
along the �110� axial channel. We observe that the theoretical
curve is close to the experimental data.

In order to demonstrate the improvement by the present
DFT potential upon currently available descriptions of the
He-LiF�001� interaction, we show results from further calcu-

FIG. 6. �Color online� Similar to Fig. 4, but for scattering along
the �100� direction.
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lations in Fig. 8 for comparison. The interaction potential
from Celli et al. �8� is considered as the best available He-
LiF�001� potential �10,11�. But the resulting effective corru-
gation in the range of some 100 meV shows a strong depen-
dence on the perpendicular energy Ei� in contrast to the
experiment. We thus conclude that the potential from Celli et
al. is not adequate for the description of the He-LiF�001�
potential in the eV range. This is not in conflict with the
results of Refs. �10,11�, where the experiment is sensitive to
the attractive potential well of the planar averaged potential
in the meV range only, but not to the corrugation of the
repulsive part of the interaction potential in the eV domain.
The repulsive part of the Celli potential is based on self-
consistent field pair potentials for He-Li+ and He-F− from
Ahlrichs et al. �38�. Due to an error in the calculation of
He-F− repulsion �37�, which is the dominant contribution of
the repulsive part of the He-LiF�001� interaction potential,
the Celli potential has to be corrected. The correct He-F−

potential �37,38� is in good agreement with recent He-F− ab
initio pair potentials �39,40� up to several eV as well as the
original He-Li+ pair potential �38� agrees with recent He-Li+

ab initio potentials �41,42� up to some eV. Nevertheless, in-
serting the corrected He-F− parameters in the expression for
the Celli potential, the effective corrugation �z�Ei�� in the
range of some 100 meV energy deviates from the experimen-
tal results even more. The static potential of Ref. �16� �with-
out the contribution of the projectile polarization� is obtained
“pairwise additive,” like the Celli potential as a sum of indi-
vidual interatomic potentials, which agree for energies
�0.2 eV with the ab initio pair potentials �40–42�. Taking
into account the same rumpling as obtained by the present
DFT calculation, one derives an effective corrugation fairly
close to the experimental values �about 6% above�, but with
an underestimation for Ei��0.2 eV.

The small variation in the effective corrugation �z with
the perpendicular energy explains why He isotopes with the
same ��, but different perpendicular energies Ei� produce
similar diffraction patterns, even though different regions of
the surface potential are probed. As observed in Fig. 9, He
atoms with the same perpendicular de Broglie wavelength
���=0.13 Å� but different perpendicular energies �Ei�
=1.63 and 1.21 eV� show identical eikonal distributions, as
in the experiment. The scattering processes take place indeed
at different distances to the surface, but since �� and
�z�Ei�� are the same, similar interference patterns appear.

V. CONCLUSIONS

We have studied diffraction patterns for keV He atoms
colliding under grazing incidence with a LiF�001� surface in
order to test the ab initio surface potential, obtained from
DFT by making use of the SIESTA code. Angular distributions

FIG. 7. �Color online� Intensity distributions as function of de-
flection angle � for scattering of 3He atoms from LiF�001� along
�110� under �i=0.99° with a� Ei=0.35 keV, b� Ei=0.50 keV, and
c� Ei=0.65 keV. Solid curves represent best fits to data by sum of
peaks with Lorentzian lineshapes weighted by Eq. �8�. Deduced
best fit corrugation �z is given in each panel. Numbers denote order
n and gray bars theoretical positions of Bragg peaks from Eq. �7�.

FIG. 8. �Color online� Effective corrugation �z of the potential
across the �110� channel as a function of the perpendicular energy
Ei�. Open symbols, experimentally derived results in hard-wall ap-
proximation; solid red curve, values derived from the present DFT
potential; dashed curve, corrugation obtained from the interaction
potential from Celli et al. �Ref. �8��; dashed-double dotted curve,
corrugation from the potential from Celli et al. but with the correct
He-F− pair potential from Erratum of Ahlrichs et al. �Ref. �37��;
dashed-dotted curve, corrugation from the static potential �SP� of
Ref. �16�, as explained in the text.
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of scattered projectiles are obtained with the DFT potential
from the surface eikonal approximation, which takes into
account the quantum interference in terms of the coherent
superposition of transition amplitudes for different projectile
paths with the same deflection angle.

For scattering along the �110� channel, the dependence on
the parallel and perpendicular components of the impact en-
ergy was analyzed. It was found that angular distributions in
terms of the deflection angle � are completely governed by
the perpendicular energy. Diffraction spectra as a function of
� give information on the surface potential across the inci-

dence channel for two different mechanisms: supernumerary
rainbow and Bragg interferences. We have focused here on
supernumerary rainbows, which are very sensitive to the cor-
rugation of the surface potential within a unit cell. By com-
parison of calculated angular spectra with experimental dis-
tributions, we concluded that the DFT model provides a good
description of the surface potential for energies in the range
from Ei�=0.03 eV up to 3 eV. The agreement between
theory and experimental results for the intensity near the
classical rainbow angle is poorer for smaller Ei�. This defi-
ciency is attributed to the range of validity of the semiclas-
sical models, like the eikonal approach, which treats the pro-
jectile trajectory classically.

For scattering along the �110� direction, the calculation in
the hard-wall approximation using Eq. �8� is in good agree-
ment with results from simulation with the soft potential
based on the eikonal model.

We found that the potential from Celli et al. �8� is not
adequate for the description of the interaction of He with
LiF�001� in the eV energy domain. The DFT potential dis-
plays a constant effective corrugation for scattering along
�110� as function of the perpendicular energy, in agreement
with the experiment.
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