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Hyperfine-structure splittings in the 23S�L=0� state of the six-body carbon muonic 11C6+�−e4
−, 12C6+�−e4

−,
13C6+�−e4

−, and 14C6+�−e4
− ions are determined numerically with the use of variational wave functions. The

variational wave functions for each of these carbon muonic ions are constructed with the use of six-body
Gaussoids which explicitly depend upon all 15 relative coordinates r12,r13, . . . ,r56 defined in an arbitrary
six-body system.
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I. INTRODUCTION

Numerical analysis of the hyperfine structure splitting in
light muonic atoms and ions has a long history. First evalu-
ations of the hyperfine structure splitting in the helium
muonic atoms were performed 30 years ago �1–6�. Both the
3He2+�−e− and 4He2+�−e− atoms have extensively been stud-
ied in a number of later works �see, e.g., �7–10��. In general,
the knowledge of hyperfine structure splitting allows one to
obtain some additional information about magnetic nuclear
properties �see, e.g., �11,12��. Moreover, experimental stud-
ies of light muonic atoms can be used to increase the accu-
racy of current experimental measurements for light nuclei
�see, e.g., �13� and references therein�. Therefore, it is impor-
tant to expand our considerations to the lithium muonic, be-
ryllium muonic, boron muonic, and more complicated
muonic-atomic systems. The hyperfine structure splittings in
some such atoms and ions have been discussed in several of
our recent papers �14,15�. Note that in all few-electron
muonic atoms and ions, we always have a very significant
contribution from electron-electron correlations. Such a cor-
relation does not exist in one-electron helium muonic atom,
but in many-electron muonic atoms and ions, the electron-
electron interactions provide substantial corrections to the
bound-state energies. Moreover, in any muonic atom and ion,
one finds some additional �or muonic� contributions into
electron-nucleus correlations. The source of such contribu-
tions follows from the overlap of muonic wave function with
the nuclear wave function at very short distances r��2a0
and with atomic �or many-electron� wave function at rela-
tively large distances r�a0.

Theoretical and experimental investigations of the struc-
ture and properties of various muonic atoms and ions started
in the middle of 1960s �16–20�. The current bibliography for
muonic atoms and ions includes more than 1000 publica-
tions. A large number of interesting effects can be found in
each muonic atom. Briefly, these effects can be separated
into a few groups: �1� recoil effects; �2� retardation effects;
�3� analysis of interparticle correlations; �4� vacuum polar-
ization, self-energy, and anomalous magnetic moment; �5�
nuclear deformations analysis; �6� nuclear polarization and
isomeric shifts; �7� polarization of muons. A separate group
of problems is related with the study of muonic atoms with
unstable nuclei which have finite lifetimes �21,22�. Analysis
of the bound-state properties of muonic atoms �and ions�

allows one to evaluate the overall contribution of each of
these effects in the total energy and bound-state structure.

In this work, we consider the hyperfine structure of the
bound triplet 23S�L=0� states of carbon muonic ions
11C6+�−e4

−, 12C6+�−e4
−, 13C6+�−e4

−, and 14C6+�−e4
−. We as-

sume that in each of these carbon muonic ions, there are
magnetic interactions between the nuclear, muon, and total
electron spins. In those cases where the nuclear spin equals
zero identically, the magnetic interaction includes only one
term, corresponding to the magnetic interaction between the
muon spin and total electron spin. In general, such an inter-
action between three spins produces a very interesting hyper-
fine structure. Below, we want to determine the energy dif-
ferences between the energy levels which represent the
hyperfine structure. It is clear that an accurate evaluation of
the hyperfine splitting in these six-body ions will require
numerical computation of three two-particle delta functions
�muon-nuclear, electron-nuclear, and electron-muon delta
functions�. In turn, such computations can be performed only
with the use of accurate six-body wave functions explicitly
written in the 15 relative coordinates r12, r13, r14, r15, r16, r23,
r24, r25, r26, r34, r35, r36, r45, r46, and r56. The trial wave
functions must correspond to the triplet permutation symme-
try between four identical electrons.

The study of the hyperfine structure splitting in carbon
muonic, nitrogen muonic, and oxygen muonic atoms and
ions is of interest for several reasons. First, in such systems,
the radius of the muonic orbit is approximately equal to the
radius of the central nucleus. In other words, the muon
moves almost on the surface of the nucleus. This means that
in all these atoms and ions, we can observe an actual inter-
action between the motion of muon �− and various surface-
type excitations of the nucleus. Second, such an interaction
can produce very substantial differences in the hyperfine
structure splitting for different nuclear isomers �i.e., for the
excited nuclear states� of the same nucleus. Some isomers
�with excitation energies from 50 up to 200–300 keV� in
light nuclei are stable for a relatively long time which can be
sufficient to measure the hyperfine structure splitting. Third,
the formulas known from the general theory of hyperfine
structure splitting must be corrected, since the negatively
charged muon cannot be considered as a truly point particle
in carbon muonic and heavier atoms and ions. A different
reason is the study of electron-electron correlations in carbon
muonic, nitrogen muonic, and oxygen muonic ions. The
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presence of various interparticle correlations in these six-
body systems drastically complicates highly accurate compu-
tations.

We begin our analysis from a brief consideration of the
hyperfine structure splitting in the triplet states of carbon
muonic ions, the general theory of which is described in Sec.
II. Note that the hyperfine structure splittings in the carbon
muonic ions and atoms have never been considered previ-
ously. The overall complexity of this problem makes its ac-
curate solution extremely difficult. Numerical evaluation of
the hyperfine splitting in the carbon muonic ions contains
two difficult points: �1� antisymmetrization of each basis
four-electron function and �2� effective optimization of a
large number of nonlinear parameters in the trial wave func-
tions. Construction of variational six-body wave functions
for such systems and their proper antisymmetrization with
respect to all electron coordinates are discussed in Sec. III.
Section IV includes the results of numerical evaluations and
concluding remarks can be found in Sec. V.

II. HYPERFINE-STRUCTURE SPLITTING

In the lowest-order approximation, the hyperfine structure
splitting �below, hyperfine splitting, for short� in any light
muonic atom and ion in its bound S�L=0� states is described
by the Fermi-Segré formula. In this study, we shall consider
only the S�L=0�-electron states in the carbon muonic ions.
The Fermi-Segré Hamiltonian which represents the hyperfine
splitting in the S states of light muonic atoms and ions with
A−2 �A�3� electrons is written in the form �23�

HHF = − A��r�N��s� · IN� − B��
i=1

A−2

��r�i�si� · s�

− C��
i=1

A−2

��riN�si� · IN, �1�

where the sum is taken over all A−2 electrons in the system.
For carbon muonic ions discussed in this study, A=6 �the
total number of particles� and A−2=4 �the total number of
electrons�. The muon �− is a heavy particle which also has
the negative charge. Three coupling constants A, B, and C
from Eq. �1� are defined below. Also, in this equation and
everywhere below in this work, the vectors si, s�, and IN
designate the spin vectors of the ith electron, muon, and
carbon nucleus, respectively. Note that there are a number of
restrictions in applications of the formula, Eq. �1�, to various
�light� muonic atoms and ions.

The hyperfine splitting in the bound S�L=0� state of the
light muonic atoms is described by the expectation value
�Hs= 	HHF
, which is taken over the spatial coordinates of all
particles. The value �Hs is represented in the form �23�

�Hs = 	HHF
 = − A	��r�N�
�IN · s�� − B	��re��
�Se · s��

− C	��reN�
�Se · IN� , �2�

where ��rXY�=�XY designates the two-particle delta function
between particles X and Y. The notations ��reN� and ��re��
stand for the properly symmetrized electron-nucleus and

electron-muon delta functions, respectively. The notation Se
in Eq. �2� means the total electron spin, i.e., it is the vector
sum of all single-electron spin vectors, i.e., Se=�i=1

A−2si. This
value is obtained with the use of the following formula for
the electronic expectation values:

��
i=1

A−2

���rai�si�� = 	��rae�
�
i=1

A−2

si = 	��rae�
Se, �3�

where a=N and � in our notations, while e designates the
generalized electron coordinate.

Now, we can write the explicit expressions for the cou-
pling constants A, B, and C in Eqs. �1� and �2� �in atomic
units where �=1, e=1, and me=1�

A =
2�

3
�2 g�gN

m�mp
, B =

2�

3
�2 geg�

mem�

, C =
2�

3
�2 gegN

memp
,

�4�

where � is the fine-structure constant and me, m�, and mp are
the electron, muon, and proton masses, respectively. Also, in
these equations gN=�N / IN, where the nuclear magnetic mo-
ment ��N� is expressed in the nuclear magnetons e�

2mpc
= �me /mp��0, where �0 is the Bohr magneton. The maximal
value of the nuclear moment �N �for each nucleus� can be
found in tables of nuclear data �see, e.g., �24� and references
therein�. In atomic units, the Bohr magneton equals 1

2 ex-
actly.

In this study, we consider the 11C, 12C, 13C, and 14C nu-
clei which have nuclear spins IN= 3

2 ,0 , 1
2 , and 0, respectively.

The 12C and 13C carbon nuclei are stable, while the 14C
nucleus decays with the emission of a �− particle �electron�
�T1/2�5715 yr�. Analogously, the 11C nucleus decays with
the emission of a �+ particle �positron� �T1/2�20.3 min�.
The atomic masses of the corresponding carbon atoms rela-
tive to 12C=12.000 �exactly� are

M�11C� = 11.011 434, M�12C� = 12.000 00,

M�13C� = 13.003 354 838, M�14C� = 14.003 241 989.

The mass of the bare neutron in these units is Mn
=1.008 664 916. The same �neutron� mass in atomic units is
Mn=1838.683 662me. This gives us the corresponding con-
version coefficient x=1822.888 486 4. This number must be
multiplied by the mass of carbon nuclei expressed in carbon
units, i.e., mass units relative to 12C=12.000.

The fine-structure constant �, masses of the muon m� and
proton Mp, and g factors used in our present calculations
were chosen from �24,25�,

� = 7.297 352 568 � 10−3, mp = 1836.152 672 61,

m� = 206.768 283 8me, me = 1,

ge = − 2.002 319 304 371 8, g� = − 2.002 331 839 6,

gN�11C� = − 0.9640 � � 2
3� = − 0.785 07,
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gN�13C� = 0.702 41 � 2 = 1.404 82.

For the 12C and 14C nuclei, gN�12C�=0.0 and gN�14C�=0.0.
The hyperfine splitting is traditionally expressed in MHz. To
convert the energies from a.u. to MHz, the conversion factor
6.579 683 920 61�109�MHz /a.u.� has been used.

Now, one can determine the A, B, and C coupling con-
stants from Eq. �3� for each of the isotope-substituted carbon
muonic ions considered in this work. First, note that for the
12C and 14C nuclei, the coupling constants A and C equal
zero identically. The coupling constant B equals
14 229.176 563 556 MHz for all carbon muonic ions. Nu-
merical values of the constants A and C for the 11C and 13C
nuclei are

A�11C� = 3.038 407 551 330 6 MHz,

C�11C� = 628.242 381 853 71 MHz,

A�13C� = − 5.436 987 397 633 6 MHz,

C�13C� = − 1124.189 515 426 3 MHz. �5�

Note that these coefficients have different signs for 11C and
13C nuclei.

The total electron spin Se= Se of any triplet state equals
1, while the muon spin s�= s�= 1

2 in all cases. As mentioned
above, the hyperfine splitting for the 23S�L=0� state of the
12C and 14C carbon muonic ions is determined only by the
magnetic interaction between the muon and total electron
spins. Such an interaction produces the actual splitting be-
tween the doublet F= 1

2 and quartet F= 3
2 states. In the 23S

states of the 11C and 13C carbon muonic ions, the situation is
more complicated �see below�. Here and everywhere below
in this work, F designates the total spin of the carbon muonic
ion, i.e., F=IN+s�+Se, in our present notations. Possible
values of F for each of the carbon muonic ions are discussed
in Sec. IV. In fact, for all light muonic atoms and ions with
IN�

1
2 , it is very useful �see below� to introduce the total spin

K of the central muonic quasinucleus, i.e., K=IN+s� and
K= IN	

1
2 .

III. VARIATIONAL WAVE FUNCTIONS

To evaluate the hyperfine splitting in actual carbon
muonic four-electron ions, one needs to compute the expec-
tation values of all two-particle delta functions which are
included in Eq. �2�. Such calculations are performed with the
use of variational six-body wave functions. In turn, these
wave functions are determined from the corresponding
Schrödinger equation H
=E
 for bound states. The Hamil-
tonian H of an arbitrary A-particle carbon muonic ion takes
the form �in atomic units�

H = −
1

2��
i=1

A−2

�i
2 +

1

m�

�A−1
2 +

1

M
�A

2�
+ �

i=1

A−2

�
j=2��i�

A−1
1

rij
− �

i=1

A−1
Q

riA
, �6�

where the largest index A always designates the nucleus, the
index A−1 stands for the negatively charged muon, and in-
dices 1 , . . . ,A−2 mean the electrons. Also, in this equation,
�i= � �

�xi
, �

�yi
, �

�zi
� is the gradient operator of the ith particle

�i=1,2 , . . . ,A�. The notation rij stands for the �ij�-relative
coordinate rij = ri−r j=rji, where ri are the Cartesian coordi-
nates of the ith particle.

Our first computational goal here is to produce highly
accurate bound-state solutions of the Schrödinger equation
H
=E
, where E�0 and 
 are the corresponding energy
and wave function and �
�=1. An accurate six-body wave
function can be approximated by using the variational expan-
sion written in 15-dimensional Gaussoids of the relative co-
ordinates r12,r13,r14,r15,r16, . . . ,r56 defined in an arbitrary
six-body system. For the bound S�L=0� states of the carbon
muonic ions, this variational expansion takes the form


L=0��rij�� = Ps�
i=1

N

Ckexp�− �
ij

�ij
�k�rij

2� , �7�

where �rij� designates the set of 15 relative coordinates

r12,r13,r14,r15,r16,r23,r24,r25,r26,r34,r35,r36,r45,r46,r56

which are needed for complete description of an arbitrary
spatial point in six-body systems. The notation N in Eq. �7�
means the total number of variational functions, while the
second summation in Eq. �7� is taken over all possible dif-
ferent pairs of particles. The projector Ps produces the trial
wave function with the correct permutation symmetry be-
tween all �four� electrons.

Let us describe the explicit construction of this projector
Ps. Note that all computations below are performed with the
use of only one-electron spin function 1= ���−�����
which corresponds to the S=1 and Sz=1 values. The two
other �electronic� spin functions 0= ���−������+��� and
−1= ���−����� correspond to the S=1, Sz=0 and S=1,
Sz=−1 values, respectively. These three spin functions
1 ,0 ,−1 form a regular triplet. In this work, we restrict
ourselves to the use of one �electron� spin function 1
= ���−����� only.

Now, we need to obtain the spatial part of the total wave
function with the correct permutation symmetry between all
identical particles, i.e., between particles 1, 2, 3, and 4 �elec-
trons�. The corresponding spatial projector can be obtained
by calculating the explicit expression for the following spin
expectation value:

P = C	��� − �����Â��� − �����
 , �8�

where C is the normalization factor, while Â is the complete
four-particle �or four-electron� antisymmetrizer
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Â = ê − P̂12 − P̂13 − P̂23 − P̂14 − P̂24 − P̂34 + P̂123 + P̂132 + P̂124

+ P̂142 + P̂134 + P̂143 + P̂234 + P̂243 − P̂1234 − P̂1243 − P̂1324

− P̂1342 − P̂1423 − P̂1432 + P̂12P̂34 + P̂13P̂24 + P̂14P̂23. �9�

Here, ê is the identity permutation, while P̂ij is the permuta-
tion of the ith and jth identical particles. Analogously, the

operators P̂ijk and P̂ijkl are the permutations of three identical
particles �i, j, and k� and four identical particles �i, j, k, and
l�, respectively. After some algebra, one finds the following
explicit formula for the corresponding spatial projector:

P =
1

2�6
�2ê + 2P̂12 − P̂13 − P̂23 − P̂14 − P̂24 − 2P̂34 − 2P̂12P̂34

− P̂123 − P̂124 − P̂132 − P̂142 + P̂134 + P̂234 + P̂243 + P̂143

+ P̂1432 + P̂1234 + P̂1243 + P̂1342� �10�

associated with the triplet states. This projector creates the
spatial part of the total �triplet� wave function with the cor-
rect permutation symmetry between all four identical par-
ticles �electrons�.

Analytical formulas for all matrix elements needed in
bound-state computations of four-electron atomic systems
are presented in our previous publication �26� �see also �27��
and are not repeated here �formulas for the two-particle delta
functions are discussed below�. We use the same basis set as
in �26�. For discussion of optimization of the nonlinear pa-
rameters in the radial-wave functions, the reader is also re-
ferred to �26�.

To conclude this section, let us derive the explicit analyti-
cal formulas for expectation values of the two-particle delta
functions in arbitrary six-body systems. For basis set Eq. �7�,
we introduce the following compact notation �26�:

	� = 	��k� = exp�− �
i�j=1

A

�ij
k rij

2� �11�

and

�
 = ����
 = exp�− �
i�j=1

A

�ij
� rij

2� , �11�

where A is the total number of particles in the system. In our
present case, A=6. In this notation, the overlap matrix ele-
ment 	� �
 takes the form

	��
 =� � � � � exp�− a12r12
2 − a13r13

2 − a14r14
2 − a15r15

2

− a16r16
2 − a23r23

2 − a24r24
2 a25r25

2 − a26r26
2 − a34r34

2

− a35r35
2 − a36r36

2 − a45r45
2 − a46r46

2

− a56r56
2 �d3r1d3r2d3r3d3r4d3r5 = 	��k�����


= �3·�A−1�/2D−3/2, �12�

where ri=ri6 �i=1,3 ,4 ,5�, aij =�ij +�ij, and D is the deter-

minant of the �A−1�� �A−1� matrix B̂ with the matrix ele-
ments

bii = �
j�i

A

��ii
k + �ii

��, i = 1,2, . . . ,A − 1,

bij = − ��ij
k + �ij

� �, i � j = 1,2, . . . ,A − 1. �13�

In particular, in the case of A=6, an arbitrary matrix element

of the B̂ matrix is a 5�5 matrix. Analytical and/or numerical
computation of the determinant of this matrix is straightfor-
ward.

Now let us obtain the analytical formula for expectation
values of two-particle delta functions in the basis Eq. �7�. For
simplicity, consider the �12=��r12� delta function, i.e., the
	���r12��
 matrix element. By using the formula Eq. �12�,
one finds

	���r12��
 =� � � � exp�− �a13 + a23�r13
2 − �a14 + a24�r14

2

− �a15 + a25�r15
2 − �a16 + a26�r16

2 − a34r34
2

− a35r35
2 − a36r36

2 − a45r45
2 − a46r46

2

− a56r56
2 �d3r1d3r3d3r4d3r5. �14�

This integral exactly coincides with the corresponding over-
lap integral for the four-body system �particles 1, 3, 4, and
5�. To make such a coincidence 1:1, we need to introduce the
nonlinear parameters ã13=a13+a23, ã14=a14+a24, ã15=a15
+a25, ã16=a16+a26. Then the four particles in such a system
must be renumbered. In any case, the answer is clear and can
be written in the form

	���r12��
 = �3·�A−2�/2D4
−3/2, �15�

where D4 is the determinant of the corresponding 4�4 ma-
trix. Note that the explicit form of this matrix element ex-
actly coincides with the corresponding matrix element of the
overlap known for the �A−1�-body system. The last formula
and its generalizations to other two-particle delta functions
allow one to compute the matrix elements of all two-particle
delta functions needed in our computations.

IV. NUMERICAL VALUES

By using the methods described in the previous section,
we have determined the expectation values of the electron-
nuclear, muon-nuclear, and electron-muon delta functions.
The total energies of all carbon muonic ions considered in
this study can be found in Table I. Table I also contains all
expectation values of the rij

−2, rij
−1, and rij distances and

	��rN��
, 	��rNe�
, and 	��r�e�
 expectation values. Here and
below, the notation N stands for nucleus. In our calculations,
we have used the variational expansion Eq. �7� with 600 and
700 basis functions. Numerical coincidence between the re-
sults obtained for 600 and 700 basis functions has been used
as a criterion of our accuracy. The total number of varied
nonlinear parameters in such wave functions is up to 10 500.
Numerical optimization of these nonlinear parameters is de-
scribed in detail in �26�. Such an optimization provided suf-
ficient numerical accuracy for all expectation values com-
puted with our trial wave functions.
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It is clear a priori that the radius of the muonic orbit in
any light muonic atom is significantly smaller than the ap-
propriate radii of electronic shells. For our expectation val-
ues, this means that 	rN�
� 	rNe
 and 	rN�
� 	r�e
. Analo-
gous relations are true for higher powers of interparticle
distances, e.g., 	rN�

2 
� 	rNe
2 
 and 	rN�

2 
� 	r�e
2 
. For the correct

expectation values of delta functions, one finds the following
�inverse� inequalities 	�N�
� 	�Ne
 and 	�N�
� 	��e
. All
these inequalities are obeyed for expectation values from
Table I. Moreover, it can be shown that expectation values of
electron-carbon and electron muonic delta functions are ap-
proximately equal to each other, but for light muonic atoms
and ions, we have 	�Ne
� 	��e
. This inequality is obeyed for
carbon muonic ions.

As mentioned above, the expectation values of delta func-
tions from Table I can be used to determine the hyperfine
splitting in each of these carbon muonic ions �11C6+�−e4

−,
12C6+�−e4

−, 13C6+�−e4
−, and 14C6+�−e4

−�. First, consider the
12C6+�−e4

− and 14C6+�−e4
− ions. The nuclear spin IN equals

zero in both these carbon nuclei. The total spin F in these
ions equals F=Se+s�. Since Se=1 for the triplet electronic
states and s�= 1

2 , then there are two possible values of F, i.e.,
F= 1

2 �doublet states� and F= 3
2 �quartet states�. The hyperfine

splitting in the 12C6+�−e4
− and 14C6+�−e4

− ions is written in
the form

�E = B	��r�e�
s��2Se + 1� =
3

2
B	��r�e�
 , �16�

where s�= 1
2 and Se=1 for the triplet state. The expectation

value of the electron-muon delta function for the 12C6+�−e4
−

ion is �13.990 27, while for the 14C6+�−e4
− ion it is

�13.991 90. Therefore, the hyperfine splitting in the
12C6+�−e4

− ion is �298 605.0 MHz and in the 14C6+�−e4
− ion

is �298 639.7 MHz. Our estimates for uncertainties in these

values are bounded between �3 and �10 MHz. These val-
ues equal the difference between the energies of the set of
degenerate doublet states �F= 1

2 � and the set of degenerate
quartet states �F= 3

2 � in these ions. Note that such differences
are �75 times larger than the analogous difference in the
muonic-helium atom 4He2+�−e− �ground state� which has the
same hyperfine structure.

The hyperfine structure splittings of the 11C6+�−e4
− ion

and 13C6+�−e4
− ion are shown in Table II. To understand this

structure, it is very useful to introduce the vector K=IN+s�

TABLE I. The expectation values in atomic units �me=1, �=1, e=1� of some properties for the triplet 23S states of the MC6+�−e4
− ions,

where M =11, 12, 13, and 14. Below, the symbol N designates the nucleus, � stands for muon, while e means electron.

11C6+�−e4
− 12C6+�−e4

− 13C6+�−e4
− 14C6+�−e4

−

E �3707.568055 �3719.662548 �3713.330854 �3715.610549

	rN�
 0.00122155 0.00122052 0.00121964 0.00121889

	rNe
 1.420894 1.420931 1.420963 1.420992

	r�e
 2.113732 2.113689 2.113653 2.113625

	ree
 2.950095 2.950095 2.950093 2.950089

	rN�
−1 
 1227.944 1228.975 1229.864 1230.624

	rNe
−1
 3.425555 3.425481 3.425418 3.425363

	r�e
−1
 1.795582 1.795513 1.795453 1.795403

	ree
−1
 0.887227 0.887344 0.887445 0.887532

	rN�
−2 
 3015236.2 3020306.9 3024675.3 3028413.4

	rNe
−2
 33.58359 33.58309 33.58265 33.58225

	r�e
−2
 11.43341 11.43330 11.43321 11.43314

	ree
−2
 3.595495 3.596245 3.596891 3.597444

	�N�
 4.5728735�108 4.5840530�108 4.5936890�108 4.6019382�108

	�Ne
 14.196110 14.191460 14.187461 14.184042

	��e
 13.98921 13.99027 13.99115 13.99190

TABLE II. The hyperfine structure levels Ehp and hyperfine
splitting �EF,F	1

K �in MHz� in the triplet 23S states in the carbon
muonic ions MC6+�−e4

−. Here, M =11 and 13. Numerical uncertain-
ties in the hyperfine splittings �EF,F	1

K vary between �5 and
�15 MHz.

Ehp�11C6+�−e4
−�

�MHz� K F 2F+1 �EF,F	1
K

1.7368202945�109 1 2 5

1.7367430603�109 1 1 3 77234.23

1.7367044407�109 1 0 1 38619.55

−1.0418996490�109 2 1 3 2.7786041�109

−1.0420125577�109 2 2 5 112908.63

−1.0421819084�109 2 3 7 169350.74

Ehp�13C6+�−e4
−�

�MHz� K F 2F+1 �EF,F	1
K

6.2457886323�108 1 0 1

6.2448730589�108 1 1 3 91557.34

6.2430416345�108 1 2 5 183142.45

−1.8731871994�109 0 1 3 2.4974914�109
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which is the total spin of nucleus and muon, i.e., the total
spin of central “quasinucleus.” The differences between
states which have different values of K= K are very large
��2.4�109 MHz�. Such cases can be detected a priori and
they are not of interest in experiments. Therefore, it is not
necessary to introduce a new index which labels levels with
different K. Analogous differences between states with the
same values of K are relatively small and can be measured in
modern experiments. These levels represent the hyperfine
structure splittings. In general, for each K and F, such dif-
ferences can be designated as �EF,F−1

K and/or �EF,F+1
K . In

Table II, the �EF,F	1
K values are the differences between the

energy located in a particular line �designated as the �K ,F�
level� and the energy from the line immediately above it. For
the 13C6+�−e4

− ion, we have states with K=1 and K=0. The
energy differences between states with K=1, i.e., �E0,1

1

�91 557.3 MHz and �E1,2
1 �183 142.5 MHz, form the hy-

perfine structure of the 13C6+�−e4
− ion. Analogously, for the

11C6+�−e4
− ion, one finds states with K=1 and K=2. There-

fore, the hyperfine structure includes the four following en-
ergy differences: �E2,1

1 �77 234.2 MHz, �E1,0
1

�38 619.5 MHz and �E1,2
2 �112 908.6 MHz, �E2,3

2

�169 350.7 MHz. Our estimates of numerical uncertainties
in these values vary between �5 and �15 MHz.

The computed numerical values of the hyperfine splitting
can be confirmed in future experiments. Possible differences
between the predicted and measured values in carbon
muonic ions and atoms are of great interest for future theo-
retical and experimental development. Indeed, the radius of
the 1s muonic orbit in carbon muonic, nitrogen muonic, and
oxygen muonic ions and atoms �r��

a0

Q2m�
�7�10−13 cm�

essentially coincides with the radius of the nucleus. There-
fore, by studying the properties of such quasiatomic systems,
we can obtain valuable information about various nuclear
properties in many light nuclei. It is very likely that the first
term in formula Eq. �1� used in this study to determine the
hyperfine structure splitting must be corrected, since the
negatively charged muon cannot be considered as a point
particle in carbon muonic, nitrogen muonic, and oxygen
muonic atoms and ions. In actual computations of hyperfine
splitting in such systems, the muon-nuclear delta function
must be replaced by some other function. This problem can
be ignored for helium muonic atoms and ions. Another rea-
son for possible discrepancies with experimental data is the
absence of relativistic and lowest-order QED corrections in
the present treatment.

V. CONCLUSIONS

The hyperfine structure splitting in the 23S states �elec-
tronic states� of some four-electron carbon muonic ions has
been evaluated numerically. The predicted hyperfine splitting
in the carbon muonic ions can, in principle, be measured in
modern experiments and we hope that this work will stimu-
late some experimental activities in this direction. Based on
the results of such experiments, one could then improve our
computational methods to achieve better numerical accuracy
for the corresponding delta functions by considering, e.g.,

the lowest-order relativistic and QED corrections to the hy-
perfine splitting.

Note that the four-electron six-body muonic atoms and
ions are interesting atomic systems for research. All such
systems include one negatively charged muon, four elec-
trons, and one light nucleus, e.g., B, C, N, O, etc. The total
energies of such systems are the values of a few thousands of
atomic units, while the corresponding pure electron energies
are significantly �hundred times� smaller. All properties of
light muonic atoms and ions, e.g., their dipole and magnetic
moments, have two components: a muon component and an
electron component. Neither the bound-state spectra nor
other properties in these atoms and ions have been the sub-
ject of previous studies. The total energies of the triplet 23S
states, expectation values of functions of various relative co-
ordinates, and hyperfine structure splittings for the family of
carbon muonic positive ions have been calculated in this
study. These results are summarized in Tables I and II.
Analogous expectation values determined for the 10B5+�−e4

−

atom and 14N7+�−e4
−, 16O8+�−e4

− ions �in their 23S states� can
be found in Table III. As follows from Table III, the total
energy of the four-electron six-body muonic atoms rapidly
increases with the electric charge Q of the nucleus. The same
conclusion is true for the expectation values of delta func-
tions and some other properties. The 23S state in the
10B5+�−e4

− atom is a weakly bound state, since its total bind-
ing energy is less than 1% of its total energy.

Our calculations of the hyperfine structure splitting in
muonic atoms and ions with different nuclear charge Q are
essentially based on the formula, Eq. �1�. In applications to
the ground states of the 3He�−e− and 4He�−e− atoms, this
formula gives excellent agreement with the experimental re-
sults for the hyperfine structure splitting. Theoretical �or pre-
dicted� values for these two systems are 4166.393 and
4464.555 MHz, respectively �10�. The corresponding experi-
mental values are 4166.41 and 4464.95 MHz, respectively.

TABLE III. The expectation values in atomic units �me=1, �
=1, e=1� of some properties for the triplet 23S states of the
10B5+�−e4

− atom and of the 14N7+�−e4
− and 16O5+�−e4

− ions. Below,
the symbol N designates the nucleus, � stands for muon, while e
means electron.

10B5+�−e4
− 14N7+�−e4

− 16O8+�−e4
−

E �2569.9804254 �5060.4774031 �6619.3264317

	rN�
 0.00146734 0.00104476 0.00091325

	rNe
 1.8186385 1.2307717 0.9809335

	r�e
 2.7149371 1.7672922 1.4460161

	ree
 3.409419 2.582458 2.427053

	rN�
−1 
 1022.251 1435.731 1642.480

	rNe
−1
 2.624248 4.203401 4.789220

	r�e
−1
 1.352163 2.305344 2.687542

	ree
−1
 0.795587 0.956779 1.254295

	rN�
−2 
 2089701.2 4121887.4 5394769.7

	rNe
−2
 20.20718 50.38942 66.29744

	r�e
−2
 6.863444 17.75158 23.96170

	ree
−2
 2.884106 3.877054 7.969599
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This indicates clearly that all corrections, including lowest-
order relativistic and QED corrections, contribution of terms
which represent the interaction with the quadrupole nuclear
moment, etc., are very small in comparison to the leading
term which is given by Eq. �1�. It is very likely that the
formula, Eq. �1�, can be applied to the S�L=0� states in ar-
bitrary muonic atoms and ions with Q�10. For sodium
muonic atoms and ions �Q=11�, the spatial radius of the
muonic orbit essentially coincides with the radius of the
nucleus. In this case, we can expect to observe large devia-
tions between our results obtained for the hyperfine structure
splitting �which follow from the formula, Eq. �1�� and real
experimental values.

In this study, we consider the hyperfine splitting in the 23S
states of four-electron carbon muonic ions �Q=6�. The 23S
states in the similar nitrogen muonic and oxygen muonic
ions are also considered. We expect that the deviations be-
tween our results which follow from formula, Eq. �1�, and
experimental values of the hyperfine splitting in these ions
will be small, but noticeable. An important source of addi-
tional corrections in all four-electron muonic atoms and ions
is related with the electron-electron correlations. This effect
cannot be observed in the helium muonic atoms. Unfortu-
nately, the hyperfine structure splitting has never been mea-

sured experimentally for any of these four-electron muonic
ions and atoms.

For muonic atoms and ions with Q�11 �but for Q�20�,
our formula, Eq. �1�, produces only approximate evaluations
of the hyperfine structure splitting. In muonic atoms and ions
with Q�20, the negative muon moves inside of atomic
nucleus. In such cases, the formula, Eq. �1�, cannot be used
even in the first approximation. The hyperfine structure split-
ting in these muonic atoms and ions must be computed with
the use of different theoretical approach. In particular, the
magnetic moment of the muon must be coupled with the
magnetic moments of nucleons outside closed shells. For
each of the particles �muon, protons, and neutrons�, the mag-
netic moment contains the two parts: spin part and orbital
part. The explicit expressions for the corresponding gyro-
magnetic factors are presumably complicated and presently
unknown.
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