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We present a fundamental concept—closed sets of correlations—for studying nonlocal correlations. We
argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent
physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of
correlations gives insight into which information-theoretic principles are genuinely different, and which are
ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is lim-
ited, and for finding constraints on physical theories beyond quantum mechanics.
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I. INTRODUCTION

Correlations are a central concept in physics. While in
classical physics correlations must satisfy two fundamental
principles—causality and locality—in quantum mechanics
�QM� the latter must be abandoned. This remarkable feature,
known as quantum nonlocality, is at the heart of quantum
information processing and allows tasks to be performed
which would be impossible classically, such as secure cryp-
tography �1� and the reduction in communication complexity
�2�.

However, nonlocal correlations stronger than those al-
lowed by QM can also respect relativistic causality �3�.
These nonsignaling postquantum correlations have been sub-
ject to intensive research �4–17�, and were shown to have
strong information-theoretic capabilities, allowing for pow-
erful tasks—impossible in QM—to be peformed. For in-
stance, certain postquantum correlations collapse communi-
cation complexity �11–13�; allow for better-than-classical
“nonlocal computation” �14�; and violate “information cau-
sality” �15�.

Here we present a fundamental concept—closed sets of
correlations—underlying the structure of nonlocal correla-
tions. We argue that physically significant sets of correlations
must be closed under a natural class of operations.

The immediate relevance of this concept is twofold. First,
we note that all information-theoretic principles correspond
to closed sets of correlations. For instance, the set of corre-
lations that do not make communication complexity trivial is
closed. If two different information-theoretic principles turn
out to correspond to the same closed set then they are in fact
equivalent as far as the resources needed to implement them
are concerned. Therefore, studying the closure of sets of cor-
relations gives insight into which information-theoretic prin-
ciples are genuinely different, and which are ultimately
equivalent. This also leads one to ask: is there an infinite
number of closed sets or only finitely many? If it was found
that only a small number of closed sets can exist, then most
information-theoretic principles would turn out to be the
same.

More importantly, correlations allowed by any self-
consistent physical theory must form a closed set. For in-

stance in classical mechanics, it is impossible to generate
nonlocal correlations from local ones. Similarly, postquan-
tum correlations cannot be generated within the framework
of QM. From this perspective, the concept of closure gives
insight into why quantum nonlocality is limited, and pro-
vides a platform for finding physical theories beyond QM.

We will work here in the formalism of nonsignaling boxes
�4�. The natural set of operations we consider correspond to
wirings �6,16�, which can be thought of as classical circuitry
used to locally connect several nonsignaling boxes in order
to obtain a new box. A set of boxes R is said to be closed
under wirings when all boxes obtainable by wiring boxes in
R are also contained in R. Interestingly, we shall see that
finding closed sets is a nontrivial task.

II. PRELIMINARIES

Let us recall that bipartite nonsignaling correlations can
be conveniently viewed in terms of black boxes shared be-
tween two parties, Alice and Bob. Alice and Bob input vari-
ables x and y at their ends of the box, respectively, and get
outputs a and b. The behavior of a given box is fully de-
scribed by a set of joint probabilities P�ab �xy�. We focus on
the case of binary inputs and outputs, i.e., a ,b ,x ,y� �0,1�.
In this case, the full set NS of nonsignaling boxes forms an
eight-dimensional polytope �4� which has 24 vertices: 8 ex-
tremal nonlocal boxes and 16 local deterministic boxes. The
extremal nonlocal correlations have the form

PNL
����ab�xy� = �1

2
if a � b = xy � �x � �y � �

0 otherwise
	 �1�

where � ,� ,�� �0,1�, and the canonical Popescu-Rohrlich
�PR� �3,4� box corresponds to PR= PNL

000. Similarly, the local
deterministic boxes are given by

PL
�����ab�xy� = 
1 if a = �x � � b = �y � �

0 otherwise
� �2�

The set L of local boxes forms a subpolytope of the full
nonsignaling polytope. NS has 16 facets �positivity facets�,
and L has 8 additional facets, which correspond to the 8
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symmetries of the Clauser-Horne-Shimony-Holt �CHSH�
Bell inequality �18�,

CHSH � E00 + E01 + E10 − E11 � 2, �3�

where Exy � P�a=b �xy�− P�a�b �xy� are the correlators.
The set of quantum boxes Q, i.e., correlations obtainable by
performing local measurements on a quantum state satisfies
L�Q�NS. Quantum nonlocality is limited by Tsirelson’s
bound �19�, given by CHSH�BQ=2
2. Q is a convex body,
though not a polytope; it has a curved boundary for which no
closed form is known �20�.

III. WIRINGS

Suppose that Alice and Bob share N nonsignaling boxes.
Since each box has binary inputs and outputs, Alice and Bob
can “wire” the boxes together using classical circuitry to pro-
duce a new binary-input/binary-output box �see Fig. 1�. The
inputs and outputs of the jth box are denoted xj ,yj ,aj ,bj.
Since the inputs of the jth box can depend on the outputs of
boxes 1 , . . . , j−1, a wiring is fully determined by specifying
Boolean functions for the inputs to each box,
xj�x ,a1 , . . . ,aj−1� and yk�y ,b1 , . . . ,bk−1�, as well as Boolean
functions for the final output bits, a�x ,a1 , . . . ,aN� and
b�y ,b1 , . . . ,bN�. Since the boxes are nonsignaling, when Al-
ice inputs a bit in a given box, she gets an output immedi-
ately, even if Bob is yet to input a bit in his end of the box.
This allows for interesting situations, in which Alice’s and
Bob’s chronological orderings of their boxes are different.

Distillation wirings. Starting from several copies of a
nonlocal box with a given CHSH value, it is possible—via
wirings—to obtain a final box which has a larger CHSH
value. This is known as nonlocality distillation, recently dis-
covered in �21�, and improved in �13�. Here we present an
alternative two-box distillation protocol. Alice proceeds as
follows: x1=x, x2=x � a1 � 1, and a=a1 � a2 � 1; and Bob:
y1=y, y2=yb1, and b=b1 � b2 � 1. This protocol can distill
efficiently a class of boxes we term “correlated nonlocal
boxes”

PNL
c ��� = � PNL

000 + �1 − ��PL
0101, �4�

where 0���1. These boxes have CHSH value 2�1+��. By
applying the above protocol to two copies of a box PNL

c ���,
one obtains a box PNL

c ����, with ��=2�−�2. Since ����, the
protocol distills nonlocality �as measured by the CHSH

value�. In the asymptotic limit, all boxes �Eq. �4�� are dis-
tilled to the maximally nonlocal PR box.

AND wirings. Another interesting class of wirings in-
volves Alice and Bob inputting x and y respectively into each
of their N boxes, and computing the logical AND of their
outputs; i.e., xj =x for j� �1, . . . ,N� and a=� j=1

N aj; similarly
for Bob. If Alice and Bob share N copies of an initial box
P�ab �xy�, the final box P��ab �xy� obtained from such a wir-
ing is easily characterized �see Appendix A�. AND wirings
can be used for distillation, but will primarily be useful for
showing that certain sets of correlations are not closed.

Discrete maps. When studying the closure of sets of cor-
relations, it is essential to understand how boxes can be
“moved around” in the nonsignaling polytope using wirings.
A useful approach �13� is to look at discrete maps T which
take multiple copies of an initial box Bi—via wirings—to a
final box Bf, i.e., T�Bi�=Bf. Then, all standard techniques for
studying discrete maps can be used. The asymptotic behavior
is characterized by the fixed points of the map, the stability
of which can be checked by computing the eigenvalues of
the Jacobian. Moreover, plotting the map’s vector field pro-
vides some intuition about the action of a wiring protocol in
a given section of the nonsignaling polytope. Figure 2 shows
the vector fields for both wirings �distillation, AND� described
above.

IV. CLOSURE UNDER WIRINGS

Consider a theory where Alice and Bob have access to
boxes from some set R. Given that, by wiring multiple boxes
together, they can produce a new nonsignaling box, it is
natural to ask whether the resultant box is also in R. We will
call a set of correlations R closed under wirings if it is
impossible to generate, by wiring together boxes contained
in R, a box B that is not contained in R. We stress that our
notion of closure is different from �and generally unrelated
to� the set-theoretic notion of closure. In the following, the
term “closed” will be used exclusively as a shorthand for
“closed under wirings.” We define the closure under wirings
of R to be the smallest closed set C such that R�C. The sets
L, Q and NS are all examples of closed sets. Note that L is
the smallest possible set of correlations closed under wirings;
indeed all deterministic boxes can always be generated using
a trivial �deterministic� wiring, which implies that any closed
set must include L.

Studying the relation between different closed sets leads
to further interesting concepts, such as an irreversibility in
the flow of boxes. Consider two closed sets C and C� such

that C�C�. Then the set of boxes R̃�C� /C �i.e., boxes in C�
but not in C� forms an island, in the sense that when a box in

R̃ is mapped out of R̃, it can never be mapped back into R̃
again. Thus the boundary between C and R̃ acts like a hori-
zon, restricting the flow of boxes. The set NS /Q is an ex-
ample of an island.

V. CASE STUDIES

It is interesting to ask whether there exist other sets which
are closed under wirings and, if so, what their structure is.

FIG. 1. Wiring several boxes together to produce a new box.
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Given that both L �no nonlocality� and NS �maximal nonlo-
cality� form closed polytopes, it is tempting to look for
closed polytopes which have limited nonlocality. We now
attempt to construct such a polytope, and show that the most
natural candidates fail. Then, we move to convex sets which
are not polytopes; in particular we consider the sets of Uffink
�22� and Pitowsky �23�. Again, we show that neither of these
two sets are closed under wirings.

A. Limiting the CHSH value

The simplest way of constructing a nonsignaling set with
limited nonlocality is to bound the CHSH value. That is, we
consider NS and then discard all boxes with a CHSH value
larger than some cutoff S, where 2�S�4 �see Fig. 3�a��.
Formally, the set of boxes in such a theory forms a restricted
polytope Ra

S; its facets are the 16 positivity facets plus 8
CHSH-like facets of the form CHSH�S. Its vertices are the
16 local deterministic boxes plus 64 nonlocal vertices given
by

PNL
���,	
���� = �PNL

��� + �1 − ��PL
	
��, �5�

with �= �	 � ���� � �� � 
 � �; the indices � ,� ,� run over
all symmetries of the PR box, and the indices 	 ,
 ,� run

over the eight deterministic boxes sitting on the CHSH facet
below each PR box. Note that �= S

2 −1.
However, Ra

S is not closed under wirings for any value of
2�S�4, since any box lying on a one-dimensional edge of
NS /L �of form �5�� can be distilled arbitrarily close to a PR
box using our distillation protocol; note that for each edge a
suitable symmetry of the protocol must be used. Thus, the
closure of Ra

S is NS. More generally this implies that a set of
boxes—if it is to be closed under wirings—cannot contain
any box lying on a one-dimensional edge of NS /L.

B. Making the PR boxes noisy

Given that NS consists of local and nonlocal vertices,
another natural way of defining a polytope with limited non-
locality is to keep all 16 local vertices, and modify the non-
local vertices by adding isotropic �white� noise �see Fig.
3�b��. In other words, the extremal nonlocal vertices of such
a polytope have the form

PNL
������ = �PNL

��� + �1 − ��1 , �6�

where 1 is the maximally mixed box. We denote this re-
stricted polytope Rb

S. In this case nonlocality is limited by
S=4�. Note that Rb

S does not contain any nonlocal boxes
lying on a one-dimensional edge of NS /L.

It is clear that such a polytope can �potentially� be closed
only if isotropic boxes cannot be distilled. So far no distilla-
tion protocol has been found for isotropic boxes. For quan-
tum realizable isotropic boxes �with 4��BQ� severe restric-
tions have been proven in �24�, while �25� proved that there
is no two-copy distillation protocol for isotropic boxes.

However, it can be shown that the sets Rb
S are not closed

using an alternative method. Using the software LRS �30� we
found all the facets of Rb

S, of which there are 80: 64 new
facets in addition to the original 16 positivity facets. One
particular new facet is given by

I�q� � CH + qP�11�11� 
 0, �7�

where CH=1− P�11 �00�− P�00 �10�− P�00 �01�+ P�00 �11� is
the Clauser-Horne �26� expression �here equivalent to

FIG. 2. �Color online� Vector fields for �a� the distillation wiring, �b� the �2-box� AND wiring, in certain two-dimensional �2D� sections
of the nonsignaling polytope. Clearly, correlated nonlocal boxes �Eq. �4�� are distilled in �a�. The AND wiring �b� maps isotropic boxes �Eq.
�6�� above their “chord” �red line�; thus restricted polytopes in case study b� �see text� are not closed. This effect can only be seen in specific
projections of the polytope.

FIG. 3. �Color online� Theories with limited nonlocality: �a�
limiting the CHSH value by a cutoff; �b� making the extremal PR
boxes noisy. Neither set is closed since—as the arrows indicate—
boxes which lie inside each set can be mapped to boxes which lie
outside. Note that these pictures are illustrative; the actual polytopes
are eight-dimensional.
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CHSH�, and q= 2�2�−1�
1−� . Note that Eq. �7� is a “tilted” CH

inequality; I�q=0�=CH, while I�q→�� is a positivity facet.
It turns out that one can generate a box violating inequal-

ity �Eq. �7�� by applying the AND wiring to N copies of an
isotropic box PNL

000���. The final box �which does not have a
greater CHSH value than the original boxes� is found to
violate Eq. �7� whenever

21−N − 3z+
N + �1 + q�z−

N � 0, �8�

where z�= 1��
4 . For N=2 �best case�, Eq. �7� is satisfied for

2
3 ���1. Thus all restricted polytopes Rb

S for which
8
3 �S�4 are not closed; moreover a two-box AND wiring is
sufficient to generate a box lying outside the original set. We
exhaustively checked that Rb

S is closed under all two-box
wirings for S�

8
3 �BQ. However, we conjecture that these

sets are not closed under more general wirings, but were not
able to prove it.

Coming back to the sets Rb
S with 8

3 �S�4, we have
shown explicitly how—via a two-box AND wiring—to gen-
erate a particular box that lies outside Rb

S. By symmetry, it is
possible to generate 64 new boxes which each violate one of
the new facets. We can now consider a new polytope, Rb

S�2�,
obtained by taking the convex hull of Rb

S and the 64 newly
generated boxes. It is natural to ask whether this larger set
Rb

S�2� is closed under wirings or not. If not, one can again
form a new polytope Rb

S�3� by adding the newly generated
vertices and so on. Even under this very restricted class of
wirings �AND wirings applied to N isotropic boxes� we find
that this procedure can be iterated multiple times �the num-
ber of times increases with S�, which leads us to conjecture
that the closure of Rb

S has a boundary with curved sections
�see Appendix A�.

C. Uffink and Pitowsky sets

In studying quantum nonlocality, different subsets of NS
have been introduced, such as Uffink’s set �22�, characterized
by the quadratic form:

�E00 + E10�2 + �E01 − E11�2 � 4. �9�

Using the distillation protocol presented above, it can be
shown that Uffink’s set is not closed �see Appendix B�; this
analysis also applies to the convex set of Pitowsky �23�.

Notably, Uffink’s set emerges �27� from the principle of
information causality �IC� �15�; that is, any box violating
inequality �Eq. �9�� also violates IC. Our result implies that
the set of correlations satisfying IC can be at most the largest
closed subset of Uffink’s set. Furthermore, we see that nei-
ther set �Uffink or Pitowsky� can correspond to any
information-theoretic principle or task.

VI. DISCUSSION

We presented the concept of closed sets of correlations.
We argued that studying these sets is of fundamental impor-
tance, since all information-theoretic principles, as well as all
self-consistent physical theories �31�, correspond to closed
sets of correlations.

We investigated closure under a natural class of opera-
tions called wirings, and showed that identifying closed sets
is a nontrivial problem. Our results also illustrate the rel-
evance of closure to information-theoretic tasks. By showing
that the convex set of Uffink is not closed, we have strength-
ened the constraints on the set of correlations satisfying in-
formation causality.

Moreover these ideas provide insight into the origin of the
boundary between quantum and postquantum correlations.
For instance, if QM was the only closed set �other than the
full set of nonlocal correlations� containing nonlocal correla-
tions, then this would be enough to single out the quantum
set Q. However, this turns out not to be the case. Recently,
Navascues and Wunderlich �28� have shown that the set Q1

�20� �an approximation to Q� is also closed under wirings.
Nonlocality in Q1 is limited by Tsirelson’s bound, but Q1

strictly contains Q. Nevertheless it could still be that Q is the
smallest closed set with nonlocality limited by Tsirelson’s
bound. Going one step further, Q could in fact be the small-
est possible closed set featuring nonlocality. To test these
ideas it would be interesting to see if there exist closed sets
for which nonlocality is limited by a different value than
Tsirelson’s bound; so far, Q and Q1 are the only sets with
limited nonlocality known to be closed under wirings.

Another interesting issue is understanding the structure of
closed sets. Our findings lead us to conjecture that all closed
sets of correlations with limited nonlocality have a curved
boundary. If true, this would imply that the local set and the
nonsignaling set are the only closed sets that form a poly-
tope.

We also note that wirings are a particular subclass of the
most general operations that can be performed on nonsignal-
ing boxes. Closure under more general operations, such as
couplers �17,29� the analog of quantum joint measurements,
may give further restrictions on the class of closed sets.

Finally, from a much more general perspective, the con-
cept of closure may also give us a glimpse of what lies be-
yond QM. Indeed it is plausible that in the future QM will be
superseded by a more general theory. Though defining ex-
plicitly such a theory is highly challenging, consistency re-
quires this theory to correspond to a closed set of correla-
tions.
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APPENDIX A

AND wirings applied to N boxes. If Alice and Bob share N
copies of an initial box P�ab �xy�, the final box P��ab �xy�
obtained from applying the AND wiring is given by

P��11�xy� = P�11�xy�N,
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P��01�xy� = �P�01�xy� + P�11�xy��N − P�11�xy�N,

P��10�xy� = �P�10�xy� + P�11�xy��N − P�11�xy�N,

P��00�xy� = 1 − P��01�xy� − P��10�xy� − P��11�xy� .

As mentioned in the main text, the AND protocol can also
be used to distill nonlocality. Figure 4 shows a comparison of
all known two-box distillation protocols. We consider a sec-
tion of the nonsignaling polytope, given by boxes of the form

PNL
c ��,�� = � PNL

000 + �PL
0101 + �1 − � − ��1 . �A1�

As an aside, note that the distillation protocol that we
presented above slightly improves on the protocol of �13� for
noisy correlated nonlocal boxes, i.e., for boxes PNL

c �� ,��
with �+��1. For correlated nonlocal boxes ��+�=1�, i.e.,
on the edge of the polytope, both protocols perform equally.

AND protocol and case study b. Let us consider again the
closure of the restricted polytope Rb

S. Starting from N copies
of an isotropic box �6� characterized by �, it can be checked
that the final box violates the facet I�q� of Rb

S whenever

1

2N−1 − 3�1 + �

4
�N

+ �1 + q��1 − �

4
�N

� 0. �A2�

This leads to a relation between the number of new boxes N
that can be generated outside Rb

S and the CHSH value of the
initial isotropic boxes, i.e., S=4�. As can be seen from Fig. 5,
the number of boxes that can be generated outside Rb

S rap-
idly increases as �→1.

Thus, for each N, we obtain a polytope Rb
S�N�, which is the

convex hull of Rb
S and all the newly generated boxes lying

outside Rb
S. Interestingly, it appears that Rb

S�N−1��Rb
S�N�; that

is, for each N, the box generated �and its symmetries� lies
actually outside the polytope obtained in the N−1 case. We
checked this numerically for 3�N�10 and �=0.95. Thus it
appears that when �→1 we can generate a polytope with an
arbitrarily large number of extremal points. Note that it is
only in the limit �→1 that the boundary becomes a smooth
curve.

APPENDIX B

Distilling out of the Uffink set. Here we show that Uffink’s
set in not closed under wirings, using the distillation protocol
introduced in the main text.

We consider a section of the nonsignaling polytope, given
by boxes of the form

PNL
c ��,�� = � PNL

000 + �PL
0101 + �1 − � − ��1 �B1�

It will be convenient to characterize these boxes by their four
correlators Exy � P�a=b �x ,y�− P�a�b �x ,y�; here we have
E00=E01=E10=�+� and E11=�−�. After applying the distil-
lation protocol to two copies of box �B1�, we obtain a final
box given by

Bf =
�

4
�3� + 7� + 1�PNL

000 +
�

4
�1 − � − ��PNL

011

+ �2PL
0101 + �1 − � − ���1 +

�

2
+ ��1 �B2�

The correlators of Bf are

E00
f = E10

f = �� + ��2

E01
f =

1

2
��� + ��2 + �� + �2 + ��

E11
f = −

1

2
��� + ��2 + �� − 3�2 + �� . �B3�

Now, we impose that Bf must lie outside Uffink, i.e.,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

CHSH
2

C
H
S
H

NPA
P
L

0101

PR

FIG. 4. �Color online� Comparison of distillation protocols in
the 2D slice of the polytope defined by �A1�. The different lines
delimit the set of boxes that can be distilled in one �or more� itera-
tions of a given protocol. The solid blue line corresponds to the
distillation protocol presented in the main text; all boxes above this
line can be distilled using this distillation protocol. The dash-dotted
red line is for the protocol of Ref. �13�. The dotted orange line is for
the two-box AND protocol. The green solid line corresponds to the
protocol of Ref. �21�. The black dashed line is an upper bound on
the set of quantum correlations, derived by Navascues-Pironio-Acin
�NPA� �20�.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

0

10
1

10
2

10
3

� = S/4

N

FIG. 5. �Color online� Number of boxes N that can be generated
outside the restricted polytope Rb

S. Each new box is obtained by
applying the AND wiring to N copies of the isotropic box �Eq. �6��,
characterized by �.
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�E00
f + E10

f �2 + �E01
f − E11

f �2 � 4. �B4�

Next, using the relation �=
E00−E11

2 and �=
E00+E11

2 , we can re-
write Eq. �B3� in terms of the correlators of the initial box
and obtain

4E00
4 + �E00

2 +
1

2
�E00 − E11 − E11

2 − E00E11��2

� 4 �B5�

It turns out that the previous inequality is satisfied by a re-
gion of boxes which �initially� satisfy the Uffink inequality
�see Fig. 6�. Thus, all boxes in this region can be distilled out
of the Uffink set, implying that the latter is not closed.

Moreover, this implies that the set of correlations that
violate the principle of IC �15� can be extended to the shaded
regions of Fig. 6. This also implies that the set of correlations
satisfying IC must be contained in the largest closed subset
of the Uffink set.
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FIG. 6. �Color online� 2D section of the nonsignaling polytope.
The solid red line is the boundary of Uffink’s set, and the dashed
black line is the upper bound on the quantum set derived by NPA
�20�. The shaded region are boxes, initially inside Uffink’s set, that
are mapped outside using the distillation protocol; more specifi-
cally, in one iteration of the protocol �blue region�, two iterations
�green region�, and three iterations �red region�. The lower bound-
ary of the blue region �one iteration� is given by Eq. �B5�.
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