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We propose a quantum optical interface between an atomic and solid-state system. We show that quantum
states in a single trapped atom can be entangled with the states of a semiconductor quantum dot through their
common interaction with a classical laser field. The interference and detection of the resulting scattered
photons can then herald the entanglement of the disparate atomic and solid-state quantum bits. We develop a
protocol that can succeed despite a significant mismatch in the radiative characteristics of the two matter-based
qubits. We study in detail a particular case of this interface applied to a single trapped l'yb* jon and a
cavity-coupled InAs semiconductor quantum dot. Entanglement fidelity and success rates are found to be
robust to a broad range of experimental nonideal effects such as dispersion mismatch, atom recoil, and
multiphoton scattering. We conclude that it should be possible to produce highly entangled states of these

complementary qubit systems under realistic experimental conditions.
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I. INTRODUCTION

Quantum entanglement, long considered to be the most
puzzling aspect of quantum mechanics [1,2], is now realized
to be a potential resource for enhanced processing and com-
munication of information. The field of quantum-information
science exploits quantum entanglement for tasks that are oth-
erwise impossible or inefficient using conventional informa-
tion processing approaches [3]. Recent advances in the con-
trol of physical systems, ranging from isolated atoms and
photons to individual degrees of freedom in condensed mat-
ter, have shown great promise in the development of
quantum-information hardware [4].

The majority of work to date has been centered around
entanglement of identical quantum systems such as identical
atoms and photons. There is great interest in extending en-
tanglement over disparate quantum systems. Such hybrid en-
tanglement can exploit advantages of each individual system
to enhance capabilities of quantum technology. An important
example is the hybrid entanglement between matter and pho-
tonic quantum systems. This type of entanglement, which
has been demonstrated using both trapped ions [5] and
atomic ensembles [6], enables one to combine the advan-
tages of the long coherence times of atomic systems with the
ability of photonic systems to transport quantum informa-
tion. Another important example is the recent entanglement
of two different species of trapped atomic ions, where one
species (A1) has excellent coherence properties and the
other (Be*) allows efficient qubit measurement [7].

Here, we theoretically investigate the possibility of creat-
ing hybrid entanglement between semiconductor and atomic
quantum systems. Specifically, we propose a protocol for en-
tangling a quantum dot (QD) in a microcavity with a trapped
atom through a common photonic interaction. Such hybrid
entanglement is expected to stimulate new concepts for dis-
tributed quantum computation that exploit the long coher-
ence times of trapped ions with the fast dynamics and strong
atom-photon interactions of a QD. We show that a common
photonic channel can link these disparate systems to achieve
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hybrid-matter quantum entanglement despite significant mis-
matches between atomic and semiconductor qubits.

Photon mediated entanglement has been proposed for en-
tangling like systems such as atoms [6,8], nitrogen-vacancy
(N-V) centers in diamond [9], and cavity-coupled QDs
[10,11]. It has been experimentally demonstrated between
trapped ions [12] and atomic ensembles [13-15]. To extend
such ideas to entangle different matter qubits requires a pro-
tocol that is robust to significant mismatch in spectral and
temporal properties. In this paper we propose such a protocol
in which the atomic system is coupled to a free-space field
by elastic scattering, while the QD is coupled via cavity in-
teraction. We extensively investigate a particularly promising
implementation of this protocol in which an electrostatically
trapped "'Yb* ion is entangled with a cavity-coupled indium
arsenide (InAs) QD. We address the central challenges in
realizing this hybrid quantum link, including the mismatch in
the optical spectra of these systems and decoherence pro-
cesses that are particular to each node of the hybrid circuit.
In particular, we analyze in detail “which-path” decoherence
due to atom recoil and multiphoton scattering and derive an
analytical expression for entanglement fidelity and entangle-
ment rate.

In Sec. II, we give a low-level description of the proposed
entanglement protocol. Section III provides detailed calcula-
tions of the atom scattering amplitudes, and analyzes the
effect of dispersion. Section IV considers atom motion and
recoil, and calculates the fidelity under realistic experimental
conditions. In Sec. V we consider the effects of leakage of
which-path information due to multiphoton scattering. The
final section investigates the validity of the weak excitation
approximation which is extensively used to calculate both
atomic scattering and reflection from the cavity-QD system.

II. BASIC PROTOCOL

Figure 1(a) illustrates the proposed method for entangling
a QD with an atom. The QD is coupled to a resonant micro-
cavity while the atom is electromagnetically confined at a
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FIG. 1. (Color online) (a) Proposed setup for entangling an atom with a QD. A trapped atom and a cavity-coupled QD are held at different
spatial locations. Both QD and atom have a level structure shown in the inset, and a common pump beam excites both systems. The reflected
light from the cavity is mixed with the scattered light from the atom on a 50-50 beamsplitter. Path lengths are set for constructive interference
at detector 1. A detection event at detector 2 places the two systems in an entangled state. (b) Specific level structure for the QD and atom.
The spin states of a singly charged QD can serve to create the desired qubit states, while the positive or negative trion state (|t.)) serves to
couple the qubit to the cavity. The two qubit states are split in energy by A due to an applied magnetic field. For the atom we consider the
specific example of a !”'Yb* ion and use the hyperfine |1,1) and |2,2) states (with hyperfine splitting A,=0.86 GHz) in the >D;,, manifold

to store quantum information. The atom scatters a linearly polarized input when in the

light due to selection rules.

remote location. Each system consists of a qubit represented
by the two states, |0) and |1), where state |0) is coupled to a
third excited state |e) via an optical transition. We consider
the case where this transition in the QD and atom occur at
similar (not necessarily identical) optical wavelengths. The
entanglement method we consider is general, and can apply
to a broad range of atomic and semiconductor systems. How-
ever, to perform calculations we specialize to the case of an
InAs QD that is entangled with an electrostatically trapped
'Yb* ion. The assumed level structure for these two qubit
systems is shown in Fig. 1(b). We focus on ''Yb* because
of its optical 2Dj, to 3[3/2],), transition, which occurs at
935 nm and is therefore compatible with the near infrared
transition wavelength of InAs QDs. For the QD, the qubit
states can reside in the Zeeman split spin states of a single
charge carrier, with an optical coupling to an excited trion
state, as recently demonstrated [16,17]. The loading of a
single spin into a microcavity coupled QD has also been
recently achieved [18]. For the atom, the qubit states are
represented by long-lived electronic or nuclear hyperfine
states, with an optical coupling to a dipole-allowed excited
electronic state [19]. We consider the hyperfine qubit states
residing in the metastable 2D3,2 level, with a coupling to the
excited *[3/2],,, level at 935 nm [20].

Entanglement is established by first initializing the state
of each of the two qubits to superposition state |¢;)=(]0)
+[1))/72. The QD system can be initialized using experi-
mentally demonstrated single [21] and two-laser coherent
control techniques [16,17], while the atom can be controlled
using optical pumping and microwave or stimulated Raman
transitions [19,20]. Following initialization, a laser pulse is
coherently split into two components directed to the two

1,1) state, while the |2,2) state does not scatter this

quantum systems. One of the components is reflected off of
the cavity containing a QD while the second component
drives the atom off resonance, resulting in an elastically scat-
tered field that is phase coherent with the input field. Phase
coherence of the elastically scattered component has been
experimentally verified through Young’s interference [22],
and has also been theoretically investigated [23]. We define
|a) as the coherent field reflected from the cavity, and |3) as
the field elastically scattered from the atom. The two fields
are combined on a beamsplitter whose path lengths are set
for constructive interference at detector 1 [shown in Fig.
1(a)], requiring optical interferometric stability over the sys-
tem. A detection event at detector 2 will collapse the state of
the atom and QD into an entangled state.

To understand the entanglement formation process, we
first assume that both the scattered field from the ion and the
reflected field from the cavity are quasimonochromatic,
phase coherent, and sufficiently weak that they can be ex-
panded to first order in photon number. In later sections we
will derive the entanglement fidelity under more realistic ex-
perimental conditions. We define w; and w) as the trion reso-
nant frequencies for the two different spin states of the
charged QD, which are detuned by Ay due to an applied
external magnetic field. The cavity resonant frequency is de-
fined as w,, and input field frequency as w. The reflection
coefficient r and transmission coefficient ¢ of the cavity are
[10,24,25]

—iA+ Cﬁ(qu, ’yqd)
1-iA+ C;C(Bqd, '}’qd) ’

(1)

r(w) =
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1
1-iA+ Cﬁ(qu, 'yqd) ’

(2)

Hw) =

where 6,,=w.— w; is the detuning between the cavity and the
QD and A=(w—w,)/ K is the laser-cavity detuning scaled to
the cavity linewidth «. The QD exciton decay rate is given
by ¥4 C=4g%/(7,4x) is the QD-cavity cooperativity, g is the
QD-cavity coupling strength, and L£(8,y)=vy/(y-id) is a
Lorentzian profile [10].

The incident field is set to be resonant with the cavity
(w=w,) so that A=0. We also set w;=w, so that the QD is
resonantly coupled to the cavity mode when it is in state
|0)=]1). In this case we have 8,,=0, and in the limit of large
atomic cooperativity |C|>1, the cavity reflectivity ap-
proaches r(w,)=1. If the QD is instead in state |1)=| | ) there
is little coupling between the QD and cavity either due to
selection rules (g=0) or large detuning, so all of the light is
transmitted through the cavity. Therefore, the qubit state of
the QD will switch the cavity from being highly reflecting to
highly transmitting. This operation can be viewed as a
controlled-NOT gate between the state of the QD and the
propagation direction of the scattered light. Controlled re-
flectivity of a cavity via a single QD has been reported in
several works [18,26,27].

For the atom, we assume that the driving field is detuned
from the resonant transition frequency w, by d,=w-w,. If
the atom is in state |0), it will induce off-axis elastic scatter-
ing via the near resonant optical transition to state |e). The
scattered field is collected by an objective lens and coupled
into a single mode fiber. We define B as the coherent-state
amplitude of the field scattered into the fiber. In contrast,
when the atom is in state |1) it will not scatter any light since
it cannot make an optical transition due to selection rules.
For the case of '"'Yb*, we identify |0) and |1) states as the
F=1,mp=1 and F=2,mp=2 hyperfine levels of the meta-
stable electronic D5, state (53 ms lifetime), with a fre-
quency splitting of 0.86 GHz. With the 935 nm input laser
field linearly polarized parallel to a weak magnetic field, the
|0 state couples to the *[3/2],,, F=1,mp=1 hyperfine level
we identify as state |e), while the |1) state remains dark, as
indicated in Fig. 1(b).

We define the input coherent field amplitude incident on
the cavity mode as «,,. If the QD is in state |0) then the
reflected and transmitted field amplitudes are then given by
a=r(w)q;, and ar=t(w)a;,, respectively. If instead the QD
is in state |1) all of the light is transmitted because the inci-
dent field is resonant with the cavity. Similarly, if the atom is
in state |0) the scattered field is B, while if it is in state |1)
there is no scattered field amplitude. Under the assumption
that the input field to the cavity and scattered field from the
atom are weak we can expand them to first order in photon
number. Before the beamsplitter the atom, QD, and fields are
described by the wave function

1 A A N3 AT A
;= E[(l +od’ + aTeT +pb )|0>QD|O>a +(ad" + a’TeT)

X|O>QD|1>a + (améT + BT)|1>QD|O>a + (ainé%)|l>QD|l>a]
X|vac), 3)
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where a and € are the bosonic operator for the reflected and

transmitted modes of the cavity and b is the bosonic operator
for the scattered mode from the atom. The state |vac) repre-
sents the vacuum state of all field modes. The beamsplitter

then applies the transformations

. d +d,

a— ——
V2

: (4)

. d,-d
bﬁ%zz, (5)
Al

where (il and &2 are the bosonic modes monitored by detec-
tor 1 and detector 2 respectively. Conditioned on a photon
detection event at detector 2, the state of the QD and atom
collapses onto

|4 = D™'[( = B)|0}4al0)y + &l 1)gal 0D = Bl0)gal D)o,
(6)

where D?>=(|a—B]*+|a|*+|B/?). By tuning the phase and am-
plitude of the input fields so that a=p, the above state be-
comes a maximally entangled Bell state [¢)=(|1),40),
—10),4/1),)/2. 1t should be noted that, so long as the quasi-
monochromatic limit is valid, a perfect entangled state can
be generated even when the QD and atom have different
resonant frequencies and decay rates.

III. FIDELITY UNDER PULSED EXCITATION

The ideal protocol described in Sec. II considers the
quasimonochromatic limit, where the input pulses are suffi-
ciently long in time to be considered as single frequency. In
a real experiment, the entanglement operation must be com-
pleted before the QD and atom have had time to decohere,
which requires excitation with short optical pulses. The co-
herence time of the atomic hyperfine states can be long, but
the QD spin coherence time is much shorter (10 ns) due to
hyperfine interactions with nuclear spin [28]. Recent
progress in optical locking of nuclear-spin polarization sug-
gests that much longer lifetimes in the microsecond regime
may be possible [29-31]. Nevertheless, it is important to
consider the effect of short pulses (0.1-10 ns) on the quality
of the generated entangled state.

In order to quantify the quality of the generated entangle-
ment we require a metric for how close the state we generate
is to the desired state. The simplest choice is the fidelity,
defined as F=(i/|p|t,), with |,) being the desired state of
the system and p the actual density matrix. Fidelity can be
interpreted as the average distance between the actual and
desired state that takes on the ideal value of 1 when the two
are identical, and for Bell states, a fidelity greater than 0.5
indicates entanglement. Of course other entanglement mono-
tones exist that are independent of the form of the desired
state, but they generally require complete knowledge of the
actual state density matrix [32,33].

Because we consider the weak excitation regime, the
cavity-QD system and trapped atom are linear scatterers.
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Therefore, we may analyze the effect of time varying exci-
tation by Fourier decomposing the time-dependent input
fields and looking at the scattering behavior of each Fourier
component independently. Such approach would not be valid
in the strong excitation limit where nonlinear scattering oc-
curs due to absorption saturation. We defer that discussion to
Sec. VL.

In order to analyze the spectral properties of the field
scattered by the atom, we need a more precise expression for
its scattering amplitude. To derive this amplitude, we con-
sider a fully quantum description of the scattering process
(although a classical description of the field gives the same
answer). We begin with the standard system Hamiltonian for
the atom given by

H= 2 fiobiby + X hodidy + %wa
k k

+ ﬁgk(mf)keik'r + cr_l;lte_ik'r)
K

A k- AT ik
+ E ﬁgk(0-+qkel "+ O-—qlte ' r) + Vtrap~
k

In the above equation, w, is the resonant frequency of the
atom, o, is the population difference operator for atom scat-
tering transition, and o,/ o_ is the transition raising/lowering
operator. These operators act on the ground state which is the
2D, hyperfine

field does not couple the D5, hyperfine [2,2) state due to
selection rules, so this dipole transition is not included in the
Hamiltonian). The electromagnetic modes have been sepa-
rated into a set of input modes corresponding to the bosonic
operators qy, and a set of output modes corresponding to the

bosonic operators ﬁk. The separation of input and output
modes is carried out to distinguish modes used to drive the
QD from those used to collect scattered light. The scattered
modes are coupled to the atomic dipole by the coupling
strength g, =—d- €\ wy/fie,V where V is the quantization
volume and d=d% is the atomic dipole moment. The poten-
tial Vi, is the harmonic trapping potential of the atom, while
r is the location of the atom in the trap.

We first consider the stationary atom limit, where r is a
real vector. Atomic recoil, which requires us to account for
the quantized operator nature of r, will be addressed in the
next section. When the atom is in qubit state |0) the Heisen-
berg equations of motion for the atomic and cavity field op-
erators are given by

dby, . .
X _ b, —i 3 1k~r, 7
dt LoDk — 180_€ (7)
dq .
== iy~ gy e, (8)
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do_ I
- =- (iwa + I/Tz) - lz gkrbkrelk

"r E o~ ik
—1 gk/qk!e .
dt

K’ K’
)

where T, is the pure dephasing time of the atom. In Eq. (9)
we make the weak excitation approximation that the atom
remains mostly in the ground state, so o,——1 [10]. Equa-
tions (7)—(9) can be solved by direct integration to give

LS5 Ya)
E«%V

ik r-agr) (10)

- g (0)e’

a

where O =w,—wyr, V,=7v/2+1/T,, y,:dsz/STreOﬁc3 is
the spontaneous emission rate, and y/(iw+7y). In deriving
the above equation we consider only the forced response of
the atom driven by the input modes, and ignore the transient
response due to turn-on of the input field. We omit the term
associated with the initial condition of the output modes with
no loss of generality because the output modes are initially in
a vacuum, so their contribution vanishes when operating on
the initial state. Plugging into Eq. (7) and integrating, we
subsequently obtain

L( u
=—7Tgk2 i

a

g (0) K R T S oy — ).

(11)

Each input mode is assumed to be initially populated with a
coherent field characterized by the coherent field amplitude
qy- Because the input fields are coherent states and the atom
is a linear scatterer due to the weak excitation assumption,
the output fields must also be coherent states. The coherent-
state amplitude of the output fields is given by

L8, 7a)

(by) = = mgre ™ x2 QK )™ T 5w~ ),
/ Ya
K
(12)
where we define the Rabi frequency Q(K')=gw/qy

=—dE\./h, with Ey, being the electric field amplitude of the
input modes. We make the assumption that the input modes
are approximately collimated and propagating in the x direc-
tion of our coordinate system. Under this approximation we
have ' T~ ¢ T where k,, =Xy /c. Taking the quanti-
zation volume to be infinitely large, we can convert the sum

to an integral. We define B,=(by)e'“* as the coherent-state
amplitude in the rotating reference frame. This field ampli-
tude is given by

L(w,, v, )
= - 260 ot (13)

where O(wy)=—dE(wy)/h with E(wy) being the Fourier
transform component (as opposed to the Fourier series com-
ponent in the summation) of the electric field amplitude at
the location of the atom. The above coherent-state ampli-
tudes give a full quantum-mechanical description of the scat-
tered field of the atom. In Appendix A we show that the total
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FIG. 2. Model for collection optics. All k vectors between the
angles A; and A, from the input propagation direction (shaded re-
gion) are collected by the fiber. All other k vectors are not collected

number of scattered photons N,==,|3,/|* is given by

2
Ns=|£(ww'ya)|2(%> Oon;, (14)

a

where w is the center frequency of the incident field, n; is
the input photon flux density given by n;,=1/fw,, where I is
the input field intensity, 7, is the radiative decay rate of the
atom to state |0), and oy=3\?/2r is the atomic cross section.

The important quantity for our analysis is B(w), the am-
plitude of the coherent field coupled to the fiber at frequency
. Since the collection optics are comprised of only linear
optical elements, the fiber amplitude B(w) is related to the
free-space scattered amplitudes By by the linear transforma-
tion

Blw)= > sif (15)

k|=w/c

where s, are a set of complex scattering coefficients repre-
senting a unitary transformation. To proceed, we need a
model for the collection optics. Here we consider a simple
model, illustrated in Fig. 2, where all k vectors between a
solid angle A; and A, (taken with respect to the propagation
direction of the pump) are collected by the fiber. The remain-
ing k vectors do not couple to the fiber. Thus, s, =s if k is
within the collection window, and s,,=0 if k is outside the
collected solid angle. The omission of solid angles between 0
and A; is included in order to reject the input beam. For a
well collimated input, we can take the limit that A;— 0. The
simple model we consider captures all of the relevant phys-
ics, and provides good numerical accuracy for our calcula-
tions. A more accurate model would treat s, as a Gaussian
transverse distribution, matching the Gaussian profile of the
single mode fiber. This model would significantly complicate
the calculations but would ultimately yield similar results.

Our calculations focus on the paraxial limit, where the
collected solid angle A, is small, so that the collected light
propagates nearly parallel to the input beam. We focus on
this range of collection angles because it is known to mini-
mize the effect of atomic recoil [22,23], as we will analyze in
more detail in the next section. Using the simple model for
the collection optics, we shown in Appendix B that in the
paraxial limit

Blw) = BoL(8, Vo) MU w) (16)

with
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32
dwy

= | dddge™sHRT (17)
Po ZCya\’ZeoﬁLxAJA 4

In the above equation the integral is taken over the collection
area, while A=2m(cos A;—cos A,)) = W(Ai—A?) is the area
that the collection region occupies on the unit sphere and L,
is the length of the quantization volume in the x direction.
For simplicity we assume that w; can be replaced by its
average value w, and ky=wy/c. We do not make this substi-
tution in the Lorentzian function, however, because near
resonance this function will vary rapidly even over a narrow
bandwidth of interest.

In the monochromatic limit, we could always achieve the
matching condition a=8 by changing the amplitude and
phase of the incident fields. But under pulsed excitation, the
reflection coefficient of the QD-cavity system has a spectral
profile described by Eq. (2), while the atom scattering am-
plitude follows primarily a Lorentzian profile. Thus, each
spectral component will require a different matching condi-
tion. Since we cannot satisfy the matching condition per-
fectly for each frequency we expect that the generated state
will no longer be perfectly entangled. It has previously been
shown that the spectral width over which high reflection is
achieved when a QD is coupled to a cavity is given by the
inverse modified spontaneous emission lifetime of the cavity
enhanced QD transition [10], typically 10-50 GHz. This
bandwidth represents a response time which is much faster
than any decay rates of the atom. Thus, we expect the fidelity
of the generated entangled state to be dominated by the dis-
persive properties of the atom, which are much narrower in
frequency than those of the QD.

To calculate the fidelity of the generated entangled state
under pulsed excitation, we begin with the state of the sys-
tem after the field from the QD-cavity system is mixed with
the scattered field from the atom on the beamsplitter, as
shown in Fig. 1. We once again assume that the scattered
fields are sufficiently weak so that they may be expanded to
first order in photon number. After the beamsplitter the state
of the fields, atom and QD can be written as

)= f "“’2%5{ f [al@) - A(w)]|00)

+a(w)[01) - B(w)|10>}f’l|VaC> +H. (18)

In the above state the operator V,, is the bosonic operator for
a photon in the mode detected by detector 2, and state |f) is
an un-normalized state representing the remaining compo-
nents of the wave function that do not contain any photons in
the detection mode. From the expressions for the reflection
coefficients we have

a(w) = apr(w)Uw), (19)

IB(w) = 180['(5117 Ya)Q(w)7 (20)

where a; and B, are complex amplitudes that can be adjusted
by selecting the amplitude and phase of the input pulse. In
the ideal case we would have a(w)=B(w) for all frequencies,
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FIG. 3. Entanglement fidelity as a function of pulse duration for
several different values of atomic detuning §,=w-w,. For each
detuning, there is a certain value of the pulse duration where the
fidelity quickly drops from 1 (ideal entangled state) to 0.25 (no
coherence between « and B). Larger &8, enables shorter pulses be-
fore fidelity drops.

which would reproduce the ideal fidelity of the monochro-
matic limit. Unfortunately, dispersion prohibits us from
achieving this for all values of w. The best we can do is
adjust the amplitudes so that a(wy)=B(w,), where w is the
center frequency of the pulse.

The fidelity of the entangled state can be determined by
first calculating the reduced density matrix of the QD-atom
system conditioned on a detection event at detector 2. This
reduced density matrix is given by

_ Trieast Pl )]}
Tr{P| )}

where P is a projector onto the subspace containing at least
one photon in the detection mode for detector 2. The fidelity
can be calculated using F=(i/_|p|t_), where |i_) is the ideal
spin singlet entangled state. The expression for fidelity is
given by

; (1)

F 1 Jdowla(w) + B(w)?
4 [dola(w) +|B(o) - Re{a(w) B(w)}

Figure 3 plots the fidelity as a function of the pulse dura-
tion of the external field for several values of the detuning
from atomic resonance. The curves are obtained by numeri-
cal integration of Eq. (22). We assume the input pulse is
Gaussian ~ with a  spectrum  given by Q(w)
= Qe " (@- 00 gilkr-00  where 7 is the pulse duration. To
calculate the reflection coefficient for the cavity containing
the QD we use parameters that are appropriate for InAs QDs
coupled to photonic crystal defect cavities. Using experimen-
tal values from recent work [26], we set g/2m=16 GHz,
0,4=0, k/2m=25 GHz, and y,,/2*m=160 MHz. For the
7Y b* atomic ion we use Y./27=4.2 MHz, the linewidth of
the 3[3/2],,, state.

(22)
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FIG. 4. (Color online) Solid line plots pulse duration required to
achieve fidelity of 0.9 as a function of §,. Dashed line plots pump
intensity required to achieve 0.1 scattered photons in the pulse. As
Aw, increases, we can use shorter pulses but require higher excita-
tion energies to achieve the same scattering rate. If the coherence
time of the QD is 10 ns, the shaded region represents the parameter
regime where entanglement can be achieved.

In the long pulse limit, the fidelity approaches its ideal
value for all atomic detunings. However, for each value of
atomic detuning the fidelity makes a rapid transition from
F=1 to F=0.25 at some critical pulse duration. Thus, the
range of pulses for which the monochromatic approximation
is valid will depend on §,. At detuning of §,=0.1 GHz, the
transition occurs roughly at 10 ns pulse duration, which is on
the order of the coherence time of the QD. By increasing the
detuning to 1 GHz, the fidelity transitions at 1 ns pulse du-
ration, well below the QD decoherence time. By further in-
creasing the detuning to 10 GHz it is possible to use 100 ps
pulses. Thus, by increasing the atomic detuning we can use
shorter pulses to achieve high fidelity. This tradeoff occurs
because the dispersion, dominated by a Lorentzian function,
is maximum near resonance and tails off with larger detun-
ing.

The disadvantage of going to larger detuning is that we
need to use more pump power in order to achieve the same
scattering rate. The number of scattered photons is given by
Eq. (14). From this equation one can see that as &, increases
the Lorentzian decays in amplitude, forcing us to increase
the incident photon density #; to attain the same number of
scattered photons. The tradeoff between pulse duration and
pump intensity is shown in Fig. 4. The panel plots both the
pulse duration required to achieve a fidelity of 0.9 (solid blue
curve) and the pump intensity required to scatter N,=0.1
photons (dashed green curve) as a function of &,. The choice
of N;=0.1 ensures that the collected field is sufficiently weak
to be expanded to first order in photon number. The shaded
area, labeled the coherent excitation regime, represents the
operating region where the pulse duration is less than 10 ns,
the typical dephasing time of the InAs QD electron spin [34].
The coherence time of the atom is expected to be longer, so
the QD limits the coherence time of the overall entangled
state. One can see from the figure that pump intensities as
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low as 2 W/cm? would be sufficient to enable the use of 10
ns pulses with the specified scattering rate.

IV. DECOHERENCE DUE TO ATOM RECOIL

Entanglement between the atom and QD relies on the as-
sumption one cannot distinguish whether a photon was re-
flected from the cavity or scattered from the atom, even in
principle. Atomic recoil can serve to betray this which-path
information [22,23]. When the atom scatters a photon there
is a probability that it will recoil, leaving residual kinetic
energy in the motional degrees of freedom of the center-of-
mass wave function. To achieve high fidelity we require that
this recoil probability is small. In this section we analyze
recoil in the monochromatic field limit. Later, we will extend
this analysis to pulsed input.

Atomic recoil is already present in the expression for the
scattered field amplitude given in Egs. (16) and (17). Previ-
ously we assumed that the position r of the atom was fixed,
and therefore the integral term in the expression was simply
a complex constant. To include the effect of recoil, we must
treat r as the position operator and trace over the motional
degrees of freedom of the atom. We define the initial state of
the atom-QD system by the density matrix

pPi= E P(”)Wm)(lﬂm

, (23)
where
9 =5000) + 1)+ 110) +[0)mlvac).  (24)

In the above equations, |n) is the harmonic-oscillator eigen-
state for the center-of-mass motion of the atom, |vac) is the
vacuum field for all optical modes, and p(n) is assumed to be
a thermal distribution. After interaction with the two input
fields, the state in Eq. (24) is transformed into

with
L (a=p Lo £
Izﬂd)—z{( % )|OO>+\E|01> \EI10>} (26)

The state |v) represents a single photon in the detection mode
that is monitored by detector 2, while |f,) is once again a
wave function orthogonal to [v) representing the state of the
QD, atom, and all fields when there are no photons in mode
v. Conditioned on a detection event at detector 2, the final
density matrix of the system is given by

Trn{PE p(n)| lﬂnf><%f|}

b= , (27)

Tr{PE p(n)lwnf><¢nf|}

where Tr, represents a trace over all degrees of freedom
except for the qubit states of the atom and QD, and P
=|v){v| is once again a projection operator that projects on
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the subspace containing one photon in the photon mode
monitored by detector 2.

The fidelity F' of the final state can be defined as the
overlap between the actual state of the system and the de-
sired state | )=(|01)=|10))/12. Thus,

F=(ylplyo). (28)

Using the definition of p,in Eq. (27) we attain the following
expression for the fidelity:

Lo+ (BP) +2a Re{(B)}

=2 o+ (B - aRel(B)} 29)

where
(By= 2 p(n)n|Bln), (30)
(1B =2 p(n)(nl|BIn). (31)

The expressions in Egs. (30) and (31) can be evaluated under
the assumption that the atom occupies a thermal distribution.
In this case, we can then write [22,23,35,36]

<ei(kw—k)~r> — e—nz(l—cos écos ¢)(ﬁ+l/2)’ (32)

where 7 is the average excitation number of the atom in the
harmonic potential, and 7p=k\A/2mygmw, With my,,, being
the mass of the atom and w, the trap frequency. The dimen-
sionless constant 7 is called the Lamb-Dicke parameter and
determines the extent to which an atom will recoil. Since we

are primarily interested in small angles 6 and ¢, we expand
the cosine terms in the exponent to second order in these
angles. Using this approximation, we show in Appendix C
that

—exp[— 77 (7 + 1)A?]
7+ 1)A?

B =P L3

3
(1B8»= gNSAZ. (34)

The above expression is derived in the limit that A;— 0 and
A,=A. The matching condition a= cannot be satisfied be-
cause 8 now fluctuates due to recoil. The fidelity is maxi-
mized when a=—(|3|?) which indicates that « is set to the
average amplitude of B and has the same phase. Under this
optimal condition, the fidelity is given by

1+/f(A)

F= 4-2f(A) (35)

where

1 —exp[— 7 (7 + 1)A?]
7+ 1)A?

The function f(A) determines the extent to which recoil de-

grades the fidelity of the entangled state. When 77(i7+1)A?

<1 then f(A)—1 and the state takes on the ideal entangle-
ment fidelity of 1. In the opposite limit [7?(7+1)A?

fA) = (36)
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FIG. 5. Entanglement fidelity as a function of collection angle
for the atom emission with various atom thermal states, character-
ized by the average vibrational occupation number 7.

> 1]f(A) — 0 and the fidelity is degraded to F=1/4, which is
the fidelity attained when the atom scatters an incoherent
field. Equation (35) allows us to calculate the fidelity of the
entangled state in the monochromatic limit as a function of
the atom temperature (72) and the collection angle.

Figure 5 plots the entanglement fidelity as a function of
collected solid angle for different values of 7. Calculations
were performed for a 1 MHz trap frequency, using the emis-
sion frequency of 935nm and the mass of '"'Yb*. For these
numbers, the Lambe-Dicke parameter is given by #7=0.09,
which means that the atom is in the Lamb-Dicke regime for
7<<11.1. One can see from Fig. 5 that for 7=10, the fidelity
is greater than 0.9 even for large collection angles. For
higher trap temperatures there is a tradeoff between the fi-
delity and the collection angle.

V. PHOTONIC LEAKAGE OF WHICH-PATH
INFORMATION

The tradeoff between fidelity and collection angle implies
that there will be a tradeoff between fidelity and entangle-
ment success probability, because larger collection angle re-
sults in higher collection efficiency of scattered photons. We
define the entanglement success probability as the probabil-
ity that detector 2 registers a photon count. This probability

is given by
}, (37

where [¢,) is defined in Eq. (25). Inserting this definition
into the above equation we obtain

Psuccess = TT{PE P(”)| lpnf><¢nf

P (la* +(B* - Re{a(B)}). (38)

success —

B—

Since the optimal fidelity is always achieved when the am-
plitudes of the interferometer are matched such that |a/?
=(|B|*), we can then use Eqs. (33) and (34) to write
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3N,A?
PSUCCCSS = 32

[2- ()], (39)

where f(A) is defined in Eq. (36). In the high fidelity limit
f(A)=1 and we have

Puccess = 3N5A2/32- (40)

Note that decoherence due to recoil increases the success
probability. This increase is due to “bad” detection events
when the QD and atom are both in the 0 qubit states, which
would destructively interfere under ideal conditions.

To investigate the entanglement success probability we
need to determine how large we can make N,. The expres-
sion for fidelity in Eq. (35) does not depend on N because it
was derived under the assumption that the scattered field is
sufficiently weak so that it could be expanded to first order in
photon number. If we make N, too large this assumption will
no longer be valid. Thus, we need to derive a more precise
expression for the fidelity that accounts for both recoil and
the probability that more than one photon is scattered by the
atom.

If the atom scatters more than one photon, this can lead to
leakage of which-path information. This information leakage
can be understood from the following simple argument. First,
we note that in general the collection efficiency of scattered
light is small. Even with a collected solid angle of 45°,
which corresponds to a numerical aperture of 1, only 20% of
the photons are collected into the fiber. Reflection and ab-
sorption losses from the optics will serve to degrade this
collection efficiency even more. If the atom scatters two pho-
tons it is much more likely that only one of the photons is
collected than it is that both photons are collected. The pho-
ton which fails to be collected is never mixed on the beam-
splitter, and therefore retains the information that the atom
caused a scattering event causing the entanglement to deco-
here. Thus, in order to achieve high fidelity entanglement the
probability of scattering two photons must remain low.

To analyze multiphoton scattering we retain the amplitude
of the field scattered by the atom to all orders in photon
number, but expand the field collected into the fiber to first
order in photon number. This approximation is valid because,
as noted previously, fiber collection efficiency is small in the
limit we consider so even if the atom scatters many photons
the probability that more than one of them is collected into
the fiber is still small. After the atom scatters the input field
the state of the system becomes

|4hi) = [(1 + ad")(1 + BbH)|00)]x) + [11)[0) + (1 + a)[01)|0)
+(1+ BbH)]10)x)]|n). (41)

In the above equation the state |00)|y) denotes the atom and
the QD are both in qubit state |0), and y=—\N,(1-3A2/8) is
the coherent-state amplitude of the uncollected field. Be-
cause we consider only small collection efficiency x=
—\N;,. Other states are defined analogously, and state |n) is
once again the harmonic-oscillator state of the atom center of
mass. Following the same procedure as in Sec. IV, the fidel-
ity can be obtained by tracing over both the field and atom
center-of-mass motion to obtain
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FIG. 6. Success probability for creating entanglement as a func-
tion of collection angle. The fidelity is fixed at F=0.9.
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The above equation gives the entanglement fidelity due to
both recoil and multiphoton scattering in the monochromatic
limit. One can see the interference term is degraded by e V2,
which means that to achieve high fidelity we need N,<<1.
The number of photons collected into the fiber will be sub-
sequently much smaller, which highlights the need for effi-
cient collection of photons.

For a fixed fidelity F, Eq. (42) gives a relationship be-
tween the scattered photon number N, and the collected solid
angle A. Thus, the entanglement success probability given in
Eq. (40) becomes a function only of A. Figure 6 plots Pyccess
as a function of A for several different trap temperatures with
the same atom trap parameters used in Sec. IV, where the
entanglement fidelity is held fixed at F=0.9. For average
vibrational indices greater than 7=10, an optimal rate exists
for a specific collection angle A. This optimal rate is deter-
mined by a balance between recoil and photon collection
efficiency. For n=10 the atom is deep within the Lamb-
Dicke limit regime where fidelity is largely insensitive to
recoil, so the entanglement rate is limited only by the frac-
tion of light that can be collected by the optics.

Figure 7 plots the optimal efficiency as a function of 7.
The efficiency is optimized with respect to the collection
angle for each point, with the additional constraint that A
cannot exceed 45°. For cold states of atomic motion within
the Lamb-Dicke regime (7<<11.1), the efficiency is indepen-
dent of 7. As the atomic motion leaves the Lamb-Dicke re-
gime, the collection angle must be reduced to maintain the
desired fidelity, leading to a lower success probability. In a
trap with frequency w,/27>1 MHz for an atomic '"'Yb*
ion, Doppler cooling is expected to result in a mean thermal
vibrational index of 7<<10, where success probabilities can
be greater than 1%. If we use a 10 MHz experimental rep-
etition rate, this would result in greater than 10° successful
entanglement operations per second. Additional losses to re-
flection from optics and imperfect fiber coupling would serve
to reduce this number.
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FIG. 7. (Color online) Optimum collection efficiency as a func-
tion of the average thermal vibration index of the trapped ion. The
efficiency is optimized with respect to collection angle at each
point, with fidelity fixed at '=0.9. The collection angle is restricted
to not exceed 45°. The shaded area represents the regime where
efficiency is limited by the collection angle of the optics. Unshaded
region represents regime where efficiency is limited by recoil, and
thus decreases as the ion gets hotter.

The expression derived in Eq. (42) accounts for decoher-
ence due to both atomic recoil and multiphoton scattering.
However, it is only valid in the monochromatic field limit.
One can extend the analysis to the case of a pulsed field
using the approach outlined in Sec. III. Since the atom and
the cavity-QD system are linear scatterers in the weak exci-
tation limit, we can decompose the pulsed input into a comb
of monochromatic fields and treat each component indepen-
dently. Each frequency component w; of the input field will
create a scattered field y;. After mixing with the beamsplitter
the final state of the QD, atom, and fields is given by

- B; 1
|¢fn> = E : rBl |00> + _r(ai|01>|VaC> - IBiHi|Xi>):|
w; V2 V2
X[v,)[n) +1f). (43)

In the above equation, «; and ; are the reflected and scat-
tered field for the ith frequency component of the input field,
[vac) is the vacuum state of all scattered modes, |v,,) is the
state where there is one photon in the mode monitored by
detector 2, and |f) represents all other states where there is
no photon in the detected mode. The fidelity can be deter-
mined by plugging into Eq. (27) which leads to

E |al-|2 + <|Bl|2> + 2e_N‘Y/2Re{ai<Bi>}

= L (44)
4 Dl + (B - Refai B}

;i

where N, is the total number of photons scattered to all
modes. The above equation represents a comprehensive cal-
culation of fidelity which accounts simultaneously for recoil,
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FIG. 8. Optimum collection efficiency under pulsed excitation

for different pulse durations 7. The center frequency of the atomic
resonance is given by 6,=10 GHz.

multiphoton scattering, and dispersion under pulsed excita-
tion.

To perform numerical calculations we once again assume
the input pulse is Gaussian with a spectrum given by Q(w)
= Qe (@@ Hgilkr-0) where 7 is the pulse duration. Us-
ing the same parameters from Sec. III, we set the fidelity to
be 0.9, which automatically creates a one-to-one relationship
between N, and A through Eq. (45). We then optimize Pces
as a function of A, which once again is restricted not to
exceed 45°, to obtain the optimal success probability as a
function of 7. The center frequency of the input pulse is
assumed to be detuned from the atomic resonance by &,
=10 GHz. The results of the calculation are shown in Fig. 8.
The figure plots the optimal success probability as a function
of 71 for pulse durations of 1, 0.5, and 0.35 ns. The calcula-
tion in the monochromatic limit is also plotted for compari-
son purposes. One can see that the 1 ns and 0.5 ns pulsed
excitations provide performance that is very close to the
monochromatic limit. For the 0.35 ns pulse there is a degra-
dation in the success probability because dispersion reduces
the base fidelity, requiring less multiphoton events in order to
achieve a fidelity of 0.9. Below 0.35 ns the success probabil-
ity quickly drops to zero because dispersion prevents the
fidelity from achieving a value of 0.9. This reinforces the
results shown in Fig. 3, which indicates that the monochro-
matic limit is a good approximation up until some minimum
pulse duration, below which dispersion quickly degrades the
fidelity.

VI. VALIDITY OF WEAK EXCITATION LIMIT

In addition to multiphoton scattering, we must also con-
sider the validity of the weak excitation approximation. All
of our calculations so far assumed that the atom and
cavity-QD system are driven with sufficiently weak excita-
tion such that o,——1, where o, is the population inversion
operator. For the QD, it has been previously shown that the
weak excitation limit is valid so long as N,/ 7,<1/ 7,04
where N, is the number of photons reflected from the cav-
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ity, 7, is the input pulse duration, and 7,,,; is the modified
spontaneous emission lifetime of the QD [11]. For any Nyor
one can in principle satisfy weak excitation by make 7, suf-
ficiently long. It should also be noted that from the matching
condition &= and the condition that N;<1 (due to multi-
photon scattering) we know that N,,,<1. In addition, for the
input pulse spectrum to fit within the high-reflection window
given in Eq. (2), 7,> 7,,,4 [10]. When these two conditions
are combined they automatically guarantee that weak excita-
tion is satisfied for the QD. Thus, for the QD weak excitation
does not impose any additional constraints on the entangle-
ment success probability and can be generally satisfied by
using sufficiently long input pulses.

We now derive a similar result for the atom. We use Eq.
(10) to show that

2
(o,0) = Mlﬂ(r,t)lz, (45)
v

where Q(r,1)=dE(r,t)/h. The weak excitation approxima-
tion is valid so long as {(o,0_)<<1. This condition can be
recast into a more recognizable form. The easiest way to do
this is to assume that the input optical pulse is a square pulse
of duration 7 starting at =0, with electric field amplitude E.
Thus

* h
f \E(r.1)di = |EPr= "2 (46)
0 C€y

where the last equality comes from Poynting’s theorem.
Equation (45) becomes

Y 2
el
v N, (47)
Ly,

T

We attain a condition for the atom which states that the rate
of scattered photons should be small compared to the atom
decay rate. Although this condition was attained using the
assumption of a square pulse, we expect this relation to hold
for most pulse shapes.

As was the case for the QD, the limitations imposed by
weak excitation restrict only the rate of emitted photons, not
on total photon number. In this way, weak excitation pro-
vides a weaker restriction than multiphoton scattering, and
can in general be well satisfied by picking sufficiently long
pulses. In a practical experiment the clock cycle for generat-
ing entanglement will almost always be long compared to the
atom decay rate. This ensures that all transients have decayed
between consecutive cycles of the experiment. If we com-
bine this requirement with the restriction placed by multi-
photon scattering that N,<<1, then Eq. (47) is automatically
satisfied. Thus, at the point where nonlinearities become im-
portant the system will already have decohered due to mul-
tiphoton scattering.

VII. CONCLUSION

We conclude that it appears feasible to entangle a QD and
an atom by weakly scattering light from each system and
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interfering these fields to produce an appropriate single-
photon detection event that heralds the entanglement. Differ-
ential dispersion, atom recoil, and the multiphoton scattering
can all be managed by properly selecting the input pulse
duration, collected solid angle, and input pump power. It is
noted that to implement the proposed protocol it is necessary
to overcome difficult experimental challenges. For example,
the protocol requires phase locking of all optical pulses for
qubit rotation of both atom and QD, which will require pull-
ing all optical pulses from a common laser source or using
multiple phase-locked lasers, adding to the experimental dif-
ficulty. In addition, decay of the atomic "'Yb* to other tran-
sitions will require periodic re-pumping into the 2D/, mani-
fold. Nevertheless, the work we present suggests that
entanglement between an atomic and semiconductor system
is within the reach of presently available technological
capabilities.
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APPENDIX A: CALCULATION OF TOTAL SCATTERED
PHOTON NUMBER

The average number of scattered photons can be calcu-
lated by N=3,(bib,)=3,|B8,|>. Plugging Eq. (13) into this
expression we obtain

2 2
YA S NGOl (A1)

" e
_>2—m d¢f daf dow?

gk| (wo)| i(k,, k)r
n gm . wy)e (A2)
L(wy)|? d4 *
| (yZO)| 6hie, f do|E(w)|*. (A3)

The amount of energy in the pump beam can be determines
using Poynting’s theorem,

EXB gae A -
W= dt di=——1 E“(t)dt
CloJo

where A is the cross sectional area of the pump beam. Using
the definition

E(t)szwE(w)e'i“”, (A4)

we attain
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W=A7TC€0J dw|E(w)|* = Nfaw, (A5)

where N, is the total number of photons in the pump and wy
is the center frequency of the quasimonochromatic pump
beam. Defining the photon density n,=N,;/A we then have

hwon;
f do|E(w)|* = iy (A6)
TCEg
Plugging this expression back into Eq. (A3), and using
30
wpd
=— A7
7 6mehic’ (A7)

leads directly to Eq. (14).

APPENDIX B: FIELD AMPLITUDE COLLECTED INTO
OPTICAL FIBER

For each frequency w we define a fiber mode b,. We
assume the fiber is single mode so that the fiber modes are
only a function of frequency (or alternately longitudinal mo-
mentum). The collection lens and fiber are linear optical
components, which means that the fiber mode is related to
the free-space modes by the linear transformation

bwz 2 skl;k' (B])

k=w/c

The sum is carried out over all free-space modes that have
the same energy as the fiber mode due to linearity. Unitarity
requires that

> ls?=1. (B2)

k=wl/c

We define A as the angle between the k and the input field
propagation direction which is assumed to be along the x
axis. We adopt a simplified model that the collection optics
collect all k vectors satisfying A;<AO<A,. Thus, for
k-vectors satisfying this condition s,=C, where C is a con-
stant, while s,,=0 for all other k vectors.

The constant C must be determined from the condition
Eq. (B2), which results in

> [cP=1. (B3)

k=w/c

To evaluate the above sum we make the additional assump-
tion that the lens collects k vectors propagating very close to
the x-axis. In this paraxial wave limit, the sum can be con-
verted to an integral as

> IclP= ICIZ

k=w/c

fd&f d¢w? sin 0, (B4)

where L, and L, are the length of the bounding box from the
quantization of the free-space modes in the y and z direc-
tions, and angles 6 and ¢ are defined in Fig. 2. From the
above equation we attain
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2mc 1 1 (B5)
= BS
) \‘”L’VLZ \/Z

where A=27(cos A;—cos Ao)%w(Ai—Af). Using this ex-
pression we then have

(w) =( Ll > by
B w)= bw = = bk 9
® L,L Alog1clasa0

where l;k is given in Eq. (11). We again turn the sum into an
integral and perform some algebraic manipulation to attain

P L(5,7,)Qw)e ™ .
Blw)=- fdé’f depe™ T,
2cy,N2€h LA

(B6)

where angles 6 and ¢ are illustrated in Fig. 2. We assume
that the input pulse has a narrow bandwidth centered around
w, so that we may make the substitutions w3/2’~vw8/ 2 and

exp(kw—k)zexp[ko(ﬁ—l;)]. We do not, however, make this
approximation for £(48,,y,) which is a rapidly varying func-
tion of w near resonance. With these approximations we at-
tain the result stated in Eqs. (16) and (17).

APPENDIX C: CALCULATION OF AVERAGE
SCATTERING AMPLITUDE DUE TO ATOMIC RECOIL

We assume that the collection optics is frequency inde-
pendent over the bandwidth of the collected signal. We as-
sume quasimonochromatic input so that £(8,,7y,) =",/
[y,—i(w,—wy)]. We can construct a fiber mode of the form

b=2 XE" ()b, (1)
where y is a normalization constant. This is the only mode
that the collected field will couple to. To understand why, we
first note that we can construct a complete basis using the
above mode along with a set of other orthogonal modes that
can be calculated using Schmidt decomposition. We can then
calculate the field amplitude using

(B)=(b)= 2 XE*(w)e{B(w)). (C2)

Since B(w) is proportional to the complex conjugate of the
expansion coefficient yE*(w)e', it will have a maximum
overlap with the mode in Eq. (C1), and will be orthogonal to
all other modes, ensuring the mode in Eq. (C1) is the only
one that contains photons.
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Unitarity determines the value of y from

2 IXPlEw)P=1, (C3)
which leads to
7TC'\;”’2_60 1 c4)
X= —-=. C4
VL iwy \n

Plugging the above expression into Eq. (C2) and turning the
sum into an integral we obtain

(B)=B f do f de®aRTy, (C5)

- d’w} \/‘ n L£(3,,7,)
~ 4me? €h v, (C6)

a

where

and, just as in Appendix B A=2m(cos A;—cos A,) = m(A?
—Az) We now use Eq. (33) to write

<:8> — Bf def d¢e—27;2(1—cos 6 cos ¢)(ﬁ+l/2). (C7)

Because we are working in the paraxial limit we can expand
the exponent to second order in 6 and ¢. Defining A

=\ 6+ ¢* we have

f daf d¢e—27]2(1—cos 6 cos &) (n+1/2)

2 f ® qaae e e
=2 e =
A s

i

(C8)

Taking the limit A;— 0 and plugging into the above equation
we attain the expression in Eq. (31).
Similarly, we can write

(B> =B f d J de J de’ f dgp'(e"®KImy - (C9)

It is straightforward to show that the lowest-order contribu-
tion to the exponent is fourth order in 6, ', ¢, and ¢'. Since
we are only expanding to second order in these variables, we
have

()= 18F | a0 ao [ avr [ ag=Ispa2. (10

which leads directly to Eq. (31).

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] E. Schrodinger, Proc. Cambridge Philos. Soc. 31, 555 (1935).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-

bridge, UK, 2000).

[4] C. Monroe and M. Lukin, Phys. World 21, 32 (2008).

[5] B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe,
Nature (London) 428, 153 (2004).

[6] J. Sherson, B. Julsgaard, and E. S. Polzik, Adv. At., Mol., Opt.

062330-12



PROTOCOL FOR HYBRID ENTANGLEMENT BETWEEN A ...

Phys. 54, 81 (2007).

[7]1 P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C.
Bergquist, and D. J. Wineland, Science 309, 749 (2005).

[8] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

[9] L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin,
Phys. Rev. Lett. 96, 070504 (2006).

[10] E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006).

[11] D. Sridharan and E. Waks, Phys. Rev. A 78, 052321 (2008).

[12] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N.
Matsukevich, L.-M. Duan, and C. Monroe, Nature (London)
449, 68 (2007).

[13] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S.
J. van Enk, and H. J. Kimble, Nature (London) 438, 828
(2005).

[14] C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten,
D. Felinto, and H. J. Kimble, Science 316, 1316 (2007).

[15] K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, Nature
(London) 452, 67 (2008).

[16] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D.
Gammon, and L. J. Sham, Nat. Phys. 4, 692 (2008).

[17] D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature
(London) 456, 218 (2008).

[18] M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D.
Bouwmeester, Phys. Rev. Lett. 102, 097403 (2009).

[19] R. Blatt and D. Wineland, Nature (London) 453, 1008 (2008).

[20] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Mat-
sukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76, 052314

PHYSICAL REVIEW A 80, 062330 (2009)

(2007).

[21] K.-M. C. Fu, S. M. Clark, C. Santori, C. R. Stanley, M. C.
Holland, and Y. Yamamoto, Nat. Phys. 4, 780 (2008).

[22] U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan,
W. M. Itano, D. J. Wineland, and M. G. Raizen, Phys. Rev.
Lett. 70, 2359 (1993).

[23] W. M. Itano, J. C. Bergquist, J. J. Bollinger, D. J. Wineland, U.
Eichmann, and M. G. Raizen, Phys. Rev. A 57, 4176 (1998).

[24] X.-F. Zhou, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 71,
064302 (2005).

[25] S. Hughes and H. Kamada, Phys. Rev. B 70, 195313 (2004).

[26] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J.
Vuckovic, Nature (London) 450, 857 (2007).

[27] K. Srinivasan and O. Painter, Nature (London) 450, 862
(2007).

[28] M. V. G. Dutt et al., Phys. Rev. Lett. 94, 227403 (2005).
[29] X. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gam-
mon, and L. J. Sham, Nature (London) 459, 1105 (2009).

[30] C. Latta et al., Nat. Phys. 5, 758 (2009).

[31] L. T. Vink, K. C. Nowack, F. H. L. Koppens, J. Danon, Y. V.
Nazarov, and L. M. K. Vandersypen, Nat. Phys. 5, 764 (2009).

[32] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[33] M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1
(2007).

[34] A. S. Bracker et al., Phys. Rev. Lett. 94, 047402 (2005).

[35] N. D. Mermin, J. Math. Phys. 7, 1038 (1966).

[36] D. S. Bateman, S. K. Bose, B. Dutta-Roy, and M. Bhatta-
charyya, Am. J. Phys. 60, 829 (1992).

062330-13



