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Structural change in multipartite entanglement sharing: A random matrix approach
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We study the typical entanglement properties of a system comprising two independent qubit environments
interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random matrix
techniques. The entanglement measure used in our study is then averaged over many histories of randomly
prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the
ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details
of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-
environment subsystems, the entanglement-sharing structure undergoes abrupt modifications associated with a
change in the multipartite entanglement class of the overall system’s state. These results are invariant with
respect to the randomized initial state of the environments.
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Open-system dynamics involving environments compris-
ing only a finite number of elements have been proven a
valuable arena for the study of interesting physical phenom-
ena such as quantum chaos [1], quantum thermodynamics
[2], entanglement, and relaxation [3,4]. In most of these stud-
ies, the use of random matrix theory has proven technically
very advantageous in modeling random collisions between
parts of the overall system at hand. Random matrices have
been helpful in dealing with many tasks of quantum infor-
mation processing, including quantum data hiding, quantum
state distinction, superdense coding, and noise estimation
[5]. Very recently, random matrices have found extensive
application in the characterization of Markovian decoherence
[6].

In this paper, we unveil a further interesting situation
where the theory of random matrices finds fertile applica-
tions: we study the typical amount of entanglement that can
be set in a multipartite system comprising two environments
of arbitrary (finite) size and a shuttling two-level ancilla that
bridges their cross-talking (Fig. 1). Differently from Refs.
[3,4,6,7], random matrices are used in order to model the
initial preparation of the environments. These interact with
the shuttling ancilla via a Hamiltonian model having prede-
termined interaction strength. This allows us to investigate
on the typical ancilla environment as well as all-environment
degree of entanglement simply by averaging the values cor-
responding to many histories of random initial preparations.
We point out the sensitivity of the entanglement-sharing
structure on the kinematic and dynamical aspects of the in-
teractions and its independence from the random preparation
of the environments. In particular, we show that upon tuning
of the coupling Hamiltonian regulating the ancilla-
environment interactions, an abrupt transition between two
inequivalent classes of multipartite entanglement is achieved.
The dimensions of the environments and the number of in-
teractions enter preponderantly into the determination of the
entanglement-sharing structure, as we quantitatively reveal.

It is important to remark that our model does not allow for
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phenomena of thermalization or homogeneization typical of
effectively Markovian reservoirs such as those considered in
Ref. [8]. In fact, the evolution here at hand is profoundly
different from a forgetful open dynamics comprising envi-
ronments which are weakly perturbed by the interactions
with the ancilla. Memory effects are clearly seen in our
analysis, which reveals how the state of each environment is
deeply affected by its coupling to the shuttling ancilla. As we
do not impose restrictions to the strength of each interaction,
also the Born approximation does not hold in our analysis.
The remainder of this paper is organized as follows. In
Sec. I, we address the case of a single environment interact-
ing with the ancilla A. Through numerical simulations sup-
ported by a clear analytical study, we show that when the
ancilla interacts repeatedly with the same environmental qu-
bit under proper working conditions, the degree of entangle-
ment is invariant to both the random initial preparation and
dimension of the environment. Section II extends our study
to the case of two multiqubit environments mutually con-
nected by the bouncing ancilla. A repeatedly interacts (col-

FIG. 1. (Color online) Sketch of the situation considered. An
ancillary shuttle A, modeled as a two-level system, interacts with
one of the elements of two spin environments, Ej g, which are
remotely located. The initial preparation of each environment state
is random. Upon control over the details of the interactions and the
order of the collisions with A, effective manipulation of the
entanglement-sharing structure of the multipartite system compris-
ing environments and shuttle is achieved. Environment Ej is shad-
owed in order to indicate that we consider both the single-
environment and two-environment cases.
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lides, as we often say in this paper) with two specific qubits,
each belonging to the respective environment. In this case,
the amount of entanglement that can be set is a delicate
trade-off between both the dimensions of the two environ-
ments and the order of the ancilla-environment interaction.
This scenario allows us to address the main points of our
study. First, we show that, by tuning the form of the coupling
Hamiltonian, the system undergoes an entanglement-sharing
transition between two nonequivalent classes of multipartite
entanglement. As no time is explicitly involved, we refer to
this effect as a “kinematic” transition. We then study how
repeated sequential collisions are able to affect the bipartite
and tripartite entanglement in a way so as to mark a second,
more dynamical entanglement-sharing transition. Section III
summarizes our findings and opens up perspectives for fu-
ture work. Finally, an appendix is devoted to the technical
description of the way random unitaries are built in this
work.

I. SINGLE-ENVIRONMENT CASE:
PROPAEDEUTIC RESULTS

In this section, we study the single environment-ancilla
system, which serves a useful case for the discussion of a
few preparatory results that will then be reprised when the
two-environment situation is studied. Let us consider a pure,
initially separable state of an n-qubit environment E
={e;,e,,...,e,}. As a reference state for our analysis, we
assume that all the qubits are initially in their respective
ground state, so that we have

e = ®|0>k (1)

We then present an ancillary two-level system, A, with which
E interacts. The ancilla is assumed to be prepared in its
ground state |0), and it is meant to collide with a specific
element of E, which we label e. The assumption on the
preparation of A is simply matter of convenience as far as
pure states are taken. Moreover, we will show that for
dim(E)=1 any state can be considered for the ancilla, includ-
ing mixed states. The Hamiltonian modeling such an inter-
action is taken to be of the anisotropic Heisenberg form

3

Hy, = > Ji6i 4 ® Gy, (2)
i=1

where J; is an interaction strength and &; 4(,’s are the Pauli
spin operators of the A (e) qubit. We have used the labeling
61=0,, 6,=0,, and G3=4. Our task is to investigate typical
entanglement properties of the e—A system and we thus aim
at removing any dependence of our analysis from the state of
the environment E. In order to achieve this, we proceed as
follows: we prepare E in the state resulting from the appli-
cation of a random n-partite quantum gate [9] constructed

using the random unitary matrix 0, that we uniformly draw
from the normalized Haar measure of the unitary group
[10-12]. In the Appendix, we provide the technical details
for the parameterization of such random unitaries, which are
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the building block of our numerical calculations. We then let
the e—-A system evolve as Q=[A]hf]rpf]jf]}';, where (AJh
=e Haet and p=|i) ()] ®|0)4(0| and determine the associ-
ated amount of entanglement. This is then statistically aver-
aged over a large ensemble of random initial preparations so
as to remove the dependence on the initial environmental
state.

We now anticipate a quantitative result achieved via our
numerical calculations, which will then be justified in a fully
analytical way: for an isotropic Heisenberg interaction de-
fined by taking J,, .=/ in Eq. (2), the entanglement set be-
tween A and e only depends on the dimensionless interaction
time Jr and [as far as the ancilla is prepared in a pure state]
is insensitive to the dimension of E, dim(E), and the prepa-
ration of A. One may think that this result is only due to the
fact that A collides with a single environmental qubit, thus
reducing our problem to a two-qubit interaction. However,
this is definitely not the case. In fact, in general, the random
evolution within the environment, encompassed by the ran-
dom unitary matrices U,’s, creates a multipartite entangled
state. Although the ancilla A physically collides with e only,
the state of the latter is crucially affected by the
entanglement-sharing structure within E, which is highly non
trivial. In Ref. [13], for instance, it was shown that the be-
havior of bipartite entanglement shared by any two elements
of a multipartite register £ is a decreasing function of
dim(E). Intuition would then lead one to believe that the
entanglement set between the interacting qubits would also
depend on dim(E) [14]. Here, we show that such a depen-
dence is not in order. In order to understand this counterin-
tuitive behavior, we take a two-step approach. First, by
studying the case of dim(E)=1, we provide an intuition of
the reasons behind the dependence of the typical amount of
A—e entanglement on the sole interaction strength J. In this
simple and yet useful case, a random unitary operation built
according to the parameterization given in the Appendix is
represented by the 2 X2 matrix

N |
U.=e

.a< cos e’ 3)

sin ¢pe’X )

—sin ¢pe™X cos ¢pe Y

where the angles «,y, () are picked up from the range
[0,27] ([0, 7/2]) uniformly with respect to the normalized
Haar measure dU,=(87°)'sin(2¢p)d pdpdxde [11,15,16]. In
order to evaluate the entanglement set within the system, we
use Wootters’ concurrence [17]. For a general bipartite pure
or mixed state described by the density matrix @, concur-
rence is given by

4

C=max| 0, \e”)\—l - E \‘”)\_k ) 4)
k=2

where N\=\; (j=2,3,4) are the eigenvalues of p(o,
® 0,)p (0, ® 0'2) When A is prepared in its ground state and

upon evolution of the e—A system as 0= UhU pU Ul 5 We get
the density matrix
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C* () - ée‘z"”+"(¢+X)S(ZJt)S(2qb) - %e‘z”’”(¢+X)C(21t)S(2¢) 0
ieZiJ"i(¢+X>S(2Jt)S(2¢) S2()S2(2J1) - iS(4Jt)S2(d>) 0

Q = 2 2 5 (5)
- %ez"’"i(‘ﬁ+")C(2Jt)C(2¢) %S(4Jt)52(¢>) C*(2J1)S* () 0
0 0 0

with C(x)=cos(x) and S(x)=sin(x). It is then straightforward
to see that the concurrence shared by e and A after the ap-

plication of U, and Uh results in the elegant expression
C,4 = sin*(¢)|sin(4J1)|. (6)

This shows that, given a specific preparation of the environ-
ment, the only parameters governing the entanglement are ¢
and Jr. The typical value of C,, is obtained by averaging the
above expression over any possible unitary matrix U, uni-
formly drawn according to the proper Haar measure. Explic-
itly, we have to calculate

_ 1 /2 2 2 2
Cop= —f sin(2¢)d¢f dlﬁf d)(J daC,y
8773 0 0 0 0

. (7)

1
= —|sin(4J
2|sm( 7)

which may seem a special result arising from the pure-state
preparation of the ancilla. However, this is definitely not the
case, as we now demonstrate. By starting with the mixed
ancilla state

Po
Pa=

0
0 1_p0)’ pOE[()’l] (8)

and calculating the evolution of the e—A system, one gets a
density matrix that is an easy generalization of Eq. (5). By
inspecting the eigenvalues of p(o, ® 0,)p* (0, ® 0,), whose
explicit form is too lengthy to be reported here, one finds no
dependence on y, ¢ or «, in full analogy with the case of Eq.
(7). The explicit calculation of concurrence leads us to the
expression

Cou= %|[- 1+ (2po— Deos@P)Isin@in].  (9)

As [J 2cos(2¢)sin(2¢)dp=0, the average concurrence (cal-
culated using the appropriate Haar measure, as done before)
turns out to be identical to Eq. (6). The study can be straight-
forwardly generalized to the case of qubit A being prepared
in any coherent-superposition state, the only difficulty being
a slightly more complicated expression for the concurrence
corresponding to any set preparation of E. The message,
however, is rather clear: regardless of the state into which the
ancilla is prepared, the typical e—A entanglement is simply
set by the rescaled interaction time Jz. This is strictly valid

only in the statistical sense: if specific instances of prepara-
tion of both A and e are taken, such an independence does
not hold anymore. However, contrary to a naive expectation,
the typical entanglement does not vanish. As we see later,
this result is the key to understand what occurs in the two-
environment case.

We now approach the second step of our proof by study-
ing the invariance of the e—A entanglement with respect to
dim(E) when A is prepared in a pure state. For this task, we
consider a simple extension of the previous case to a two-
qubit environment E={e,,e,}, initially prepared in a state
described by

3 3
1
PE= Z(lel ® lez + E Bk,ezlel ® a-k,ez + 2 Bk,elo-k,el ® 162
k=1 k=1

3
+ 2 Xi1Oke, © 61,62)9 (10)
k=1

with y the elements of the tensor accounting for the correla-
tions between e; and e, and B, (j=1,2) the Bloch vector of
qubit e;(j=1,2) [9,18]. This form holds for both entangled
and separable two-qubit states and is thus a formal descrip-
tion of an arbitrary preparation of E. By taking e=e, (an
arbitrary choice that does not affect the generality of our
discussion), we follow the recipe for evolution described
above. This time, before calculating the e—A concurrence,
we have to trace over e,’s degrees of freedom. Through a
tedious but otherwise straightforward calculation, we see that
although the tripartite £—A density matrix depends on y and
Be, the reduced density matrix of the e—A system only de-
pends on ,6’62. By properly averaging over any possible
preparation of the environmental qubit e,, we are led to a
typical e—A entanglement that is identical to Eq. (6). These
considerations can be extended to dim(E)=n, although the
complexity of an analytical proof scales exponentially with
n. However, our numerical calculations are in perfect agree-
ment with the analytic conclusions, supporting the general
validity of the arguments used here and thus demonstrating
the claimed invariance.

The relevance of this result and its significance become
evident when one considers that random matrix theory is
widely believed to provide a good effective description of
the state of a system in thermal equilibrium at a high tem-
perature [19]. In such unfavorable conditions, the achieve-
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ment of entanglement regardless of the initial state of the
environment (i.e., its effective temperature) and its robust-
ness against the complexity of E’s structure and the initial
(pure) state of A is a remarkable feature. Our study reveals
that through the use of a suitable interaction we can reliably
create entanglement between a clean ancilla qubit and a
mixed-state environment qubit. Furthermore, the invariance
of the amount of generated entanglement with respect to the
size of the environment strongly contrasts with the intuitive
belief that C,, would have followed a monogamy constraints
similar to those responsible for the bipartite entanglement in
an n-qubit system [13,20]. Besides its intrinsic interest, such
an invariance will be proven crucial for the understanding of
the study conducted in Sec. II

II. TWO-ENVIRONMENT CASE: ENTANGLEMENT-
STRUCTURE TRANSITION

We now turn our attention to the main scenario of our
investigation, which consists of two independent and spa-
tially separated environments, Ex and E;. This time, the an-
cilla A shuttles between them, colliding always with the
same qubit of each environment. Again, we are interested in
typical values of entanglement and, in order to cancel any
dependence on the initial preparation of the environments,
we rely on a random matrix approach. We first show that, in
line with the results unveiled in Sec. I, one of the environ-
ments is entangled with A with a constant typical degree,
dependent solely on Jt. This is accompanied by a few other
results related to the details of the environment-ancilla inter-
actions. Most importantly, however, we demonstrate that the
genuine tripartite entanglement established among A and the
environmental qubits involved in the collisions is subjected
to a drastic change in its structure, depending on the shape of
the interaction Hamiltonian and the number of collisions.
The fact that these results refer to typical (i.e., statistically
averaged) quantities, make them even more intriguing. Not
only multipartite entanglement can be generated: through
suitable interaction engineering we can actually efficiently
dictate its form and nature.

A. Quantitative analysis of entanglement

Let us first consider the case where dim(E;)=1 (we label
its only element as {e;}), while E; consists of qubits
{e, ey, ... ,e,}. If A collides only once, first with E; and then
E;, we find that the degree of entanglement between the
single-qubit environment E; and the ancilla remains constant
against the number of qubits belonging to E, as shown in
Fig. 2(a). We can easily understand this in light of the results
discussed in the previous Section, where we have shown that
the typical entanglement between A and a single-qubit envi-
ronment does not depend on the input state of the ancilla. As
the collision with Ey, followed by the trace over its degrees
of freedom, simply prepares A in a mixed state, the invari-
ance of EELA against dim(Ey) is clear: quantitatively, EELA is
identical to Eq. (6). On the other hand, by calling ey the Eg
qubit with which A collides, we have that C, A< CeLA, regard-
less of dim(Ey), a behavior that can be rigorously explained
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FIG. 2. (Color online) Typical concurrence between the ancilla
A and the environment qubits e; z for dim(E;)=1 and dim(Eg)
=1,...,4. In panel (a), A interacts first with ez and then with ¢;, for
a rescaled interaction time Jr=1 (see inset). The blue dots (red
squares) show the average concurrence between A and ey (e7). In
agreement with the analytic formula in Eq. (6), EGLA=|sin 4//2
=(.378. (b) Same as in panel (a), but with a reversed order of
interactions.

as follows. For the sake of simplicity, we consider the sim-
plest case where both the environments consist of a single
qubit. By means of the decomposition in Eq. (3), we prepare
a general (separable) initial state of e and e; by specifying
two sets of parameters {¢;, #;, x;, @;} (j=L,R). The ancilla is
then let interact with ey and e;, in this order. The degrees of
freedom of ¢; are thus traced out so as to ascertain the con-
currence between A and ep. This turns out to be

Copp = |sin?(pg)cos(2Jt)sin(4J1)|. (11)

There is no dependence on the state of ¢; in this expression,
although the second collision has occurred and no average
has yet been taken. However, this is quite clear in virtue of
the fact that we are considering only a single interaction with
each environment. After the collision with e;, there is no way
for A to convey to ep information on the state of the left
qubit. In fact, if we instead trace out ey, we find precisely Eq.
(7). Looking for typical values, i.e., calculating averages
over the tensor product of any possible unitary matrix by
using the appropriate Haar measure introduced before, we
get Cop= |cos(2J1)sin(4J1)|/2<C, 4V Jt. Quantitatively, for
Jt=1, the typical ex—A concurrence is =0.157, which per-
fectly agrees with the independent numerical estimate pro-
vided in Fig. 2(a) (dashed line). The ordering relation involv-
ing C, A and C, A is preserved as the number of qubits in Eg
grows, as shown in Fig. 2(a), where the difference C, A
-C, LA appear to increase with dim(Ey). This is a clear effect
of the profound differences, stemming from the possibility to
achieve multipartite entanglement, between the present situ-
ation and the single-environment case addressed in Sec. I.
For dim(Eg) > 1, one cannot exclude that the random unitar-
ies taken in order to prepare Ey set some genuine multipartite
entanglement among its elements. Consequently, the en-
tanglement set by the dynamics studied here and shared by
e and A would be bound to follow many-body entanglement
monogamy relations [20], which lower its amount as Eg
grows in dimension. This is also the reason behind the be-
havior shown in Fig. 2(b), where by inverting the order of
the ancilla-environment interactions we lose the invariance
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of the e;—A concurrence, an effect occurring for precisely
the same reasons explained above. On the other hand, as
before, the second interaction always sets the lowest degree
of entanglement. It is worth remarking that Fig. 2 is the
result of an independent numerical calculation that, although
follows the formal recipe highlighted here, does not rely on
the analytic result in Eq. (11).

B. Entanglement-Structure Transitions

The explicit introduction of multipartite entanglement in
the process described until now directs us toward the main
point of this study. Through the proper tuning of the dynami-
cal and kinematic properties of the system, we shall demon-
strate the ability to manipulate the sharing structure of the
typical multipartite entanglement set among A, ¢;, and ep.
For the remaining part of our study, we find it computation-
ally more convenient to abandon concurrence for negativity
[21,22]. This is an entanglement measure devised from the
Peres-Horodecki criterion on positivity of partial transposi-
tion (PPT). It is a necessary and sufficient condition for 2
X2, 2X3, and % X systems, and is a sufficient condition
for an arbitrary system. For a bipartite case, we define the
negativity as [22]

Nbi = max[O,— 2)\neg] ’ (12)

where A, is the single negative eigenvalue arising after the
partial transposition of the density matrix. The convenience
in using negativity stems for its straightforward generaliza-
tion to the multipartite scenario: we simply have to consider
all the possible bipartite splits in a given system and the
geometric average of the negativity associated with any of
them. This construction ensures that our measure remains an
entanglement monotone [23]. As we are mostly interested in
at most three qubits, we concentrate on tripartite negativity,
which in our case reads

Mriz [NAleLER'/\/’ELlAER:;'/\/‘GRIAEL]1/37 (13)

where A|e; e, for instance, indicates the bipartition of qubit
A against the group of qubits e; and ep.

In light of the analysis performed in Sec. II A, one can
clearly conclude that, if tripartite entanglement is set within
the e; —A— ey system, this has to be W class [24]. In fact, we
find nonzero entanglement in any bipartition obtained by
tracing out one of the components of the overall system. In
Fig. 2, we have shown the entanglement between the ancilla
and each environmental qubit involved in the collisions.
Moreover, we have also checked that the e; —ep bipartition
turns out to be inseparable in each of the situations addressed
there. This is a property not shared by the Greenberger-
Horne-Zeilinger (GHZ) class [25], where, by tracing one qu-
bit out of a tripartite register, one gets separable reduced
states. In order to check that W-class entanglement is indeed
in order here, we have utilized the witness [26,27]

A3
W= Zl - |GHZ)(GHZ|, (14)

with [GHZ)=(|000)+|111))/2 a three-qubit GHZ state and
3/4 the squared maximum overlap between a GHZ state and
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a W-class state. Equation (14) is a valid GHZ witness: a

negative expectation value of 4% successfully reveals GHZ-
class entanglement. On the other hand, this construction
guarantees that a positive expectation value is achieved for
W-class states [26]. By generating a sample of 1000 random
environmental states and taking dim(Eg) up to 4 (so as to
match the situation depicted in Fig. 2), we have numerically
verified that, as far as an isotropic Heisenberg model is used

to model the collisions, (VAV> >0 for every single preparation
of the environments and regardless of dim(Ey). The calcula-
tion has been performed by maximizing the overlap between
the sample states and |GHZ) over the tensor product of three
local rotations, each acting on A, e;, and ey, respectively.
Moreover, the tripartite negativity defined in Eq. (13) turns
out to be nonzero for any initial preparation of our statistical
sample, and so is the typical value obtained by averaging
over it, which guarantees genuine tripartite entangled nature
of the e; —A—ey, states with strong evidence of their W-class
nature.

The task of this section is to show that the typical
entanglement-sharing structure of such tripartite state can be
abruptly modified by biasing the coupling Hamiltonian to-
ward a specific spin nonpreserving model. We thus recast Eq.
(2) into (j=L,R)

3
Hb7j=J|:0'1,A®0'1,ej+)\E U'i,A®<Ti,ej:|, (15)
i=2

where we have clearly taken J,3=NJ(\ € R) and J,;=J. The
reasons behind this choice are best explained by means of
the following analysis. For the sake of argument, we focus
on single-qubit environments and take qubits A, ¢;, and e as
prepared in their respective ground state. By considering an
e;—A collision followed by an ex—A one, both ruled by Eq.
(15), we get

|t//)eLAeR = e 2N cos(J1 — )\Jt)|0)eL[cos(Jt - \J1)|00)
— i sin(Jt = NJp)|11)] e, =~ Sin(Jt = NJ1)| .,
® [sin(ANJt + J1)|01) — i cos(NJz + Jt)|10>]AeR.
(16)

Despite its innocence, the entanglement-sharing proper-
ties of Eq. (16) are quite interesting. In Fig. 3, we show the
bipartite and tripartite negativity against the anisotropy pa-
rameter \, for Jr=1 (arbitrary choice). The behavior of the
bipartite entanglement is strongly dependent on the choice of

N. In particular, at A=0, which leaves us with I:Ib!_]:JO'l,A
® Tl only two out of three possible bipartitions are insepa-
rable: the e; —ey subsystem remains separable regardless of
the choice for Jt. This is easily checked by studying the
partial transposed of the state resulting from |l[f>eLAeR upon
trace over A. And yet, the tripartite negativity N is rather
large at A=0 (cf. Fig. 3, dashed line), demonstrating that we
have a tripartite entangled state that, in evident contrast with
the results of the previous Section, is out of the W class [28].
This qualitative feature is typical as it survives to a statistical
average over random initial preparations of the environ-
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FIG. 3. (Color online) Bipartite and tripartite negativity result-
ing from a bilocal interaction model ruled by Eq. (15), for single-
qubit environments and |OOO>€LAER initial state. The full disappear-
ance of entanglement at A=1 occurs in virtue of this specific choice
of initial state. At A=0 we have a point of entanglement-sharing
change. Other three such points are visible within the shown range
of \’s.

ments, their dimensions and the number of A —e; interactions
(j=L,R). This latter feature is shown in Figs. 4, where we
plot the average bipartite and tripartite negativity against A
€[-5,5] and the number of collisions. Figure 4(c) shows
that at A=0, there is no quantum correlations shared by the
two environments, even in this statistically typical scenario.

How can we understand this result and relate it to the
claimed change in multipartite entanglement structure? We
refer to the studies conducted by Plesch and BuZek [29] on
the classification of multiparticle quantum correlations via
entangled graphs. Following their lines, we represent a mul-
tiqubit system with an inherent structure of shared entangle-
ment as a connected graph. Each vertex embodies a qubit
while a bond connecting two vertices represents bipartite en-
tanglement shared by the components of the corresponding
reduced state. For three qubits, four possible classes are iden-
tified, as shown in Fig. 5. In particular, Eq. (16), as well as
any of the states resulting from the application of random
unitaries over the chosen reference state |OOO)€LAER, have a
sharing structure corresponding to the graph in Fig. 5(c),

Niri
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FIG. 5. (Color online) Entanglement graphs for the tripartite
setting. Each sphere is a qubit, each bond represents a nonseparable
state. (a) W-class states having no separable bipartition. (b) Fully
separable and GHZ-class states, with no residual bipartite entangle-
ment. (c) Entangled class with bipartition-dependent residual en-
tanglement. If the state contains genuine tripartite entanglement, it
can be enumerated in the GHZ class. Systems e; and ep share
classical correlations. (d) Biseparable states encompassing a Bell
pair (Ref. [9]).

panel (a) being representative of W class. As it is argued in
Ref. [29], by following this graph-based classification of
multipartite entanglement, a state showing tripartite correla-
tions with the rwo-way residual entanglement structure of
panel (c) is GHZ class. Moreover, a remark is due: such a
two-way entanglement-sharing structure is possible, for pure
states, only if there exist classical correlation between the
separable qubits (e¢; and ey in our case). This property is
readily confirmed in Eq. (16) and any random element of our
statistical sample. In fact, we find that

Cope, F Qoy ® Cpps (17)

where e, denotes the reduced density matrix of qubit e; g
after (random) preparation, unitary evolution, and appropri-
ate partial traces [30]. We can thus rightfully claim for the
anticipated entanglement transition induced by the tuning of
the effective order parameter embodied by N. The naturally

FIG. 4. (Color online) (a) Tripartite negativity of the E; —A—Ejy system against A € [-5,5] and the number of collisions, for a dimen-
sionless interaction strength Jr=1 in an anisotropic Heisenberg coupling involving single-qubit environments. (b) Bipartite negativity for the
A-E; qubit pair, regardless of j=L,R. (c) Bipartite negativity for the E; — Eg system. For A=0, there is no entanglement in this bipartition,

while the ancilla-environment ones are inseparable.

062315-6



STRUCTURAL CHANGE IN MULTIPARTITE...

(© P R

PHYSICAL REVIEW A 80, 062315 (2009)

FIG. 6. (Color online) Entanglement obtained for an increasingly-sized E; environment (which comprises of up to eight qubits) and a
single-qubit Er. We set A=0 in Eq. (16) and the rescaled interaction time Jz=1. (a) Tripartite negativity. (b) Bipartite ¢; —A entanglement
against the dimension of E; and the number of collisions. (c) Same as panel (b) but for the single-qubit environment Ep.

generated W-class state arising from the use of an unbiased
Heisenberg coupling is nontrivially changed into a GHZ-type
entanglement characterized by a two-way sharing structure.
The transition is typical in the sense explained so far: given
any pure initial environmental state, we are able to create
either type of tripartite entanglement structures simply by
tuning the interaction properties.

As anticipated, we also allow the ancilla to interact mul-
tiple times, in sequence, with each environment (each time
with the very same e; x qubit). Multiple interactions, how-
ever, do not appear to have any qualitative relevance on the
generated entanglement structure, although there is an evi-
dent quantitative effect on the amount of entanglement
shared both in bipartite and tripartite sense. In Figs. 4(a) and
4(b), we plot the typical tripartite and bipartite entanglement
of the A—e; system and it is easily verified that the same
behavior is found for the A—ej system. For the whole con-
sidered range of values for A, the bipartite negativity is al-
ways nonzero, signaling that this interaction model guaran-
tees the generation of entanglement between the ancilla and
an environmental qubit even under the “minimum-control”
conditions where one is unable to stop the ancilla-
environment interactions after a desired number of colli-
sions. Moreover, as claimed above, at A=0, the e; —ep sys-
tem is indeed separable, regardless of the number of

considered collisions [see the /T/ELER=O line in Fig. 4(c)].

It is very informative to study the effects that increasing
the size of the environments has on the degree and type of
shared entanglement for A=0. We first take dim(E;) =1 and
leave Ej with a single qubit. The scheme of interaction is as
usual one, with e; being struck first. The features associated
with the resulting entanglement sharing are shown in Figs. 6.
In panel (a), we plot the tripartite negativity set within the
state of the interacting qubits after tracing out the noninter-
acting elements from the E; environment. We find that N;
decreases with the dimension of E;, which is a physically
meaningful result in light of monogamy relations that the
system should adhere to [20]. A similar behavior is found for
the bipartite e¢;—A entanglement, as shown in Fig. 6(b),
which can be easily interpreted in light of the discussion in
Sec. IT A. Finally, panel (c) shows the ex—A entanglement,
which exhibits a constant trend that is consistent with our
previous results on the isotropic Heisenberg Hamiltonian. We
omit showing the ep—e; entanglement as this is exactly null,
in these conditions. The entanglement structure remains of
the two-way GHZ class [29] although for dim(E,)=8,
NELA:O‘ This implies the disappearance of the leftmost
bond in Fig. 5(c) but no further change, as genuine tripartite
entanglement is still present in the e; —A —ep system [see Fig.

6(a)].
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FIG. 7. (Color online) (a) Negativity against the environments’ dimension dim(E;)(j=L,R) for A=0, 18 pairs of collisions, and J=1. The
dashed line shows the tripartite negativity, while the solid lines are for the entanglement within each bipartite subsystem involving only one
environment. The ep—e; entanglement is obviously zero. Each curve is rescaled with respect to its maximum value. (b): We plot the number
of qubits required in the remote environments in order to make the tripartite and bipartite negativity smaller than 10~® when a fixed number
of collisions is taken. The topmost curve is for N; while the other two curves, which are almost superimposed, show the cases associated

with '/\/‘ejA'

The above analysis covers only partially the issue of
increasing-sized environments, as it addresses an asymmetric
situation. Another interesting effect arises if Ej is let grow in
size. In fact, the rate at which bipartite quantum correlations
decrease in the case considered above suggests that, by in-
creasing dim(Ey), all residual entanglement would die off,
eventually, leaving us with a sharing structure that reminds
more of a typical GHZ state. In other words, we are looking
for a configuration allowing an additional entanglement tran-
sition from a graph of class (c) to one of class (b) in Fig. 5.
This is indeed possible. We consider dim(E;)=dim(Eg) and
investigate the behavior of both tripartite and bipartite nega-
tivity against the number of environmental qubits and the
number of interactions with the ancilla. A typical result,
achieved by considering 18 pairs of collisions, is given in
Fig. 7(a) where it is evident that, by considering larger envi-
ronments, we are able to keep the tripartite entanglement
nonzero using repeated collisions between A and the envi-
ronments. Any two-qubit quantum correlation, on the other
hand, disappears. The curves are the best-fits to the discrete
numerical values obtained via our simulations. We have
found that the functional form Ae BlME)-1] (with A, B
e R) gives an excellent agreement with the numerical re-
sults. Figure 7(b) shows the number of qubits necessary in
E;(j=R,L) in order to get negativities smaller than 1076 (ar-
bitrarily chosen) at a fixed number of collisions. It is clearly
seen that the environmental dimension required to get en-
tanglement lower than the chosen threshold is almost always
much larger for the tripartite negativity than for the bipartite
ones, thus strengthening our conclusions: we have been able
to dynamically drive the system state toward typical GHZ-
class entanglement, therefore realizing yet another sharing-
structure transition.

III. CONCLUSIONS

Using a random matrix approach, we have shown that the
typical entanglement properties of two remote qubit environ-
ments, indirectly communicating via the mediation operated
by a shuttling ancilla, can be effectively manipulated both
quantitatively and qualitatively. Bipartite as well as genu-

inely multipartite entanglement can be faithfully generated
and shown to have intriguing statistically averaged properties
of resilience against arbitrary pure preparations of the envi-
ronments, their dimension and the number of interactions
that each has with the shuttle. Interestingly, by means of a
simple tuning of the details of the interaction, we can achieve
transitions in the entanglement-sharing structure from W to
two-way GHZ class [29]. We have studied the effects that an
increasing dimension of the environments have in such tran-
sitions. The use of random matrices has emerged, here, as a
valuable tool for the agile handling of the numerical simula-
tions required for the purposes of our study, enlarging the
range of applicability of the technique to the context of mul-
tipartite entanglement generation under unfavorable condi-
tions. This is a central problem in current quantum informa-
tion and computation problems, where we hope that our
results will trigger further interest. We are currently investi-
gating strategies, developed well along the lines of this pa-
per, to study the interplay between quantum correlations and
thermodynamical properties of a multipartite system.
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APPENDIX
Construction of random unitary matrices

Here, we briefly outline the recipe to generate a random
unitary matrix. The algorithm has been extensively used in
recent works [11,12,31-33]. The parameterization is based
on the original work presented by Hurwitz in 1897 [10]. Any
unitary matrix, U,, of dimension n, can be decomposed as
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Ur=eiaE1E2...En_1, (Al)

where E; is an n X n matrix. Matrices E;’s are readily con-
structed using products of proper rotation matrices
RU)(¢b;;, . x;j), each depending on the respective set of
Euler’s angles {¢;;, ;. x;;} as follows:

E;=R" (¢, 2 x12),
= R (o, 3,00 R (hy3, 13, x13)
E3= RO sy, 434,00 R (¢hoy, 124,0),

XRID (b, 14, X10).

PHYSICAL REVIEW A 80, 062315 (2009)

En—l = R(n_l’n)((ﬁn—lm lﬂn—lnvo) X ... X R(]’n)((ﬁln’ lﬁllen)-

(A2)
The matrix elements are taken as
fc'k’)= 1 (for k#i,j),
R =ecos ¢, R =esin o,
R;f;.j) =—e¢Xsin ¢ Rl(-f}j) =e¢ ¥ cos ¢, (A3)

and zero otherwise. The angles are drawn from the ranges
O=d;j=7/2, 0=¢;=2m, O=y,;=2m, and O0=a=2m,
uniformly with respect to the corresponding (and properly
normalized) Haar measure [11].
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