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Coin flipping is a cryptographic primitive in which two spatially separated players, who do not trust each
other, wish to establish a common random bit. If we limit ourselves to classical communication, this task
requires either assumptions on the computational power of the players or it requires them to send messages to
each other with sufficient simultaneity to force their complete independence. Without such assumptions, all
classical protocols are so that one dishonest player has complete control over the outcome. If we use quantum
communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonest
players can produce. However, those protocols would be very difficult to implement in practice because they
are susceptible to realistic losses on the quantum channel between the players or in their quantum memory and
measurement apparatus. In this paper, we introduce a quantum protocol and we prove that it is completely
impervious to loss. The protocol is fair in the sense that either player has the same probability of success in
cheating attempts at biasing the outcome of the coin flip. We also give explicit and optimal cheating strategies
for both players.
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I. INTRODUCTION

Coin flipping by telephone was first introduced with these
words by Blum in 1981: “Alice and Bob � . . . � have just
divorced, live in different cities, want to decide who gets the
car” �1�. They agree that the best thing to do is to flip a coin,
but neither of them trusts the other and they are unable to
agree on a mutually trusted third party to do the flip for them.
More generally, coin-flipping protocols �also known as “coin
tossing”� can be used whenever two players need to pick a
random bit even though it could be to the advantage of one
of them �or perhaps both� to choose, or at least bias, the
outcome of the protocol.

The original coin-flipping protocol introduced by Blum is
asynchronous in the sense that it consists of a sequence of
rounds in which the two players alternate in sending mes-
sages to each other. The security of Blum’s protocol depends
on the assumed difficulty of factoring large numbers. Such
an assumption is of course of little value in our quantum
world, owing to Shor’s algorithm �2�, but classical coin flip-
ping can be based on more general one-way functions, which
could potentially be immune to quantum attacks. Neverthe-
less, any coin-flipping protocol that takes place by the asyn-
chronous transmission of classical messages has the property
that one of the players has complete control over the out-
come, given sufficient computing power. In the best case,
such protocols can be computationally secure and even that

depends on unproven computational complexity assump-
tions.

Unconditionally secure classical coin-flipping protocols
are possible in the synchronous model, in which the players
are requested to send messages to each other with sufficient
simultaneity to force their complete independence. Such pro-
tocols are called relativistic because special relativity must
be invoked to prevent Alice from waiting to receive Bob’s
message before choosing her own �and vice versa�. Relativ-
istic protocols must be implemented carefully because their
security depends crucially on the physical distance between
the players, and either of them could try to fool the other by
pretending to be farther away than they really are. Such
cheating attempts can be thwarted if each player has a trusted
agent near the other player �3�. For the rest of this paper, we
only consider asynchronous protocols and “coin-flipping
protocol” will systematically mean “asynchronous coin-
flipping protocol.”

In quantum coin-flipping protocols, Alice and Bob are
allowed to exchange quantum states. Such protocols were
first investigated in 1984 by Bennett and Brassard �4�. In that
paper, a protocol was presented and it was shown that “ironi-
cally �it� can be subverted by use of a still subtler quantum
phenomenon, the Einstein-Podolsky-Rosen paradox,” mak-
ing it the first use of entanglement �5� in quantum cryptog-
raphy. We shall refer to it henceforth as the “BB84 protocol”
�Bennett-Brassard 1984 protocol�, not to be confused with
the better-known quantum key distribution protocol intro-
duced in the same paper. The question was left open: can
there be a perfect quantum coin-flipping protocol? The proof
that this is impossible was given more than a decade later by
Lo and Chau �6�, whose result was further clarified by May-
ers et al. �7�. Nevertheless, if quantum coin-flipping proto-
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cols cannot be perfect, can they at least be better than any-
thing classically possible?

To make this question more precise, we say that one
player enjoys an � bias if a cheating strategy exists by which
that player could choose either bit and influence the outcome
of the protocol to be that bit with probability at least 1

2 +�,
assuming that the other player follows the protocol honestly.
This definition is unconditional in the sense that we allow
the would-be cheater to enjoy unlimited computational
power and a technology limited only by the known laws of
physics. The bias of a protocol is the largest value of � so
that at least one player enjoys an � bias. A perfect protocol
would be one whose bias is 0, but they cannot exist, classical
or quantum. At the other end of the spectrum, a protocol
whose bias is 0.5 is considered to be completely broken. All
classical protocols are completely broken by this definition
and so is the BB84 quantum protocol. The question at the
end of the previous paragraph was therefore: is there a quan-
tum coin-flipping protocol whose bias is strictly less than
0.5?

The first such protocol was discovered in 2000 by Aha-
ronov, Ta-Shma, Vazirani, and Yao �8�, who proved that the
bias of their protocol �ATVY� is at most �2−1�0.42 �with-
out any claim concerning the tightness of their bound�. It was
subsequently proven by Spekkens and Rudolph �9� that the
ATVY protocol is better than its inventors had thought:
its bias is in fact exactly �2 /4�0.36. In the same paper,
Spekkens and Rudolph gave an even simpler coin-flipping
protocol that achieves the same bias as well as another one
whose bias is merely ��5−1� /4�0.31. According to an ear-
lier paper of theirs �10�, that is the smallest bias possible for
a coin-flipping protocol in which the quantum communica-
tion is limited to a single qubit.

Meanwhile, Ambainis �11� and, independently, Spekkens
and Rudolph �10� discovered quantum coin-flipping proto-
cols whose bias 0.25 is even smaller, but they require the
transmission of a qutrit �or one qubit and two qutrits in the
case of Spekkens and Rudolph�. On the other hand, Kitaev
�12� proved that no quantum coin-flipping protocol can have
a bias below ��2−1� /2�0.21. Very recently, Chailloux and
Kerenidis �13� announced a quantum coin-flipping protocol
whose bias is arbitrarily close to Kitaev’s bound, but it re-
quires an unlimited number of rounds of interaction as it
approaches this bound.

Despite the theoretical success of quantum coin-flipping
protocols, compared to classical protocols, severe practical
problems inherent to their implementation were discussed by
Barrett and Massar �14�, who argued that quantum coin flip-
ping is problematic in any realistic scenario in which noise
and loss can occur in the processing �preparation, transmis-
sion, and measurement� of quantum information. For this
reason, they proposed random bit-string generation instead
of single-shot coin flipping. However, this is not interesting
from a quantum cryptographic perspective because the same
goal can be achieved with purely classical means �15�.

In a subsequent paper �NFPM� written in collaboration
with Nguyen, Frison, and Phan Huy, Massar defined a figure
of merit on which quantum coin-flipping protocols can out-
perform any possible classical protocol even in a realistic
setting and they have verified their concept experimentally

�16�. Even though their protocol is not broken in the pres-
ence of loss, however, Alice can choose the outcome with
near certainty in a realistic setting. We claim that, in order to
be of practical use, a protocol should be loss tolerant, which
we define as being completely impervious to loss of quantum
information. In this sense, the NFPM protocol is not loss
tolerant because its bias increases asymptotically towards 0.5
as losses become more and more severe, which is unavoid-
able in practice �with current technology� over increasing
distance between Alice and Bob.

In this paper, we concentrate on this most likely source of
imperfection in actual implementations, namely, losses. With
the exception of the NFPM protocol mentioned above
�which is not loss tolerant�, all previously proposed quantum
coin-flipping protocols become completely insecure even in
the absence of noise as soon as the quantum channel between
Alice and Bob is lossy. We introduce a loss-tolerant quantum
coin-flipping protocol. We prove that our protocol is fair in
the sense that either Alice or Bob can enjoy a bias of exactly
0.4 with an optimal cheating strategy, independently of the
channel’s transmission and other sources of losses, provided
quantum information that is not lost is prepared, transmitted,
and measured faithfully.

After this introduction, the structure of the paper is as
follows. We begin in Sec. II with a review of the original
1984 quantum coin-flipping protocol of Bennett and Bras-
sard �4� and we explain why it is completely vulnerable to a
so-called EPR-attack. This is interesting not only for histori-
cal reasons but also because our loss-tolerant protocol fol-
lows the same template. Section III reviews perhaps the most
famous of all quantum coin-flipping protocols, due to Am-
bainis �11�, whose theoretical bias is 0.25. However, we
demonstrate in Sec. IV that the security of that protocol is
completely compromised in the presence of arbitrarily small
channel loss. Moreover, we argue that this problem is inher-
ent to the protocol in the sense that it cannot be repaired with
small corrections. �The same would be true of the 0.25-bias
qutrit-based coin-flipping protocol due to Spekkens and Ru-
dolph �10� as well as of their optimal single-qubit protocol
�9�.� This is due to the notion of conclusive measurements,
which we review in Sec. V. We show in Sec. VI how to
combine the strengths of the original BB84 protocol with
those of the ATVY protocol �which is not loss tolerant either
in its published form� to finally achieve loss tolerance in
quantum coin flipping and we analyze the security of our
protocol. Conclusions and open problems are presented in
Sec. VII.

II. BB84 PROTOCOL

We review the original BB84 quantum coin-flipping pro-
tocol as well as the way it can be broken �4�. Here are the
so-called BB84 states:

���0,0	 = �0	
��0,1	 = �1	 
a = 0,

���1,0	 = � + 	
��1,1	 = � − 	 
a = 1,
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where �� 	= ��0	� �1	� /�2. We say of ��a,x	 that a is the ba-
sis and x is the bit. We define measurement bases

Ba = ���a,0	, ��a,1	� �1�

for a� �0,1�. In the full BB84 quantum coin-flipping proto-
col �4�, Alice would prepare and send Bob a large number of
qubits, all in the same randomly chosen basis a. To empha-
size the essential features of the protocol, however, we out-
line below a simplified version in which a single qubit is
used.

�1� Alice prepares one of the four BB84 states ��a,x	 with
basis a and bit x chosen independently at random; she trans-
mits that qubit to Bob.

�2� Bob chooses a random â� �0,1� and measures the
received qubit in basis Bâ; let Bob’s result be x̂.

�3� Bob sends a randomly chosen bit b to Alice.
�4� Alice reveals her original a and x to Bob.
�5� If a= â and x� x̂, Bob aborts the protocol, calling

Alice a cheater; if a� â, Bob has no way to verify Alice’s
honesty.

�6� If Bob did not abort the protocol, the outcome of the
coin flip is a � b, where “�” denotes the sum modulo 2 �also
known as the “exclusive OR”�.

In this protocol, Bob cannot cheat at all. The only strategy
for a cheating Bob would be to make an educated guess on
Alice’s choice of a before deciding on the b to send her at
step 3 so as to bias the coin-flip outcome a � b. However, a
corresponds to Alice’s random choice of basis. Hence, the
state �a received by Bob at step 1 is either �0= 1

2 �0	
0�
+ 1

2 �1	
1� or �1= 1
2 �+	
+�+ 1

2 �−	
−�. It follows from the fact that
�0=�1 that it is impossible for Bob to guess the value of a
better than at random.

On the other hand, it is obvious that Alice can bias the
protocol if she does not mind the risk of being called a
cheater. The simplest approach is to be honest in the first
step. When she receives b from Bob, the probability is 50%
that she is happy with the outcome a � b, in which case she
proceeds honestly with the protocol. On the other hand, if
she is unhappy with a � b, she can lie on a at step 4 and send
a random x. In that case, her probability of being caught is
25% since Bob chose â�a with probability 50%, in which
case he obtained x̂�x also with probability 50%. All
counted, this allows her to enjoy a 0.375 bias. A slightly
more interesting cheat is for her to send state �cos k�

8 ��0	
+ �sin k�

8 ��1	 for a random k� �1,3 ,5 ,7� at step 1 and declare
the a that suits her wish �with the appropriately chosen x�
at step 4. This allows her to enjoy a bias of 1

2cos2 �
8

= �2+�2� /8�0.42, with a probability 1
2sin2 �

8 = �2−�2� /8
�8% of being called a cheater. It was to make the probabil-
ity of undetected cheating exponentially small that the full
BB84 protocol required the transmission and measurement
of a large number of qubits �4�.

A much more remarkable kind of cheating is possible for
Alice, as explained in the same paper that introduced the
BB84 protocol itself �4�, which allows her to break the pro-
tocol completely �i.e., enjoy a 0.5 bias� with no fear of ever
being caught. Let us say she wishes the outcome of the coin
flip to be bit c. Instead of sending a legitimate BB84 state or

any other pure state at step 1, Alice sends half an EPR pair
�	−	= ��01	− �10	� /�2 to Bob and keeps the other half for
herself. She waits until step 3, when she learns Bob’s choice
of b, to measure in basis a=c � b the half she had kept;
let x be her measurement outcome. This tells her that Bob
has obtained �or will obtain if he has not yet measured�
x̂=1 � x in case he has measured �or will measure� in basis a.
�Alice does not care about the value of x̂ if Bob chooses to
measure in the other basis.� Hence, she can always obtain her
desired outcome by sending those a and x̂ to Bob in step 4.

As subsequently discovered independently by Mayers
�17� and by Lo and Chau �18� in the context of quantum bit
commitment, this kind of cheating is always possible for
Alice in any quantum coin-flipping protocol that has the
structure of the BB84 protocol, regardless of the actual set of
quantum states, whenever the density matrices used to signal
a=0 or a=1 at step 1 are identical ��0=�1�. This is due to the
striking quantum process known as “remote steering,” dis-
covered by Schrödinger �19� as early as 1936 and better
known as the Hughston-Jozsa-Wootters �HJW� theorem �20�.
�See Ref. �21� for an entertaining history of this theorem.�
Note that the remote steering attack works just as well if Bob
postpones his measurement until after Alice reveals a and x
and almost just as well if �0 and �1, although different, are
exponentially indistinguishable �22�. This last remark caused
the demise of the bit commitment scheme proposed in Ref.
�23�, and we shall henceforth not differentiate between den-
sity matrices that are equal and those that are merely expo-
nentially indistinguishable.

III. AMBAINIS’ PROTOCOL

In order to escape the remote steering attack, Aharonov et
al. �8� introduced a coin-flipping protocol �ATVY� in which
�0��1. To reduce even further Alice’s possible bias, they
shuffled the order of steps 2, 3, and 4 so that Bob delays his
measurement of Alice’s supplied state until after she tells
him what she claims to have sent. In this way, he can mea-
sure systematically in the declared basis rather than having to
measure in a randomly chosen basis â whose outcome had
probability 50% of being useless. This resulted in a quantum
coin-flipping protocol with bias �2 /4�0.36, as subsequently
proven by Spekkens and Rudolph �10�.

To achieve his smaller bias of 0.25, Ambainis used the
following states on qutrits �rather than on qubits�:

��
0,0	 =
1
�2

�0	 +
1
�2

�1	

�
0,1	 =
1
�2

�0	 −
1
�2

�1	 �a = 0,

��
1,0	 =
1

�2
�0	 +

1

�2
�2	

�
1,1	 =
1

�2
�0	 −

1

�2
�2	 �a = 1.

Again we say of �
a,x	 that a is the basis and x is the bit. This
time, we define measurement bases
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Ba� = ��
a,0	, �
a,1	, �2 − a	�

for a� �0,1�. Here is Ambainis’ protocol.
�1� Alice prepares one of the four Ambainis states �
a,x	

with basis a and bit x chosen independently at random; she
transmits that qutrit to Bob, who stores it in his quantum
memory.

�2� Bob sends a randomly chosen bit b to Alice.
�3� Alice reveals her original a and x to Bob.
�4� Bob takes Alice’s qutrit out of quantum memory and

measures it in basis Ba�; let Bob’s result be x̂.
�5� If x� x̂, Bob aborts the protocol, calling Alice a

cheater.
�6� If Bob did not abort the protocol, the outcome of the

coin flip is a � b.
Alice cannot use remote steering to gain complete control

over the outcome of the coin flip because the density matri-
ces that could be received by Bob at step 1, corresponding to
her choice a of basis,

�0 = 1
2 �
0,0	

0,0� + 1

2 �
0,1	

0,1� = �1/2 0 0

0 1/2 0

0 0 0
� ,

�1 = 1
2 �
1,0	

1,0� + 1

2 �
1,1	

1,1� = �1/2 0 0

0 0 0

0 0 1/2
� , �2�

are distinct. It is easy to see that Alice can enjoy a 0.25 bias
if she sends state �2�0	� �1	� �2	� /�6 at step 1 and declares
a and x appropriately at step 3. The proof that this is Alice’s
optimal cheating strategy is nontrivial but has been worked
out in detail by Ambainis �11�. On the other hand, the fact
that �0��1 makes it possible for Bob to cheat by measuring
Alice’s qutrit before step 2 in order to learn information
about a and bias his choice of b accordingly. The most ob-
vious strategy for Bob is to measure Alice’s qutrit in the
computational basis ��0	 , �1	 , �2	�, which allows him to enjoy
a 0.25 bias as well. The fact that this is Bob’s optimal cheat-
ing strategy follows directly from Helstrom’s optimal mea-
surement theory �24�, which we review in Sec. V.

For completeness, we mention that the independently
discovered 0.25-bias quantum coin-flipping protocol of
Spekkens and Rudolph �10� requires Alice to choose a ran-
dom bit a, prepare a one-qubit-and-two-qutrit entangled state

��a	 = �a	 � � 1
�2

�00	 + 1
�2

�a + 1,a + 1	� ,

and send Bob one of the two qutrits in step 1. Step 2 is the
same as in Ambainis’ protocol. In step 3, Alice sends the
qubit and the other qutrit to Bob, which allows him to verify
her honesty in step 4 by performing a positive-operator-
valued measure �POVM� on the combined Alice-provided
state whose outcome is either ��0	, ��1	 or “Alice cheated.”
Again, the result of the coin flip is a � b provided Bob did
not catch Alice cheating. The essential �but not sufficient�
reason why this protocol gives the same bias as Ambainis’ is
that the density matrix �a received by Bob at step 1 is exactly
the same in both protocols, as given by Eq. �2�.

IV. PRACTICAL VULNERABILITY

Even though Ambainis’ analysis of his protocol is math-
ematically impeccable, there is a practical problem that can-
not be neglected if one is ever to implement such protocols
in real life: there will be unavoidable losses in the quantum
channel between Alice and Bob. This is true in particular if
photons are used to carry quantum information and if the
quantum channel is an optical fiber. Further losses are to be
expected in Bob’s quantum memory and detection apparatus.
The situation is even worse for the 0.25-bias protocol of
Spekkens and Rudolph because it requires both Alice and
Bob to have quantum memory since they must store one
qutrit each between steps 1 and 3 �there is no real need for
Alice to store also the qubit since it contains only classical
information�. Please remember that one of the main appeals
of quantum cryptography, from its very beginnings �4�, has
been to offer protocols that can be implemented with current
technology yet remain secure against any potentially future
attack so long as quantum mechanics is not violated.

It follows that there is a possibility1 when Bob tries to
measure Alice’s qutrit at step 4 of Ambainis’ protocol �or the
one-qubit-two-qutrit system in the protocol of Spekkens and
Rudolph� that he does not register anything even though both
Alice and Bob have been entirely honest. How should Bob
react in this case? He could hardly call Alice a cheater if the
most likely cause for loss is in his own detectors. There seem
to be only two reasonable responses from Bob, as pointed
out already by Barrett and Massar �14� concerning a quan-
tum coin-flipping protocol inspired by the quantum gambling
protocol of Hwang et al. �25�: Bob can �1� accept Alice’s
declared a and x on faith or �2� request Alice to restart the
coin-flipping protocol from scratch. But both these “solu-
tions” are unacceptable.

If Alice knows that Bob will believe her on faith in case
he gets no detection signal, she can totally bias the coin flip
with the most maddeningly simple cheating strategy: she
does nothing at all during step 1 and lets Bob “store” the
empty signal.2 After having received Bob’s choice of b, she
is then free to “reveal” whichever a would produce her de-
sired outcome a � b. Since Bob’s measurement of the empty
signal will yield nothing at step 4, he has no other choice but
to believe Alice on faith.

On the other hand, if Alice and Bob have agreed to restart
the coin-flipping protocol in case Bob does not detect any-
thing at step 4, it is Bob who can totally bias the coin flip
without any need to manipulate quantum states. Whenever
he receives Alice’s qutrit, he does nothing at all with it and
sends his random choice of b. If Alice reveals a at step 3 so
that he is happy with outcome a � b, with probability 50%,
Bob pretends to measure Alice’s long-lost qutrit and claims
to be satisfied with her honesty. But if he is not happy with

1Actually, with current technology, it is more than a mere “possi-
bility:” this will occur in the overwhelming majority of cases.

2It would be technologically very challenging for Bob to perform
a so-called “non-demolition measurement,” which would in prin-
ciple allow him to confirm the presence of the qutrit without dis-
turbing its state.
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the outcome, Bob simply tells Alice that he has not registered
anything and requests a new instance of the protocol. This
continues until the outcome is to Bob’s liking. This cheating
strategy cannot be detected by Alice whenever the expected
probability p of registering an outcome when both Alice and
Bob are honest is at most 50%, provided Bob asks to restart
the protocol with probability 1−2p even when progressing to
step 6 would have produced his desired outcome.

Unless Bob has the technological ability to make sure he
received a quantum state from Alice at step 1 without dis-
turbing it and because Alice will not accept to restart the
protocol after she has revealed a and x, he has only one line
of defence against her “send nothing” cheating strategy: he
must measure Alice’s signal immediately upon reception and
be allowed to ask her to restart the protocol from scratch
�with an independent random choice of state� until he actu-
ally registers a measurement outcome. This means that we
must revert to the original BB84 template in which Bob mea-
sures before Alice reveals a and x.

As explained at the beginning of Sec. III, this will make it
easier for a cheating Alice to escape detection since Bob’s
measurement can no longer depend on her claimed state.
However, provided Bob chooses his measurement basis at
random, he will carry out with probability 50% the same
measurement he would have performed in Ambainis’ original
protocol. As we prove in Sec. VI A, it follows that Bob’s
probability of catching Alice’s eventual cheating is reduced
but not by more than a factor of 2, compared to the original
protocol. Hence, Alice’s bias is at most 0.375 rather than
0.25. The important point is that this bias remains below 0.5.

Nevertheless, this modification in Ambainis’ protocol,
which is made necessary by practical considerations �with
current technology�, reopens the door for Bob to completely
break the revised protocol. When Alice tells him she trans-
mitted a qutrit, Bob measures it immediately in the compu-
tational basis ��0	 , �1	 , �2	�. If he obtains either �1	 or �2	, Bob
knows Alice’s choice of a. This allows him to choose b so
that a � b suits his desired outcome. On the other hand, if
Bob either obtains �0	 or if he does not register anything,
then he tells Alice that the transmission has been unsuccess-
ful and he requests another qutrit from her. In effect, the
protocol will proceed to the step in which Bob sends his
choice of b to Alice only when he already knows Alice’s
earlier choice of a. This means that Bob enjoys a bias of 0.5
and the protocol is completely broken. To camouflage his
chicanery �in case Alice might wonder why the measurement
does not succeed more often�, Bob can pretend at the outset
that his detectors are half as efficient as they really are. Al-
ternatively, he could surreptitiously replace the quantum
channel that links him to Alice with a sufficiently better one.

This fatal flaw in any practical implementation of Am-
bainis’ protocol comes from one simple consideration. Even
though the mixed states �0 and �1 �see Eq. �2�� used at step 1
by Alice to partially commit to either a=0 or a=1, respec-
tively, are nonorthogonal, hence they cannot be distinguished
with certainty by Bob all the time, they can be distinguished
conclusively with positive probability. After reviewing below
the notion of conclusive measurements, we introduce our
protocol in Sec. VI and prove that its bias is exactly 0.4 even
when arbitrarily severe losses are taken into account.

V. DIFFERENT TYPES OF MEASUREMENTS

Consider two nonorthogonal density matrices �0 and �1
�they could be pure states�. There are several figures of merit
in measurements that attempt to distinguish them �22�. Hel-
strom studied the optimal measurement to output a guess that
minimizes the error probability �24�. Assuming both �0 and
�1 were equally likely a priori, Helstrom’s measurement out-
puts the correct guess with probability

1

2
+

1

2
D��0,�1� , �3�

where

D��0,�1� =
1

2
Tr��0 − �1� �4�

is the trace distance between �0 and �1, “Tr” denotes the
trace, and �A�=�A†A. In particular, if A is a diagonal real
matrix, then �A�ij = �Aij�.

When the spans of �0 and �1 are distinct, there exists
another type of measurement, known as conclusive measure-
ment or unambiguous state discrimination �USD� �26–28�.
These measurements have three possible outcomes, “0,” “1,”
and “?,” the latter of which being called the inconclusive
outcome. Whenever outcome a� �0,1� is obtained, it is guar-
anteed that the measured state was indeed �a �assuming of
course that is was either �0 or �1 and that there were no
experimental errors�. Furthermore, the probability of obtain-
ing a conclusive outcome �not “?”� must be strictly positive
for either input state.

A well-known example of conclusive measurement can
distinguish between �0	 and �+	 with conclusive outcome
probability 1−1 /�2�29%. More to the point of our
paper, the obvious measurement in computational basis
��0	 , �1	 , �2	� distinguishes between Ambainis’ �0 and �1
�Eq. �2�� with conclusive probability 50%. In general, any
coin-flipping protocol that follows the template of BB84
is vulnerable to the attack described in Sec. IV when a con-
clusive measurement exists between the corresponding
�0 and �1.

It is tempting to think that this line of attack will not apply
when conclusive measurements do not exist. However, this is
not necessarily the case. Barnett and co-workers �29,30�
studied “maximum confidence quantum measurements”
�MCQM�, which somehow interpolate between Helstrom
and conclusive measurements. Like conclusive measure-
ments, MCQMs have some probability p�1 of yielding the
“?” inconclusive outcome. However, when the outcome is
either “0” or “1,” it is correct with probability at least q�0.
Helstrom’s measurement maximizes q subject to p=0,
whereas conclusive measurements �when they exist� mini-
mize p subject to q=1. There can be a trade-off between
those two probabilities in the sense that it is sometimes pos-
sible to achieve an increase in q �compared to the accuracy
of Helstrom’s measurement� by tolerating a larger p.

The relevance of MCQMs is that Bob could use them to
increase his coin-flip bias at the cost of increasing his prob-
ability of asking Alice to restart the protocol �pretending he
has not registered an outcome�. If MCQMs exist for q arbi-
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trarily close to 1, Bob can come as near as he wants to
choosing the coin-flip outcome, provided Alice has enough
patience �naïvety?� to accept restarting the protocol indefi-
nitely until Bob tells her that he is ready to continue.

To demonstrate that this is a legitimate worry, consider
an �admittedly contrived� quantum coin-flipping protocol
based on Ambainis’ states �see the beginning of Sec. III�,
except that we add �
0,2	= �2	 and �
1,2	= �1	. In step 1,
Alice chooses basis a� �0,1� at random with uniform
probability, but x� �0,1 ,2� is chosen so that Prob�x=0�
=Prob�x=1�=49%, whereas Prob�x=2�=2%. The density
matrix received by Bob would be either

�0� = �0.49 0 0

0 0.49 0

0 0 0.02
� or �1� = �0.49 0 0

0 0.02 0

0 0 0.49
� .

These two mixed states cannot be distinguished conclusively.
Nevertheless, a measurement in the computational basis
yields either �0	, which is interpreted as the inconclusive
outcome “?,” or it yields either �1	 or �2	, which are
interpreted as either �0� or �1�, respectively. This MCQC is
inconclusive with probability p=49%. When it is not incon-
clusive, however, the verdict is correct with probability
q=0.49 /0.51�96%. This is much better than Helstrom’s
measurement, which would always give an answer but be
correct only with probability 73.5% since D��0� ,�1��=0.47.
Therefore, a quantum coin-flipping protocol that uses these
states would allow Bob to enjoy a maximal theoretical bias
of 0.235 if we did not take losses into account. However,
Bob’s bias becomes larger than 0.46 if Alice agrees to restart
the protocol whenever he claims to have not registered an
outcome, which he would do whenever his measurement out-
come is the inconclusive �0	.

VI. LOSS-TOLERANT PROTOCOL

Now, we introduce our quantum coin-flipping protocol
and we prove that its bias is exactly 0.4, regardless of the
extent of losses that are unavoidable with current technology.
For this, we use the states introduced in the ATVY protocol
�8� but revert to the original BB84 template �4�. Consider the
states

���0,0	 = 
�0	 + ��1	
��1,0	 = 
�0	 − ��1	 
x = 0,

���0,1	 = ��0	 − 
�1	
��1,1	 = ��0	 + 
�1	 
x = 1,

where 
 and � are real numbers such that 1�
���0 and

2+�2=1. See Fig. 1. As always, we say of ��a,x	 that a is
the basis and x is the bit. We define measurement bases mu-
tatis mutandis as we had done in Eq. �1� for the BB84 states:

Ba� = ���a,0	, ��a,1	� �5�

for a� �0,1�. We shall soon see why we have regrouped the
states according to the value of x rather than that of a as we
had done previously. Here is our loss-tolerant quantum coin-
flipping protocol.

�1� Alice prepares one of the four states ��a,x	 with basis a
and bit x chosen independently at random; she transmits that
qubit to Bob.

�2� Bob chooses a random â� �0,1� and measures the
received qubit in basis Bâ�. If his apparatus does not register
an outcome, he requests Alice to start over at step 1; other-
wise, let the measurement result be x̂.

�3� Bob sends a randomly chosen bit b to Alice.
�4� Alice reveals her original a and x to Bob.
�5� If a= â and x� x̂, Bob aborts the protocol, calling

Alice a cheater; if a� â, Bob has no way to verify Alice’s
honesty.

�6� If Bob did not abort the protocol, the outcome of the
coin flip is x � b.

There are three differences, compared to the original
BB84 protocol described in Sec. II: �1� in addition to having
been globally rotated to facilitate subsequent analysis, the
states used are more general in the sense that bases B0� and
B1� need not be mutually unbiased; �2� step 2 allows Bob to
ask Alice to restart the protocol in case his measurement
apparatus fails to register an outcome; and �3� the final coin-
flip result is x � b rather than a � b.

The first modification will allow us to fine-tune the pro-
tocol in Sec. VI C. The second modification makes it pos-
sible for the protocol to be loss tolerant as we have explained
in Sec. IV. The effect of the third modification, which corre-
sponds to the main original contribution of the ATVY proto-
col, is that two distinct density matrices �0 and �1 �see be-
low� are now used by Alice to partially commit to either
x=0 or x=1 by the transmission of ��a,x	 at step 1 with a
randomly chosen a:

FIG. 1. Quantum states used in loss-tolerant protocol. States
such as ��0,0	=
�0	+��1	 are represented in the real Cartesian
plane by a line between the origin and point �
 ,��.
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�0 =
1

2
��0,0	
�0,0� +

1

2
��1,0	
�1,0� = �
2 0

0 �2 � ,

�1 =
1

2
��0,1	
�0,1� +

1

2
��1,1	
�1,1� = ��2 0

0 
2 � . �6�

In sharp contrast, the intuition behind the original BB84
protocol was for Alice to “commit” to either a=0 or a=1
with a randomly chosen x but that was doomed by
Schrödinger’s remote steering process because the corre-
sponding density matrices were equal.

Furthermore, we shall see in Sec. VI B that, contrary to
the mixed states �0 and �1 used in Ambainis’ protocol �see
Eq. �2��, this time �0 and �1 cannot be distinguished conclu-
sively nor even by a maximum confidence quantum mea-
surement better than Helstrom’s measurement, which is the
key to loss tolerance.

Although we have presented our protocol as a modifica-
tion of the original BB84 protocol, it is useful for analysis
purposes to contrast it also with the ATVY protocol. The key
difference between the ATVY protocol and ours is that they
chose to introduce a new template �used in most subsequent
protocols such as Ambainis’� in which Bob stores the quan-
tum state sent by Alice at step 1 in order to delay measure-
ment until Alice has given him its classical description. The
intention was to make it harder for Alice to cheat because
Bob would know to measure the state in basis Ba� rather than
having to choose a random basis Bâ�. It was this feature that
made their protocol incapable of tolerating channel loss un-
less Bob has the technological ability to detect if a signal has
been received by Alice without otherwise disturbing its state.

Next, we prove that the maximum biases that Alice and
Bob can enjoy are

�A = �1 + 2
��/4 and �B = 
2 − 1/2,

respectively, and we give explicit cheating strategies to
achieve those biases. We conclude that the choice of 
 and �
that makes those two biases equal corresponds to a fair pro-
tocol whose bias is 0.4.

A. Alice’s optimal cheating strategy

It would be relatively easy to determine Alice’s optimal
cheating strategy were she restricted to sending some pure
state to Bob in the first step of the protocol. However, we
have learned from the demise of the original BB84 protocol
�4� that it might be to her dishonest advantage to prepare an
entangled state, send one qubit from it to Bob at step 1, and
wait until Bob’s announcement of b at step 3 to measure in
the most informative way what she had kept. This could
increase her chances of deciding on her best choice of a and
x to “reveal” at step 4 in order to maximize her probability of
successfully biasing the coin flip. It is significantly more
complicated to take all possible such strategies into account.
Fortunately, most of the work has already been done by Spe-
kkens and Rudolph �9� in their thorough analysis of the
ATVY protocol.

Let us begin our analysis by briefly pretending that Bob
does not measure the state Alice has sent him until after she

reveals her choice of basis and bit and that he measures it in
that basis. As we have already pointed out, this becomes the
ATVY protocol. It follows directly from the analysis of
Spekkens and Rudolph �choosing what they call � in their
Eq. �20� so that cos �=
 and sin �=�� that any cheating
strategy Alice may deploy gives her bias

�A� �
sin 2�

2
= sin � cos � = 
� . �7�

Now, to analyze our protocol, we must take into account
the fact that we require Bob to measure Alice’s state before
she tells him what she claims to have sent. �This is how we
make our protocol loss tolerant.� This difference makes it
easier for Alice to cheat because Bob’s measurement cannot
be chosen to maximize his probability of discriminating be-
tween her claimed state and any other state that she might
have sent instead. However, as we show below, this modifi-
cation does not reduce Bob’s probability of catching Alice
cheating by more than a factor of 2.

Recall that Bob is required by step 3 of the protocol to
send a random choice of b, which must be uncorrelated with
his former choice â of measurement and its outcome x̂. The
crucial observation is that the randomness of b deprives
Alice from any information she might otherwise have ob-
tained from Bob concerning â and x̂. �The importance of this
observation is illustrated in Sec. VI D.� It follows that her
choice of which a and x to declare at step 4 cannot depend
on what has happened at Bob’s after she transmitted her
quantum state at step 1. In particular, â=a with probability
50% since â is chosen at random by an honest Bob, in which
case he has chosen by chance at step 2 precisely the mea-
surement he would have performed in the ATVY protocol,
had he been allowed to wait until Alice’s announcement of a
and x before deciding on his measurement.

The above implies that any cheating strategy that Alice
might deploy against our protocol translates into an identical
cheating strategy against the ATVY protocol, possibly with a
different success probability, since it makes no measurable
difference to Alice whether Bob measures before �as in our
protocol� or after �as in the ATVY protocol� she has to de-
clare a and x. Now, consider an arbitrary cheating strategy on
the part of Alice and let �A �respectively, �A�� be the bias that
she enjoys with this strategy against our protocol �respec-
tively, the ATVY protocol�.

Consider an arbitrary run of our protocol, when Alice uses
this cheating strategy. With probability 50%, independently
from anything else, Bob randomly chooses the same mea-
surement he would have performed in the ATVY protocol, in
which case Alice succeeds with probability 1

2 +�A� . In the
other 50% of the cases, Bob cannot verify the state Alice
claims to have sent and the probability that Alice succeeds is
at most 1. All counted, the success probability of Alice in our
protocol is

1

2
+ �A �

1

2
�1

2
+ �A�� +

1

2
� 1 =

3

4
+

1

2
�A� .

It follows that
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�A �
1 + 2�A�

4
�

1 + 2
�

4
, �8�

where the last inequality follows from Eq. �7�.
We now proceed to show that this bound can be saturated.

Surprisingly �when we recall the demise of the BB84 quan-
tum coin-flipping protocol�, the optimal cheating strategy for
Alice does not require her to prepare an entangled state from
which she would send one qubit at step 1. Instead, it suffices
for her to send either

� + 	 =
1
�2

�0	 +
1
�2

�1	

or

� − 	 =
1
�2

�0	 −
1
�2

�1	

to Bob. Let us say she sent �+	 �the other case is similar� and
received bit b from Bob at step 3. If her desired outcome is c,
she sets x=c � b and claims at step 4 to have sent ��x,x	
at step 1. With probability 50%, Bob had already chosen
â�x, in which case he cannot catch Alice cheating. With
complementary probability 50%, he had chosen â=x, in
which case Alice escapes detection with probability

�
+ ��x,x	�2 = � 1
�2


 +
1
�2

��2

=
�
 + ��2

2
=

1

2
+ 
�

�the last equality is because 
2+�2=1�. Putting it all to-
gether, Alice obtains her desired outcome with probability

1

2
+

1

2
�1

2
+ 
�� =

3 + 2
�

4

and her bias is therefore

�A =
3 + 2
�

4
−

1

2
=

1 + 2
�

4
,

which saturates the bound given in Eq. �8�.

B. Bob’s optimal cheating strategy

In the analysis of Bob’s bias in quantum coin-flipping
protocols, it is usual to apply Eqs. �3� and �4� to compute the
trace distance D��0 ,�1�=
2−�2=2
2−1 in order to deter-
mine that the optimal Helstrom measurement that Bob could
perform to best guess Alice’s committed bit �here, x� gives
him the correct answer with probability 
2. From this, we
would “normally” conclude that Bob’s maximal bias is

2−1 /2.

As we have seen, however, this approach is not appropri-
ate in our context because it does not take into account the
eventual possibility for Bob to increase his bias by making
conclusive or maximum confidence quantum measurements
on the state sent by Alice at step 1 so that he could ask her to
restart the protocol whenever he is not sufficiently satisfied
with the probability that his guess of x be correct.

Fortunately, the analysis of Bob’s optimal cheating strat-
egy is straightforward in this case. For either value of

x� �0,1� that Alice may have chosen in step 1, Eq. �6� shows
the mixed state �x that Bob would receive from her. The key
observation is that, algebraically speaking, �0=
2�0	
0�
+�2�1	
1� and �1=�2�0	
0�+
2�1	
1�. It follows that, from a
cheating Bob’s perspective, whose only concern is in guess-
ing x as best as possible �including the possibility of asking
Alice to restart the protocol if he is not satisfied with his own
confidence in his guess�, this is strictly identical to an alter-
native scenario in which Alice would have sent �0	 with
probability 
2 or �1	 with probability �2 in case x=0, and
vice versa in case x=1. In other words, this is exactly as if
Alice had communicated her choice of x to Bob as the purely
classical signal �x	 through a binary symmetric channel with
error probability �2.

Seen this way, there is nothing quantum about the situa-
tion. Hence, a complete measurement in the computational
basis of the state received by Alice provides Bob with an
optimal cheating strategy since it yields all the information
classically available in the “quantum” signal. Not surpris-
ingly, this is indeed precisely Helstrom’s measurement. In
particular, the outcome of this measurement does not give
Bob any indication on whether or not it would be to his
advantage to ask Alice to restart the protocol. �Note that it is
not simply because Alice’s signal can be thought of as
classical that there cannot be a conclusive or a maximum
confidence measurement; in particular, erasure channels
provide the classical equivalent to quantum conclusive
measurements—but binary symmetric channels do not.�

To summarize, Bob’s optimal cheating strategy is to mea-
sure Alice’s qubit in the computational basis in order to learn
the value of x with error probability �2. This allows him to
choose b appropriately and obtain his desired outcome
x � b with complementary probability 
2, thus enjoying his
optimal bias �B=
2−1 /2.

C. Fair protocol

In this subsection, we find the value of 
 so that the bias
either player can achieve by cheating is the same. We simply
need to fulfill the condition

�A = �B,

which for our protocol amounts to

1 + 2
�

4
= 
2 −

1

2
,

subject to 
2+�2=1. Solving this system yields


 = �0.9 and � = �0.1,

as illustrated in Fig. 1. These values correspond to

�A = �B = 0.4,

which defines a fair loss-tolerant quantum coin-flipping pro-
tocol whose bias is 0.4. In other words, either player can
obtain a desired outcome with probability 90% by using an
optimal cheating strategy, provided of course the other player
is honest. But what if they both try to cheat?
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D. Cunning games

An interesting phenomenon is illustrated if we take the
unusual step of considering the case when both Alice and
Bob cheat. The most obvious example of double cheating
occurs when Alice is convinced that Bob is so greedy that he
will try his best to control the coin flip. In this case, Alice can
send an honest quantum state in step 1. To maximize his
chances of guessing Alice’s choice of x, Bob measures the
state in the computational basis, as we have seen. This allows
him to send Alice a value of b that produces his desired
outcome with probability 90% �assuming they use the fair
version of the protocol�. But at the same time, he has lost his
ability to verify the honesty of Alice since he did not mea-
sure her qubit in a legitimate basis. Suspecting this, Alice is
free to claim whatever suits her best at step 4, probably lying
about x, and Bob cannot look her in the face and call her a
cheater.

For an amusing variation on this theme, consider what
happens if both parties attempt to perform their optimal
cheating strategies simultaneously. In this case, Alice sends
either �+	 or �−	, which Bob measures in basis ��0	 , �1	�.
When Bob attempts influencing the coin flip by choosing b
as a function of his measurement outcome, little does he
suspect that his choice is in fact totally random: ironically,
Bob follows the honest protocol at step 3.

For a more subtle example, consider a scenario according
to which Bob is Alice’s young son. They agree to flip a
quantum coin to determine who will decide on the film to be
seen tonight: Alice will have the choice if the outcome is 1
and Bob if it is 0. Alice knows that her little rascal will do his
best to cheat and win but also that he will follow step 2
properly �rather than measuring in the computational basis�
because he will not want to relinquish his possibility to catch
his mother cheating at verification step 5—or so he thinks.
Hence, Bob’s cheating will consist in sending b= x̂ at step 3
instead of choosing b at random. After a calculation, we find
that this gives him probability 82% that b=x, thus producing
his winning outcome x � b=0.

Unbeknownst to Bob, however, his mother wants him to
win, but she does not wish him to know this for fear of
undermining her authority. Assuming she knows her son as
well as she thinks, she proceeds as follows. At step 1, she
honestly sends some random state ��a,x	. When she receives
Bob’s choice of b at step 3, there are two possibilities. If
b=x, she can relax and continue honestly since Bob wins,
according to her wish. On the other hand, if b�x, then Alice
can deduce that Bob used the wrong basis in his measure-
ment: â�a. This allows her to “reveal” a together with any
x̃ of her choice at step 4 since she knows �or suspects� that
Bob will be unable to call her a cheater. According to our
story, she chooses x̃=b to make Bob happy.

Admittedly, the above tale is unlikely at best. Neverthe-
less, it serves the purpose of demonstrating the importance in
our proof of security against Alice �Sec. VI A� that Bob’s bit
b be chosen randomly despite the fact that he has significant
information about Alice’s x after an honest measurement at
step 2. Indeed, our proof relied in a crucial way on the fact
that Alice would have no information on the measurement
basis used by Bob. Our tale shows how wrong and damaging

it would have been had the protocol asked an honest Bob to
send a b correlated to his measurement outcome.

E. Side channels

We have seen that Bob could exploit the loss of quantum
information to cheat in previous protocols, whereas our pro-
tocol is loss tolerant. Nevertheless, our protocol could be-
come susceptible to loss if it were implemented with insuf-
ficient care. A side channel is any source of information that
Bob could exploit about the quantum state sent by Alice
above and beyond its theoretical definition as a pure qubit.
For example, the protocol would be obviously insecure if the
apparatus used by Alice to generate her quantum states pro-
duced each of the four legitimate states as photons of signifi-
cantly different wavelengths or spatial position. These issues
have been studied extensively in the context of quantum key
distribution. See Ref. �31� for a compelling example of suc-
cessful hacking of a commercially available apparatus.

An interesting example of side channel would occur in a
careless implementation of our quantum coin-flipping proto-
col if Alice used an attenuated laser pulse to generate her
states, as is done in most current implementations of quan-
tum key distribution. The problem stems from the fact that
one can distinguish conclusively between �0 and �1 �Eq. �6��
when a pulse consists of two �or more� identical ATVY
states. For this, it suffices for Bob to measure one photon in
basis B0� and the other in basis B1� �Eq. �5��. If the two mea-
surements produce the same outcome, this is necessarily the
correct bit x encoded by Alice since one of the measurement
has been performed in the correct basis. This occurs with
probability �
2−�2�2. With the fair states, Bob’s probability
of conclusive outcome is therefore a substantial 64% each
time a pulse contains two photons, which means that this
implementation of the protocol is completely insecure be-
cause Bob can request another state from Alice until this
event occurs.

To make the case of attenuated laser pulses even worse, a
perfectly natural measurement apparatus that an honest Bob
could use in the implementation of our protocol �32� would
produce such conclusive outcome with half the probability
derived above, namely, 32% of the double-photon pulses. It
follows that Bob, who started the protocol with pure inten-
tions, might find it difficult to resist sliding to the dark side
when his �honest� measurement apparatus reveals with cer-
tainty the value of x chosen by Alice. A practical solution to
this problem is for Alice to use a source of entangled pho-
tons, as discussed in Ref. �32�.

VII. CONCLUSION

Quantum coin flipping is a cryptographic primitive that
has been studied extensively. Several approaches have been
considered since the very beginnings of quantum cryptogra-
phy. However, previous protocols are either totally insecure
�4� or they are highly sensitive to �if not completely broken
by� technologically unavoidably losses of quantum informa-
tion on the channel between the players or in their storage
and detection apparatus �8–11,13,16�. In this paper, we intro-
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duced a loss-tolerant quantum coin-flipping protocol, which
means that it is completely impervious to such losses. We
proved that our protocol is fair in the sense that both Alice
and Bob have an optimal cheating strategy capable of pro-
ducing their desired outcome with 90% probability of suc-
cess �assuming the other player is honest� and we provided
those strategies explicitly.

Even though our protocol can tolerate arbitrary loss of
quantum information, it would fail in case of noise because it
would be impossible for Bob to know, in case of a mismatch
between his measurement outcome and Alice’s claimed state,
if that is due to a genuine error �on his part or Alice’s� or to
Alice’s dishonesty. Recall that this may be unavoidable; in-
deed Barrett and Massar �14� argued that single-shot quan-
tum coin-flipping protocols are problematic when both noise
and loss can occur.

If secure single-shot quantum coin-flipping protocols are
indeed impossible in the presence of noise, is there some-
thing useful that quantum coin flipping can do above and
beyond anything classically possible? We already know that
random bit-string generation �14� is not the answer given that
it can be done classically �15�. We are currently investigating
this issue �32� along a different line from that proposed in
Ref. �16�.

Another open question concerns the optimality of our pro-
tocol. Could there be a loss-tolerant quantum coin-flipping
protocol whose bias is smaller than 0.4? Alternatively, can
we prove that 0.4 is the smallest bias possible among all
loss-tolerant quantum coin-flipping protocols? Finally, we
mention that this paper was entirely concerned with the task
known as strong coin flipping. There exists a similar task,
weak coin flipping, in which only one outcome is favorable
for Alice, the other outcome being the only one favorable for
Bob. Protocols with arbitrarily small bias are known to exist

for weak coin flipping �33�, in stark contrast with Kitaev’s
lower bound for the strong case �12�. Can loss-tolerant quan-
tum weak coin-flipping protocols exist with arbitrarily small
bias? This question will be addressed in a subsequent paper.

We have recently implemented our own loss-tolerant pro-
tocol and we have successfully tested it against Alice’s and
Bob’s optimal cheating strategies. We report on those experi-
ments elsewhere �32�. This was in a sense going full circle
because it was our wish to implement Ambainis’ quantum
coin-flipping protocol that lead to the realization that we
could never succeed and thus to the development of our
protocol.
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