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We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the
inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber’s amplifier.
We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay
of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by
calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute
the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the
Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of
the evolved state vector of the system with respect to the original one, for all regimes of parameters. Appli-
cations of this attenuation-amplification interplay are discussed.
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I. INTRODUCTION

Following developments from the early 1980s, focusing
on measurement and other fundamental quantum problems,
the subject of open quantum systems has recently been ex-
tended to encompass collective damping and diffusion
mechanisms in nonideal networks. This broader perspective
has largely been influenced by quantum information theory
and its search for mechanisms to bypass decoherence in a
realistic open quantum processor. Whereas collective diffu-
sion is still at the beginning �1�, a large number of results on
collective damping, within different physical systems, have
been derived �2–5�, including the potentially useful emer-
gence of relaxation- and decoherence-free subspaces �6�. In
particular, efforts have been directed at the problem of high
efficiency state transfer through a network of nonideal quan-
tum channels �7,8�.

In the present work, we revisit the problem of a single
dissipative quantum system from a different and extended
perspective, analyzing the interplay between the two quan-
tum processes of dissipation and amplification. Whereas
classical amplification is regularly used to achieve effective
interactions, especially within atomic optics �9,10�, its quan-
tum counterpart has attracted less attention, since being sug-
gested by Glauber �11�. Certainly, the difficulties associated
with the practical implementation of a quantum multimodal
amplifier discouraged further investigations on this subject.
Glauber himself, however, has employed his amplifier model
to analyze compelling problems, such as the feasibility of a
laser gain tube �11� and the short-time behavior of superfluo-
rescence �12�. The laser gain tube, suggested by Herbert
�13�, would allow exotic phenomena such as superluminal
signaling and, as noted by Glauber �11�, the amplification of
a quantum system to its classical counterpart, followed by a
set of nondemolitive �classical� measurements, and then the
reverse attenuation process, to take the system back to its
quantum domain with all known properties.

In this article, we examine specifically the competition
between attenuators and amplifiers, which can be useful in

the simulation of many physical phenomena, for example,
super-radiant pulses. Thus, we analyze a system coupled on
one hand to a reservoir �or attenuator� and on the other to an
amplifier, as depicted in Fig. 1, addressing mainly the map-
ping of the behavior of the systems under different regimes
of parameters.

Glaubers attenuator and amplifier

In a discussion of quantum-mechanical attenuators and
amplifiers, Glauber �11� presented an original treatment of
the former, based on the Glauber-Sudarshan P representa-
tion, focusing on a harmonic oscillator �HO� coupled to a
reservoir modeled by quite a large number of oscillators. The
dispersive Gaussian form of the quasiprobability density P is
first derived and then, setting the HO initially in a pure co-
herent state �0, the evolution of P�� , t ��0 ,0� is presented, in
the phase space coordinates Re���� Im���, exhibiting all the
main features of a system damped by a thermal attenuator.
Starting from a delta function associated with the pure co-
herent state �0, the function P evolves discontinuously to a
Gaussian whose increasing dispersion rate is controlled by
the reservoir temperature. With the increasing dispersion, the
mean value of the amplitude of the attenuated state traces an
exponential spiral on Re���� Im���, descending to the
vacuum, where the initial delta function is discontinuously
recovered.

On searching for a quantum amplifier, i.e., “a device that
amplifies signal at the quantum level,” Glauber’s peculiar
solution was to consider exactly the Hamiltonian describing

Amplifier AttenuatorSystem

FIG. 1. Sketch of a quantum system under the action of an
amplifier and an attenuator �reservoir�.
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the damped HO, but now considering an “inverted” HO, with
negative kinetic and potential energies. The creation operator
associated with such an oscillator creates de-excitations or
negative energy quanta, whereas the annihilation operator
conversely raises the energy of the inverted HO. Although
the amplifier, like the reservoir, is modeled by a large set of
oscillators, the interaction Hamiltonian takes the form of the
energy-conserving counter-rotating terms rather than the
usual rotating ones. Now, starting again from a coherent state
�0, the mean value of the amplitude of the amplified state
describes an ascending exponential spiral on Re���� Im���,
with function P discontinuously evolving to a Gaussian
whose dispersion rate, being non-null even at T=0 K, is
greater than that of the attenuator model.

When considering a system under the action of both an
attenuator and an amplifier, we must expect behavior of the
P function to vary, depending on the relations between the
coupling strengths on both sides of the system in Fig. 1. We
can also assume these couplings to be either constants or
variables. A detailed map of the system behavior is presented
here for the case where both couplings of the system are
constants.

II. HARMONIC OSCILLATOR COUPLED WITH TWO
COUNTERACTING MULTIMODAL SYSTEMS

We take our system to be a quantum HO, as in Glauber’s
treatment �11�, under the action of two quantum systems, an
attenuator and an amplifier. We also assume, for complete-
ness, that our system is subjected to a classical amplification
field. The Hamiltonian governing the system evolution is
thus given by H=H0+HI, where

H0 = ��a†a + ��
m=1

2

�
k

�mkbmk
† bmk, �1�

encompasses the HO of frequency �, where a† �a� is the
associated creation �annihilation� operator, as well as the at-
tenuator �m=1� and the amplifier �m=2�, where bmk

† �bmk� is
the creation �annihilation� operator associated with their kth
mode �mk. Finally, the interaction term

HI = ��
k

��1k�ab1k
† + a†b1k� + �2k�ei�tab2k + e−i�ta†b2k

† �� ,

�2�

describes the couplings of the system with the attenuator and
the amplifier modes, of strengths �1k and �2k, given by the
rotating and the counter-rotating terms, respectively. We
stress that we have not resorted to an inverted harmonic os-
cillator to account for the amplification dynamics as in
Glauber’s original model �11�. After all, our damped HO
must be the same as our amplified one. To circumvent this
problem, retaining the noninverted HO even for the amplifi-
cation process, we merely introduce the phase factors e�i�t

into the system-amplifier coupling. As a matter of fact, under
an appropriate choice of the frequency �, Glauber’s original
amplifier Hamiltonian

HGlauber = − ��a†a + ��
k

��kbk
†bk + �k�abk + a†bk

†��

turns out to be exactly the same as the one given in our
version: ��a†a+��k��kbk

†bk+�k�ei�tabk+e−i�ta†bk
†��.

The convenient transformation

U�t� = exp�−
i�t

2
�a†a + �

m=1

2

�
k

bmk
† bmk	
 ,

leads to the Hamiltonian H=H0+HI, with time-independent
interaction terms, given by

H0 = �	a†a + ��
m=1

2

�
k

	mkbmk
† bmk

HI = ��
k

��1k�ab1k
† + a†b1k� + �2k�ab2k + a†b2k

† �� ,

where 	=�−� /2 and 	mk=�mk−� /2.
Next, we adopt a set of commonly used approximations

with which the master equation of the system described by
the Hamiltonian H can be derived. We firstly assume that
both couplings of the HO, with the attenuator and the ampli-
fier, are weak enough for us to perform a second-order per-
turbation approximation on these parameters, and then trace
out the bath degrees of freedom. We also assume Markovian
attenuator and amplifier, to be able to factorize the density
operator of the global system as 
S�t� � 
att�0� � 
amp�0�.
With these assumptions, we obtain the reduced density op-
erator of the HO, given by

d
�t�
dt

= −
1

�2�
0

t

dt� TrR†HI�t�,�HI�t��,
S�t� � 
att�0�

� 
amp�0��‡ . �3�

Since for thermal attenuator and amplifier we obtain
�bmkbm�k�
= �bmk

† bm�k�
† 
=0, for m ,m�=1,2 or vice-versa, we

have only to solve the integrals �appearing in Eq. �3�� related
to correlation functions of the form �0

t dt���m
† �t��m�t��
,

where �m�t�=�k�mke
−i�mktbmk, with �mk=	mk+ �−1�m	. We

further assume the frequencies of the attenuator and the am-
plifier to be closely spaced, to allow a continuum summation,

m��m� being the density of states of both multimodal sys-
tems. The average excitation of the kth mode associated with
either the attenuator or the amplifier is defined by the relation
�bm

† ��m�bm���m��
=�mm�Nm��m����m−�m��, where Nm��m�
is the thermal average photon number. Finally, making the
usual assumption that �m��m�, 
m��m�, and Nm��m� are
slowly varying functions, we present some convenient vari-
able substitutions. First, the transformations �=�1−� and
�= t− t� lead to the simplified form for the attenuator corre-
lation
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�
0

t

d���1
†�t��1�t − ��


= �
0

t

d��
−�

� d�

2�

1�� + ���1

2�� + ��N1�� + ��e−i��

=
1

2

1����1

2���N1��� ,

whereas the transformations �=�2+�−� and �= t− t� entails
the amplifier correlation

�
0

t

d���2
†�t��2�t − ��


= �
0

t

d��
�−�

� d�

2�

2�� − � + ���2

2�� − � + ��

�N2�� − � + ��e−i��

=�
1

2

2�� − ���2

2�� − ��N2�� − �� for � − � � 0

1

4

2�0��2

2�0�N2�0� for � − � � 0

0 for � − � � 0
� .

Therefore, the choice �=2� provides the amplifier correla-
tion with exactly the form �0

t d���2
†�t��2�t−��


= 1
2
2����2

2���N2��� derived from Glauber’s original ampli-
fier Hamiltonian.

Returning to the Schrödinger picture, we finally obtain the
master equation

d
�t�
dt

= i��
�t�,a†a�

+
�1�N1 + 1� + �2N2

2
�2a
�t�a† − 
�t�a†a − a†a
�t��

+
�1N1 + �2�N2 + 1�

2
�2a†
�t�a − 
�t�aa† − aa†
�t�� ,

�4�

where the attenuation and amplification rates are given by
�m=�m���=
m����m

2 ���. We call attention to the fact that
the superoperator describing the action of the amplifier fol-
lows directly from the well-known dissipative Liouvillian
operator, by exchanging a with a†.

III. QUASIPROBABILITY DISTRIBUTION FUNCTIONS

From the master equation �4�, we derive the evolution
equation for the normal ordered characteristic function

d���,��,t�
dt

= ��1

2
��

�

��
+ ��

�

���� + N���2
���,��,t� ,

where we have defined the effective transference rate �
=�1−�2 and, through the quantity �=�1N1+�2�N2+1�, the
effective thermal average photon number N=� /�. Assum-

ing that the HO is prepared in the superposition of coherent
states ��
=�m=1

M cm��m
, the above equation has the solution

���,��,t� = �
m,n=1

M

cmcn
���n��m


� exp����n
�e−i�t − ���mei�t�

�e−�t/2 − N���2�1 − e−�t�� , �5�

which will be further employed, together with the Glauber-
Sudarshan P function, to map the dissipation x amplification
competition. From a two-dimensional Fourier transform of
solution �5�, we obtain the P function as

P��,��,t� =
1

�2� d2� exp���� − �������,��,t�

=
1

�D�t� �
m,n=1

M

cmcn
���n��m


�exp�−
�� − �mei�t−�t/2��� − �nei�t−�t/2��

D�t� � ,

where the positive definite function D�t�=N�1−e−�t� stands
for the effective dispersion rate. We note that the diffusion
D�t� becomes null, giving a delta-P function, only for the
particular case where N1=�2=0, indicating that the presence
of the amplifier forbids a coherent evolution even at absolute
zero �N2=0�.

For the case considered by Glauber in his study of the
amplifier, where the HO is prepared in a coherent state ��

= ��
, the P function reduces to the simple form

P��,��,t� =
1

�D�t�
exp�−

�� − �ei�t−�t/2�2

D�t� � , �6�

which enables us to derive both of the extreme cases ana-
lyzed by Glauber in Ref. �11�: �i� when the HO is coupled
only to the attenuator ��2=0�, giving

P��2=0���,��,t� =
1

�D�t�
exp�−

�� − �ei�t−�1t/2�2

D�t�
� ,

with the dispersion D�t�=N1�1−e−�1t�, and �ii� when the HO
is coupled only yo the amplifier ��1=0�, giving

P��1=0���,��,t� =
1

�D̃�t�
exp�−

�� − �ei�t+�2t/2�2

D̃�t�
� ,

where D̃�t�= �N2+1��e�2t−1�. As already noted by Glauber
�11�, when proposing his inverted HO model, the diffusion
process associated with the amplifier is finite even at abso-
lute zero, differently from that arising from the attenuator,
which is null when N1=0. As demonstrated below, this fea-
ture inevitably has negative consequences for the phase co-
herence of superposed states of the HO under the action of
an amplifier.

Next, we present the Wigner distribution W�� ,�� , t�,
which is seen later to be indispensable for estimating the
decoherence and the fidelity of the HO states under both
diffusive processes. For the particular case where the HO is
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prepared in a “Schrödinger cat”-like state ��SC
=N���

+ �−�
� �N being a normalization factor�, employing again
the characteristic function �5�, we obtain the relation

W��,��,t� =
1

�2� exp���� − �������,��,t�e−���2/2d2�

=
2N2

��2D�t� + 1� �
m,n=0

1

��n��m


�exp�−
2�� − �mei�t−�t/2��� − �nei�t−�t/2��

2D�t� + 1
� .

�7�

In the above expression, we observe the characteristic re-
sidual width of the Wigner distribution, which remains even
when the effective diffusion is made null, by switching off
the amplifier and assuming the attenuator to be at absolute
zero.

IV. MAPPING THE DISSIPATION X AMPLIFICATION
INTERPLAY

A. Excitation

From the solution for ��� ,�� , t� in Eq. �5�, we find that
the mean excitation of the HO evolves as

�a†a
�t� = �
m,n=0

M

cmcn
���n��m
��m��n��e−�t + N�1 − e−�t�� ,

�8�

showing that the dissipation-amplification dynamics is essen-
tially governed by both parameters � and N, i.e., the attenu-
ation and amplification rates, apart from the temperatures of
the two counteracting systems coupled to the HO. To sim-
plify our analysis of the dissipation x amplification interplay,
we assume, without loss of generality, the coherent initial
state ��
= ��
, simplifying Eq. �8� to �a†a
�t�= ���2e−�t

+N�1−e−�t�. For the general case in Eq. �8�, the only differ-
ence is in the coefficients multiplying the attenuation and
amplification functions given by e−�t and �1−e−�t�, respec-
tively. With this assumption, in Fig. 2, we plot the excitation
�a†a
�t� against �1t, fixing ���2=1 and N1=N2=0.1. When
�2��1 and the diffusion rises to the asymptotic value D
=N, we have three different behaviors for the excitation,
which depend on the relation between the effective thermal
average photon number N and the intensity ���2 of the initial
state.

�a� For �i� N� ���2, the action of the attenuator overcomes
that of the amplifier and the excitation decreases exponen-
tially to the asymptotic value N=0.7, obtained with �2
=1 /3 �in units of �1�, as indicated by the thick solid line in
Fig. 2.

�b� For �ii� N= ���2, achieved by fixing �2= �1−N1� / �2
+N2�=3 /7, the attenuator and the amplifier play equal roles,
leaving the excitation unaffected as indicated by the solid
line.

�c� For �iii� N� ���2, the amplifier overcomes the attenu-
ator �in spite of the inequality �2��1�, and the excitation

increases exponentially to the asymptotic value N=1.3, ob-
tained when �2=1 /2, as indicated by the dashed-dotted line.

Two other regimes, defined by the relation between �2
and �1, are included in Fig. 2.

�a� For �2=�1, we have linear diffusion, D�t�=�t, and a
threshold between the bounded exponential behavior defined
by �2��1 and the unbounded exponential growth for �2
��1. The dashed line describes the linear evolution of the
excitation given by �a†a
�t�= ���2+�t.

�b� Finally, as already mentioned, for �2��1, the ampli-
fier completely overcomes the attenuator and the excitation
undergoes an unbounded exponential growth, as does the
diffusion rate, as indicated by the dotted line derived for
�2=1.01. We have chosen �2 only slightly higher than �1,
owing to the strong increase in the excitation rate exhibited
in this regime.

It is worth stressing again that the phenomenology em-
bodied in the above analysis remains the same in the case of
the general expression �8�, the only changes arising from the
choice of the effective thermal average photon number N

regarding the excitation of the initial state ��
. We also note
that the phenomenology displayed by the curves in Fig. 2
also remains the same for a distinct choice of the tempera-
tures of the attenuator and the amplifier, associated with the
thermal average photon numbers N1 and N2, respectively; the
only difference being the rate of change in these curves.

B. Variances

Computing the variances of the oscillator field from the
characteristic function �5�, we obtain, for both quadratures
��=1,2�

��X��t��2 =
�

4
�1 + D�t�� ,

showing that the minimum uncertainty occurs in the absence
of the diffusion process. Such a null diffusion occurs only in

0 5 10

<Y
Y>

 l!

|β|2

Γ
1
 

†

FIG. 2. Plot of the excitation �a†a
�t� against �1t, for the cases
where �2��1, �2=�1, and �2��1, fixing ���2=1.0 and N1=N2

=0.1. The thick solid, solid, and dashed-dotted curves, for �2��1,
follow from distinct values of the ratio N=� /�.
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the case where N=0, implying that the amplifier must be
turned off, such that D�t�=N1 and consequently, that an ab-
solute zero attenuator must be assumed. Otherwise, the dif-
fusion rate increases proportionally to the excitation �a†a
�t�,
forbidding, as concluded by Glauber �11�, the feasibility of

the laser gain tube proposed by Herbert �13� to clone super-
position states for superluminal communication. In fact, as
follows from the diffusion rate D�t�, any amount of excita-
tion provided by the amplifier device carries with it a corre-
sponding amount of noise.
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FIG. 3. Plot, on the plane Re���� Im���, of the time evolution of the projection of the maximum value of P. The curves from �a� to �e�
correspond exactly to those in Fig. 2, with the same fixed parameters, apart from the choice �=1 and the lengthening of the duration of the
time evolution to �1t=20.
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C. Glauber-Sudarshan P function

The P�� ,�� , t� function in Eq. �6�, associated with the
HO prepared in the coherent state ��
, provides a comple-
mentary scenario of the dissipation x amplification interplay.
In fact, with the preparation of the coherent state ��
, sup-
posed to occur at t=0, we start from the delta-P function
��2���−��. As time goes on, the Dirac delta evolves to a
Gaussian distribution whose dispersion D�t� increases, even
when the attenuator and the amplifier are both at absolute
zero. In Fig. 3, we plot, on the plane Re���� Im���, the time
evolution of the projection of the maximum value of P. The
curves from �a� to �e� correspond exactly to those in Fig. 2,
with the same fixed parameters, apart from the choice �=1
and the lengthening of the duration of the evolution to �1t
=20.

�a� For the case �2��1, we observe in Figs. 3�a�–3�c�
that the projected P function decreases on an exponential
spiral to the origin, along the path defined by ��t�
=�ei�t−�t/2. Asymptotically, the P function reaches the value
��N�−1e−���2/N, leading exactly to the excitations N=0.7, 1.0,
and 1.3, corresponding to the choice �2=1 /3, 1, and 1/2,
respectively. Evidently, a projected P function spiraling to
the origin does not imply a decreasing excitation of the sys-
tem.

�b� The threshold case �2=�1 results in the distribution
P= ���t�−1exp�−��−�ei�t�2 /�t�, whose projection remains
on a circle of radius �, as shown in Fig. 3�d�. This circling
diffusive distribution is associated with the linearly increas-
ing excitation of the corresponding case in Fig. 2�d�.

�c� Finally, for �2��1 we obtain, as depicted in Fig. 3�e�,
a projected P distribution continuously increasing on an ex-
ponential spiral, together with the associated diffusion rate.

V. DECOHERENCE

From the Wigner function �7�, obtained when the HO is
prepared in the Schrödinger cat-like state ��SC
=N���

+ �−�
�, we next compute the decoherence time by a tech-
nique presented in Ref. �1� for the particular case where the
amplification process was absent ��2=0�. This technique is
much more convenient whenever diffusion is present, over-
coming the difficulties in estimating the decoherence time
from the evolution of the density operator. In fact, when
diffusion takes place together with the decay of the interfer-
ence terms, we must consider the two separately, estimating
both the diffusion time �diff and the decay time of the inter-
ference terms of the Wigner functions �int. The decoherence
time then follows from the relation:

1

�D
=

1

�diff
+

1

�int
, �9�

where the diffusion time, defined as

1

�diff
= 2� d

dt
D�t��

t=0
, �10�

displays a tendency to a significant spread of the state. �We
observe that in the absence of diffusion the term �diff

−1 be-
comes automatically null�. To reach a definition of �int, we

first decompose the Wigner function on its diagonal and off-
diagonal elements W�� ,�� , t�=�m,n=1

2 Wm,n�� ,�� , t�, which are
related to the components �m�t�= �−1�m−1�ei�t−�t/2 of the
Schrödinger cat-like state, as

Wm,n��,��,t� =
2N2

��2D�t� + 1�
��n��m


�exp�− 2�� − �m�t���� − �n�t���

2D�t� + 1 � .

�11�

These elements enable us to define the ratio

 m,n�t� �
Wm,m��,��,t�Wn,n��,��,t�
Wm,n��,��,t�Wn,m��,��,t�

,

which gives

 1,2�t� = exp�4���2�1 −
2e−�t

2D + 1
�


and offers a measure of the decay of interference, through
the function

�1,2�t� =
 1,2�0�
 1,2�t�

= exp�−
8���2

2D + 1
�2D + 1 − e−�t�
 .

�12�

We note that the argument of the exponential is positive
definite, since 2D+1−e−�t= �2��1N1+�2N2�+ ��1+�2���1
−e−�t� /�, showing that �m,n�t� equals unity at t=0, decaying
as time goes on.

From the above decay function, we define �int by gener-
alizing the usual relation �rs��D�=e−4, used to compute the
decoherence time in the case of reservoirs at finite tempera-
tures �1�, to

�1,2��int� = exp�−
4

2D��int� + 1
 , �13�

which corresponds to measuring the decay of the interference
terms of the Wigner function by deducting their spread, com-
mon to all the diagonal and off-diagonal elements in Eq.
�11�; the decay of the off-diagonal elements is thus estimated
with respect to the diagonals. This procedure amounts to an
analysis of the decay of interference in a frame where the
diagonal terms are frozen. From the relations �9�, �10�, �12�,
and �13�, we thus obtain, for the superposition ��SC
, the
decoherence time

�int = �
1

���
ln� 1

1 − !
� �

!

���
if � " 0

1

���
ln�1 + !� �

!

���
if � # 0� ,

where

! =
���

2���2��1�1 + 2N1� + �2�1 + 2N2��
,

and consequently
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�D =
1

2���2��1�1 + 2N1� + �2�1 + 2N2�� + 2��1N1 + �2�N2 + 1��
. �14�

The distinct feature of the derived result �14� is the excess
noise generated by the amplifier, the same source of noise
responsible for non-null diffusion, even when both baths are
at absolute zero. Analyzing Eq. �14� for the particular case
where the amplifier is turned off ��2=0�, we obtain the well-
known result �D= �2���2�1�−1 when the attenuator is at abso-
lute zero �N1=0�, as well as the reasonable rate �D
= �2���2�1�2N1+1�+2N1�−1 when the attenuator has a finite
temperature.

VI. FIDELITY

Regarding the fidelity of a Schrödinger cat-like state
��SC
=N���
+ �−�
� prepared in the HO, we observe that it
can be directly computed from the Wigner function �11�, by
the relation

��
−�

�

d2�W��,��,0�W��,��,t� = Tr�
S�0�
S�t�� . �15�

The above equality can be proved from the relation between
W�� ,�� , t� and P�� ,�� , t�

W�$,$�,t� =
2

�
� d2�P��,��,t�exp�− 2�� − $�2� ,

as follows:

��
−�

�

d2�WS��,��;t�WS��,��;0�

=
4

�
� d2�� d2�PS��,��,t�PS��,��,0�e−2����2+���2�

� �
−�

�

d2� exp�− 4��� + 2�� + ���� + 2�� + �����

=� d2�� d2�PS��,��,t�PS��,��,0�����
����


= Tr��� d2�PS��,��,t���
���

��� d2�PS��,��,0���
���
� = Tr�
S�t�
S�0�� .

To avoid the typical oscillations of the above overlap
functions, we may either compute them with the restriction
�=0, or consider the upper bound of the oscillations, i.e.,

F�t� = sup���
−�

�

d2�W��,��,0�W��,��,t�
 . �16�

The definition in Eq. �16� generated the curves in Fig. 4,
where we fixed the parameters N1=N2=0.1 and ���2=1.0, so
that N= ��SC�a†a��SC
= �1−e−2���2����2 / �1+e−2���2�=0.76.
We have considered, as in Fig. 2, the values N=0.7, obtained
with �2=1 /3, for the case N� ���2 �thick solid line� and N

=1.3, obtained with �2=1 /2, for the case N� ���2 �dashed-
dotted line�. The curve associated with the stationary excita-
tion follows from the value N=0.7, now obtained with �2
=0.36 �solid line�. Finally, we consider the cases where �2
=1.0 and 1.1, indicated by the dashed and dotted lines, re-
spectively. As would have been expected, the larger the rate
of the amplification process, the faster the decrease in fidel-
ity. In fact, when N1=N2, the diffusion rate—and hence the
noise injection from the amplification process into the
system—becomes more pronounced with increasing excita-
tion rate �2 /�1.

VII. APPLICATIONS AND CONCLUDING REMARK

In this paper, we have analyzed the behavior of a har-
monic oscillator �HO� under the action of two counteracting
baths: a reservoir �or attenuator� and the Glauber amplifier.
After deriving the master equation, we compute the charac-
teristic, the Glauber-Sudarshan P function, and the Wigner
distribution associated with a general state of the HO, to map
the distinct classes of behavior of the time evolution of its
excitation �a†a
�t�. Basically, these classes are governed by
the effective transference rate �=�1−�2 and the effective

0 2 4
0.0

0.5

1.0

F
(t)

Γ1 t

FIG. 4. Plot of the fidelity F�t� of the Schrödinger cat-like state
��SC
=N���
+ �−�
� under the attenuation-amplification interplay,
for the cases �2��1, �2=�1, and �2��1, fixing ���2=1.0, N1

=N2=0.1.
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thermal average photon number N=� /� associated with
the attenuation-amplification interplay. A major feature of
our competition problem is the noise injected by the ampli-
fier, even when it is at absolute zero. This fact was pointed
out by Glauber when introducing his amplification model. It
has been attributed to the amplification of the zero-point
fluctuations or the spontaneous emission of quanta from the
amplifier into the system composed by the HO plus reservoir.
Evidently, as we demonstrated, this inevitable dispersion
arising from the amplification process plays a major part—
besides the action of the reservoir—in the decoherence of a
superposition state of the HO.

We have also presented a technique to compute the deco-
herence and the fidelity of the HO under the attenuation-
amplification interplay, based on the Wigner distribution
function instead of the reduced density matrix of the system.
In fact, when diffusion is included in the analysis, it is more
convenient to analyze the similarity between the evolved
state vector and the original one by using the Wigner func-
tion of the system rather than its reduced density matrix.

A great number of physical systems are ruled by the
attenuation-amplification interplay. The inevitable coupling
of a quantum system to the environment imposes a non-null
attenuation rate �1 as an essential ingredient accounting for
the decoherence process and the emergence of classical dy-
namics. Therefore, differently from the amplification rate �2,
�1 is always a part of a realistic �nonideal� quantum evolu-
tion. Although not inevitable, amplification processes are fa-
miliar ingredients used to control coherent evolution. In
atomic optics, the manipulation of electronic states is done
with classical amplification fields or quantum radiation and
vibrational excitations; conversely, the manipulation of the
radiation and vibrational fields is achieved through their in-
teraction with driven atoms �20,21�. However, such amplifi-
cation processes are generally modeled by a single mode
field with neglected linewidth. The above development thus
furnishes a model for a more realistic multimodal amplifica-
tion process, providing a quantitative account of the signifi-
cant amount of noise—proportional to the linewidth of the
amplification field—inevitably injected into the system.

As another application of the present attenuation-
amplification interplay, we recall the von Neumann theory of

quantum measurement �22�. In such a two-step theory, a uni-
tary evolution is first established between the system to be
measured and the apparatus, followed by a nonunitary evo-
lution by which the quantum signal is amplified to the mac-
roscopic regime, prompting the reduction in the state vector.
It is quite reasonable to suppose that the attenuation-
amplification interplay may provide a framework for model-
ing the nonunitary system-apparatus evolution, as formulated
by von Neumann. In this connection, we note that the con-
tinuous photodetection theory has recently received a great
deal of attention and significant developments have been
made on this subject �23�. However, while the unitary first
step of the process has been greatly advanced—leading to
microscopic models of quantum jump superoperators with
the inclusion of nonidealities—the nonunitary evolution is
restricted to the dissipative dynamics, without accounting for
the amplification process.

We finally mention that the problem of a harmonic oscil-
lator under the action of one harmonic bath, the attenuator,
had long been successfully treated through the functional
integral approach �14,15�, allowing significant applications
in many different problems �16,17�. The quantum measure-
ment problem had particularly benefited from the develop-
ments on dissipative quantum mechanics �18,19�. We also
note that our problem, of a quantum system under the actions
of two counteracting baths, could also be treated under the
functional integral approach. On this regard, we note that
phase factors similar to those presented in Eq. �2� to model
our amplifier, must also be taken into account when pursuing
the functional integral approach. Moreover, we observe that
the well-known counter term taking place within the func-
tional integral approach �the potential renormalization due to
bath coupling�, is associated, under our weak damping as-
sumption, with a small shift in the frequency of the
oscillator—the Lamb shift in the case where the system is a
two-level atom. More specifically, under the weak damping
assumption this frequency shift results to be a negligible
Cauchy principal value integral �24�.
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