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In a previous paper �G. E. Hahne, J. Phys. A 36, 7149 �2003�� the author studied a nontraditional boundary
value problem associated with Schrödinger’s partial differential equation for the wave function of a structure-
less particle moving in four-dimensional spacetime: in this boundary value problem, instead of the conven-
tional specification of initial wave-function values on a time=constant surface, suitable time-dependent bound-
ary and normal-derivative values are given on a three-dimensional space-time surface surrounding a slablike
region of interaction in four-dimensional spacetime. The particle’s time coordinate plays a natural role as an
operator and observable in the modified formalism. In the present paper, the formalism is extended to describe
a system of two nonrelativistic particles—each with its own time coordinate—scattering from background
potentials and from one another in four-dimensional spacetime. The two-body interaction is taken as a generic
noninstantaneous action-at-a-distance, which depends independently on the space-time positions of the two
particles. The dynamics is expressed in terms of an integral equation for the wave function, that is, a nonrel-
ativistic version of the Bethe-Salpeter equation. An optical theorem is derived for the transition operator
associated with scattering processes; when the theorem holds, the pointwise probability current density deriv-
able from the wave function is conserved globally, that is, in a region covering the space-time domain of
significant interparticle interaction. A general formula for the expected dwell-correlation time for the two
particles in the space-time region in terms of the scattering matrices is worked out.
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I. INTRODUCTION

As we are normally guided by well-established dynamical
insights, and as the family of time=constant hyperplanes is a
Galilean invariant in four-dimensional spacetime, it is cus-
tomary in nonrelativistic quantum mechanics to consider the
quantum state of a system to be defined as one of a complete
set of states on some time=constant surface, and to be
among the same, or an equivalent, kinematical set of states
on each time=constant surface. The dynamics is then mani-
fested as a Schrödinger-type partial differential equation,
which controls the time evolution of a wave function from a
given input state on one time=constant surface to an output
state on any other such surface, with simple, time-
independent or time-harmonic, values prescribed on the spa-
tial boundaries. The time coordinate then appears to be a
mere parameter in the formalism and was from early times
not regarded as having operator or observable status ��1�, p.
140, footnote; �2�, p. 63, footnote�, despite the impending
conflict with the relativistic idea that space and time should
be treated jointly and similarly ��3�, p. 188; �4�, p. 354�. Over
the years, there have been several, and often disparate, at-
tempts to elaborate quantum mechanics so that various
physical types of time �dwell times, arrival times, delay
times, uncertainty in times of events, decay times, etc.� could
be defined plausibly as quantum-mechanical observables
subject to experimental test and verification—see the Intro-
ductory chapter in �5�. So far, apparently, no theoretical in-
vestigations have been attempted to describe quantum corre-
lation times for two particles entering and exiting a scattering
region, where the particles can interact with one another as

well as with externally imposed fields in the scattering do-
main.

As a preliminary attempt to build such a superstructure
upon quantum theory, it was suggested in �6� that single-
particle quantum kinematics can be established differently,
by defining a complete set of quantum states on a �say� z
=constant plane, and an equivalent set of states on each of
the family of z=constant planes, with the dynamics still be-
ing controlled by Schrödinger’s equation: then z appears to
be a mere parameter in the dynamical formalism, while the
other three coordinates t, x, and y naturally take roles as
operators or observables in each z=constant plane. Unlike
waves evolving in the time direction, there can be reflection
as well as transmission of waves moving in a spatial direc-
tion, so that waves representing motion in both directions
must be described by the aforementioned complete set of
quantum states. Another complication, which is commonly
encountered in multichannel quantum scattering problems, is
the presence of closed as well as open-channel states, with
real exponential rise or fall of the wave function in �in this
case� the z direction. As discussed in �6�, under fairly general
conditions quantum dynamics conserves the z component of
the probability current overall, and a judicious choice of
what constitute input states and what output states to a scat-
tering process allows these states to have separately positive
definite, and equal, norms; whence, the S matrix that maps
input into output is unitary. In particular, if the particle is
considered to be free everywhere and every when outside the
slablike region contained between two z=constant planes,
and if the interaction part of the Hamiltonian is suitably well
behaved, it is physically unambiguous what constitute ingo-
ing waves and what outgoing waves with respect to the slab,
at least for open channels. A four-current density of the flow
of time is then constructed straightforwardly from the prob-
ability flow current, such that the four-divergence of the time*gerhard.e.hahne@nasa.gov
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current represents the density of the creation of time at each
point; an application of the divergence theorem then permits
the calculation of the creation of time in a space-time box in
terms of the time current’s boundary values. In turn, the
dwell time for the particle in a scattering region can then be
expressed in terms of the S-matrix mapping input into out-
put. With a few exceptions, we shall not review or cite herein
the extensive literature on the problem of quantum time for a
single particle, as that subject was discussed in �6�, and the
new edition of the book �5� covers the subject in consider-
able detail.

The paper in hand undertakes to establish, first, a
quantum-dynamical formalism for scattering of two interact-
ing structureless particles, each with its own time coordinate;
hence, the wave function for the system will be a complex-
valued function of eight variables—the space-time positions
of particles 1 and 2—as in �12�t1 ,x1 ,y1 ,z1 , t2 ,x2 ,y2 ,z2�.
Instead of a partial differential equation the equation of mo-
tion will take the form of an integral equation, which is a
nonrelativistic form of the Bethe-Salpeter equation �BSE�.
The formalism can account for noninstantaneous interaction
at a distance between the particles. �When the interactions
are instantaneous, these dynamics can be reduced to a
boundary value problem for a partial differential equation
of Schrödinger type for a wave function

�̄12�t ,x1 ,y1 ,z1 ,x2 ,y2 ,z2�, where t is a common time coordi-
nate for the two particles.� The integral equation formalism
can handle problems of both temporal and spatial evolutions
of wave functions: the same Green’s functions, transition op-
erator, and integral equation will generate scattering states of
either type, depending on the type of input states.

The dynamics is then elaborated to define a current den-
sity for the flow of probability associated with a wave func-
tion: the pointwise current density will have 16 components
and amounts to the tensor product of the single-particle cur-
rent densities, as in �see Eq. �22a� below for details�

j�1�2�t1,x1,y1,z1,t2,x2,y2,z2� ,

with �1 = 0,1,2,3, �2 = 0,1,2,3, �1�

where 0,1,2,3 correspond to t ,x ,y ,z components, respec-
tively, so that ��1� can stand for ��1

0 ,�1
1 ,�1

2 ,�1
3�

= �t1 ,x1 ,y1 ,z1�, etc. The double divergence of the current
density �summation convention on �’s from 0 to 3 applies� is

�2j�1�2

��1
�1 � �2

�2
��1,�2� . �2�

This double divergence is interpreted as the pointwise den-
sity of the creation of probability in the eight-dimensional
spacetime. The equations of motion do not, unlike the usual
case of single-time systems, permit the definition of a prob-
ability current density such that the above double divergence
is everywhere zero. An application of the �double� diver-
gence theorem permits the global integrated creation of prob-
ability in the eight-dimensional interior region to be ex-
pressed as an integral of the normal component of the tensor
product current over the six-dimensional product of the
three-dimensional boundary surfaces for the individual par-

ticles. Given the validity of an optical theorem for the tran-
sition operator, then whatever the input state, the complete
scattering process does not create or destroy probability glo-
bally. We remark that the proof of the optical theorem entails
the use of partially time-reversed Green’s functions for inter-
mediate particle states in some of the terms in a perturbation
theory expansion for the transition operator �see Eqs. �33a�
and �33b� and Eqs. �34a�–�34d��; these terms disappear when
the interparticle interaction is instantaneous.

The final task begins with defining from the wave func-
tion a function representing the 16-component density of
flow of the product time operator t1t2; this is just the product
j�1�2��1 ,�2�t1t2. The double divergence of this current repre-
sents the local density of creation of product time at the point
��1 ,�2�. The divergence theorem reduces the computation of
the total amount of product time generated in the interior
region to an integral over the region’s surface. In turn, the
integrand in the surface integral will be expressed in terms of
the S matrices associated with the scattering of either one or
of both particles. The resulting formula achieves the paper’s
title objective, that is, expressing the correlation time, which
is the expected value of t1t2, for the two particles dwelling in
the scattering region in terms of the region taken, the input
wave function, and the input-to-output map.

The remainder of the paper is divided into four sections,
which treat of the above several topics as follows. In Sec. II,
we shall propose a preliminary version of the Bethe-Salpeter
equation that governs the quantum dynamics of two par-
ticles, each with its own associated time. The proposed inte-
gral equation is based on an inference from the classical
variational principle for the dynamics of two particles, each
with its own time, having a given �in general, noninstanta-
neous� mutual interaction at a distance. The classical varia-
tional principle is modeled on the relativistically invariant
variational principle of Schwarzschild, Tetrode, and Fokker
for two interacting charged particles �see, e.g., �7� for a re-
view, and �8� for a more recent work� but the nonrelativistic
interaction proposed herein has no symmetries in general. In
Sec. III, we propose a transition operator formalism for the
two-particle problem, then infer an optical theorem that—if
satisfied by the transition operator—guarantees overall prob-
ability conservation, and derive a correction to the classically
derived interaction Hamiltonian such that—with the correc-
tion included—the optical theorem is satisfied by the derived
transition operator. In Sec. IV, we derive a formula for the
dwell-correlation time for the two particles to remain in the
zone of interaction. Section V contains a discussion of the
results obtained and of some possible tasks for future inves-
tigations along these lines.

There are four appendixes, all of which deal with one-
particle systems. Appendix A gives a tutorial on one-particle
formal scattering theory in spacetime �as distinguished from
the more usual space-energy domain�, for the evolution of
the wave function both with time t as a parameter and with
the spatial coordinate z as a parameter. This material is in-
tended to supersede the scattering theory of �6�; but for the
detailed computation of single-particle dwell �sojourn� times,
crossing �arrival� times, or delay times, we refer the reader to
�6�. Appendix B exhibits a classical single-particle varia-
tional principle that can be used to obtain either the Lagrang-
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ian or the Hamiltonian version of classical dynamics, and
which will serve as a model for the two-particle two-time
variational principle that is proposed in Eq. �3� below. Ap-
pendix C considers the relation of predicted theoretical cur-
rents of time with possible observations of times in an en-
semble of single-particle scattering experiments where the
dynamics is Schrödinger’s equation. A reader of the technical
details of this paper should begin with a study of Appendixes
A–C. Appendix D gives a brief presentation of the computa-
tion of single-particle dwell times by the method of flux-flux
correlations �FFCs�; this material need not be studied in the
preparation for the treatment of the two-particle problem.

II. BETHE-SALPETER EQUATION: FIRST
APPROXIMATION

In this section we shall infer a preliminary version of an
integral equation of Bethe-Salpeter type to express the quan-
tum dynamics of two nonrelativistic particles, each with its
own time coordinate. Let the particles’ positions, etc., be
labeled by subscripts 1 and 2. The particles’ masses are
m1 ,m2; electrical charges are e1 ,e2; and e12 is a coupling
constant. We shall incorporate one-particle interactions with
background electromagnetic vector fields, e1A1

�1��1� and
e2A2

�2��2�, and with a two-particle interaction in the form of a
double-vector density e12A12

�1�2��1 ,�2� that can be
noninstantaneous—in order to lighten the mathematical load,
these fields will all be presumed to be of compact support in
all coordinates.

We choose ad hoc a classical action functional modeled in
Eq. �B6�,

A12 = �
�1a

�1b

d�1�p1
0d�1

0

d�1
+ p1

j1
d�1

j1

d�1
− u1

0�p1
0 +

1

2m1
�p1

j1

−
e1

c
A1

j1��1�	�p1
j1 −

e1

c
A1

j1��1�	 + e1A1
0��1�
�

+ �
�2a

�2b

d�2�p2
0d�2

0

d�2
+ p2

j2
d�2

j2

d�2
− u2

0�p2
0 +

1

2m2
�p2

j2

−
e2

c
A2

j2��2�	�p2
j2 −

e2

c
A2

j2��2�	 + e2A2
0��2�
�

+ �
�1a

�1b

d�1u1
0�

�2a

�2b

d�2u2
0�− e12A12

00��1,�2� +
e12

m1c
�p1

j1

−
e1

c
A1

j1	A12
j10��1,�2� +

e12

m2c
�p2

j2 −
e2

c
A2

j2	A12
0j2��1,�2�

−
e12

m1m2c2�p1
j1 −

e1

c
A1

j1	�p2
j2 −

e2

c
A2

j2	A12
j1j2��1,�2�
 .

�3�

In physical terms, the four types of two-particle contributions
represent charge-charge �A12

00�, current-charge �A12
j10�, charge-

current �A12
0j2�, and current-current �A12

j1j2� interactions, to first
order in A12’s. These terms can be thought of as comprising
retarded interactions with the source point at the earlier of

the two times or as advanced interactions with the source
point at the later of the two times. Note that Eq. �3� is gauge
invariant with respect to separate gauge transformations
�1��1� on A1

�1��1� , p1
�1��1� and �2��2� on A2

�2��2� , p2
�2��2� �cf.

Eq. �A43�� but is not invariant with respect to gauge trans-
formations by a �12��1 ,�2� of A�1�2��1 ,�2�.

It is possible to start with an action functional of type
�B1�, with the two-particle contributions being of the form

�
�1a

�1b

d�1�
�2a

�2b

d�2e12�− u1
0u2

0A12
00��1,�2� + u1

j1u2
0A12

j10��1,�2�

+ u1
0u2

j2A12
0j2��1,�2� − u1

j1u2
j2A12

j1j2��1,�2�� . �4�

Note that this variational principle is invariant, modulo the
constraints, with respect to transformations by a gauge func-
tion �12��1 ,�2� of the A12

�1�2��1 ,�2�; insofar as Eq. �4� would
lead to a complicated canonical formalism that would dis-
tract from our purpose here, we shall not utilize it. In this
case, the procedure corresponding to Eq. �B5� for eliminat-
ing u1

j1 /u1
0 and u2

j2 /u2
0 leads to Eq. �3� only to first order in the

components of A12. We shall in Sec. III analyze the necessity
of introducing a different kind of higher-order terms in A12 at
the quantum level in order to secure unitarity of the S matrix.

We want to establish a Bethe-Salpeter equation for the
system wave function �12

�2���1 ,�2� along the following lines:

�12
�2+���1,�2� � �12

�1+���1,�2� + i�� d4�1�� d4�2�

�G1
�1+���1;�1��G2

�1+���2;�2���H12��1�,�2��

��12
�2+���1�,�2�� . �5�

The superscripts 0,1,2 in parentheses indicate the number-of-
particle interactions accounted for in the wave and Green’s-
function determinations. The factor i� before the integral on
the right-hand side �rhs� guarantees that the product Green’s
function reduces to the conventional two-particle single-time
Green’s function when the times are made equal. This fol-
lows straightforwardly for the free-particle Green’s functions
from Eq. �A16�, from which we can infer

i�G1
�0	��t,r1;t�,r1��G2

�0	��t,r2;t�,r2��

= 	 Ḡ12
�0	��t,r1,r2;t�,r1�,r2�� , �6�

where Ḡ12
�0	� is a free-particle Green’s function associated

with the Schrödinger operator

i�
�

�t
+
�2

2m1
�1 · �1 +

�2

2m2
�2 · �2. �7�

A corresponding result holds for the Green’s functions with
one-body interactions included. If the two-body interactions
are instantaneous, that is,

�H12�t1,r1,t2,r2� = �H12�t1,r1,r2�
1�t1 − t2� , �8�

then we have for the single-time wave functions
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�̄12
�2+��t,r1,r2� = �̄12

�1+��t,r1,r2� +� dt�� d3r1�� d3r2�

�Ḡ12
�1+��t,r1,r2;t�,r1�,r2���H12�t�,r1�,r2��

��̄12
�2+��t�,r1�,r2�� . �9�

In what follows, we shall secure a formalism that reduces to
Eq. �9� when the two-body interactions satisfy Eq. �8�. In this
case, the classical-to-quantum construction is familiar, as the
entire action principle �3� can be made to depend on a single
common time coordinate for both particles.

The action functional of Eq. �3� is stationary for variations
of u1

0��1�, whereupon

− p1
0 − H1

�1� = �
�2a

�2b

d�2u2
0�H12„�1��1�,�2��2�… , �10�

where �H12, symmetrized in the preparation for quantum
mechanics, is

�H12��1,�2� = e12A12
00 −

e12

2m1c
��p1

j1 −
e1

c
A1

j1	A12
j10

+ A12
j10�p1

j1 −
e1

c
A1

j1	
 −
e12

2m2c

���p2
j2 −

e2

c
A2

j2	A12
0j2 + A12

0j2�p2
j2 −

e2

c
A2

j2	

+

e12

4m1m2c2��p1
j1 −

e1

c
A1

j1	�p2
j2 −

e2

c
A2

j2	A12
j1j2

+ �p1
j1 −

e1

c
A1

j1	A12
j1j2�p2

j2 −
e2

c
A2

j2	
+ �p2

j2 −
e2

c
A2

j2	A12
j1j2�p1

j1 −
e1

c
A1

j1	
+ A12

j1j2�p1
j1 −

e1

c
A1

j1	�p2
j2 −

e2

c
A2

j2	
 . �11�

If we apply the quantum version of the left-hand side �lhs� of
Eq. �10� to both sides of Eq. �5�, we find that

�i�
�

��1
0 − H1

�1�	�12
�2+���1,�2�

� i�� d4�2�G2
�1+���2,�2���H12��1,�2���12

�2+���1,�2�� .

�12�

Comparing Eqs. �10� and �12�, we infer that the classical-
integral-to-quantum-operation passage is something like

�
�1a

�2a

d�2u2
0 → i�� d4�2�G2

�1+���2,�2�� , �13�

and similarly for an integral over a dynamical path of par-
ticle 1. Note that both sides in Eq. �13� have the physical
dimension of time. The use of a i�G�1+� on the rhs of Eq. �13�
may not be suitable in every case; 	i�G�1−� or U�1�, or pos-
sibly another entity in this category, can be preferred on vari-

ous grounds. I do not know of an a priori rule for making
this choice for interior operations in, say, a higher-order per-
turbation; on physical grounds, however, the final Green’s
function that propagates the wave function into an exterior
effectively interaction-free zone, where a classical interven-
tion or measurement can occur, should be a causal Green’s
function.

The upshot of these considerations is that we are moti-
vated to use the quantum version of Eq. �11� as the �H12
operator in Eq. �5�. This operator is ‡ Hermitian. If the two-
body interactions are instantaneous as in Eq. �8�, and the
one-particle interactions are zero, then Eq. �9� leads to a
unitary S matrix for the time evolution of the single-time
wave function by an argument along the lines of the one-
particle case studied in Appendix A. For instantaneous two-
particle interactions with nonzero single-particle interactions,
the methods of the next section can be applied to show that
Eq. �9� yields a unitary S matrix. In the next section we shall
study how to rework Eq. �5� so that the two-body S matrix is
unitary for noninstantaneous interactions.

III. BETHE-SALPETER EQUATION: OPTICAL THEOREM
AND UNITARITY

In this section, we shall develop a transition operator for-
malism for the two-particle two-time case that was intro-
duced in Sec. II. We shall work in the z-evolution environ-
ment, with the intended application being to the theory of
expectation values of correlation times �see Sec. IV�.

The physical domain of interest is the topological product
of slabs,

��1�� ∀ �1
0,�1

1,�1
2,z1a � �1

3 � z1b�

� ��2�� ∀ �2
0,�2

1,�2
2,z2a � �2

3 � z2b� . �14�

This product slab is to contain the compact supports of all
the one- and two-particle interaction fields. The input will be
a sum of products of free-single-particle wave functions of
type �A13a�,

�12
�0���1,�2� = �

open
d3w1�

�1

�
open

d3w2�
�2

1��1;w1,�1�

�2��2;w2,�2�g12�w1,�1,w2,�2� , �15�

where we assume no closed-channel input and will generally
neglect closed-channel output. g12 is a complex-valued input
probability-amplitude function that is normalized,

1 = �
open

d3w1�
�1

�
open

d3w2�
�2

�g12�w1,�1,w2,�2��2.

�16�

A �=F state will be considered to represent a particle input
from the left ��1

3=z1a or �2
3=z2a� and a �=B state a particle

input from the right ��1
3=z1b or �2

3=z2b�. The reverse �F↔B�
associations hold for output wave functions.

Before considering two-particle interactions, we need to
upgrade Eq. �15� into a wave function in which the one-
particle interactions are accounted for. This can be accom-
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plished by means of the Møller wave operators as in Eq.
�A25a�,

�12
�1	� = �1

�1	��2
�1	��12

�0�, �17�

where the upper �lower� signs all go together. Let us now
presume the existence of a transition operator T12 that con-
verts �12

�1+� into �12
�2+� as follows:

�12
�2+���1,�2� = �12

�1+���1,�2� + ��12
�2+���1,�2� , �18�

where

��12
�2+���1,�2� = i�� d4�1�� d4�2�� d4�1�� d4�2�

�G1
�1+���1;�1��G2

�1+���2;�2��T12��1�,�2�;�1�,�2��

��12
�1+���1�,�2�� . �19�

In view of Eqs. �17� and �A18� and the ‡-Hermitian conju-
gate of Eq. �A29a�, we have

��12
�2+���1,�2� = i�� d4�1�� d4�2�� d4�1�� d4�2�

�G1
�0+���1;�1��G2

�0+���2;�2��T12��1�,�2�;�1�,�2��

��12
�0���1�,�2�� , �20�

with the operator definition

T12 = �1
�1−�‡�2

�1−�‡T12�1
�1+��2

�1+�. �21�

Let us now infer from probability conservation in the do-
main �14� the analogs of the optical theorem �A27a� for the
operators T12 and T12. The components of the operator for
probability current are formed as the tensor product of op-
erators of types �A5� and �A6�,

j12
�1�2��1,�2� = j1

�1��1� � j2
�2��2� , �22a�

J12
33�z1,z2� = J1

3�z1� � J2
3�z2� . �22b�

For any input state to Eq. �18�, we want

0 = �
z1a��1

3�z1b

d4�1�
z2a��2

3�z2b

d4�2

�
�2

��1
�1 ��2

�2
��12�j12

�1�2��1,�2���12�

= ��12�J12
33�z1,z2���12��z1=z1a

z1=z1b�z2=z2a

z2=z2b. �23�

With the wave function of Eq. �18� we have

0 = ���12
�1+��J12

33�z1,z2���12
�1+�� + ��12

�1+��J12
33�z1,z2����12

�2+��

+ ���12
�2+��J12

33�z1,z2���12
�1+�� + ���12

�2+��J12
33�z1,z2�

����12
�2+����z1=z1a

z1=z1b�z2=z2a

z2=z2b. �24�

It is not difficult to prove that the first summand on the rhs of
Eq. �24� yields zero after end-point evaluations, so that terms
not involving ��12

�2+� in square brackets on the rhs of Eq.
�24� can be omitted. It is convenient to define the following
associations to specify the input labels P1 , P2 and the output
labels Q1 ,Q2 as functions of the end points, and the inverse
functions:

Pl�zl� = �F , if zl = zla

B , if zl = zlb
� l = 1,2, �25a�

Ql�zl� = �B , if zl = zla

F , if zl = zlb
� l = 1,2, �25b�

zl�Pl� = �zla, if Pl = F

zlb, if Pl = B
� l = 1,2, �25c�

z̃l�Ql� = �zla, if Ql = B

zlb, if Ql = F
� l = 1,2. �25d�

To evaluate the remaining three terms in Eq. �24�, we ob-
serve that generic expressions for
�12

�1+��s1 ,z1 ,s2 ,z2� ,��12
�2+��s1 ,z1 ,s2 ,z2� in the exterior re-

gions can be inferred from Eqs. �A34�, �A35�, �20�, and
�A17� as follows:

�12
�1+��s1,z1,s2,z2� = �

open
d3w1�

�1

�
open

d3w2�
�2

�
open

d3w1��
�1�
�

open
d3w2��

�2�

1�s1 . z1;w1,�1�2�s2 . z2;w2,�2�

��
�1P1�z1�

3�w1 − w1��
�1�1�

+ 
�1Q1�z1�S1
�1,z��w1,�1;w1�,�1����
�2P2�z2�


3�w2 − w2��
�2�2�

+ 
�2Q2�z2�S2
�1,z��w2,�2;w2�,�2���g12�w1��1�,w2�,�2�� , �26�

��12
�2+��s1,z1,s2,z2� = �i��−1�

open
d3w1�

�1

�
open

d3w2�
�2

�
open

d3w1��
�1�
�

open
d3w2��

�2�

1�s1,z1;w1,�1�2�s2,z2;w2,�2�
�1Q1�z1�

�
�2Q2�z2��w1,�1,w2,�2�T12�w1�,�1�,w2�,�2��g12�w1�,�1�,w2�,�2�� . �27�
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We can now use the inner product formulas �A13b�, including algebraic signs, to evaluate the remaining terms in Eq. �24�:
dropping an overall factor of �i��−1, and using Eqs. �A13b� and �A21�, Eq. �24� reduces to

0 = �
open

d3w1�
�1

�
open

d3w2�
�2

�
open

d3w1��
�1�
�

open
d3w2��

�2�

g12�w1,�1,w2,�2��

���
open

d3w1��
�1�
�

open
d3w2��

�2�

�S1
�1,z�†�w1,�1;w1�,�1��S2

�1,z�†�w2,�2;w2�,�2���w1�,�1�,w2�,�2��T12�w1�,�1�,w2�,�2��

− �w1,�1,w2,�2�T 12
‡ �w1�,�1�;w2�,�2��S1

�1,z��w1�,�1�;w1�,�1��S2
�1,z��w2�,�2�;w2�,�2���

− �i��−1�w1,�1,w2,�2�T 12
‡ U1

�0�U2
�0�T12�w1�,�1�,w2�,�2���g12�w1�,�1�,w2�,�2�� . �28�

We can now apply Eq. �A40� and its ‡-Hermitian conjugate,
in connection with Eq. �21�, to absorb the S matrices and
convert the partially-on-shell matrix elements of �1

�1−� and
�2

�1−� to partially-on-shell matrix elements of �1
�1+� and �2

�1+�,
respectively, and similarly for the conversion of the
‡-Hermitian conjugates. Therefore, it suffices for the validity
of Eq. �24� that the operator equation

0 = �1
�1+�‡�2

�1+�‡�T12 − T12
‡ − �i��−1T12

‡ �1
�1−��2

�1−�U1
�0�U2

�0�

��1
�1−�‡�2

�1−�‡T12��1
�1+��2

�2+� �29�

be valid. If in turn we apply Eq. �A38� and drop the opera-
tors exterior to the square brackets on the rhs of Eq. �29�, we
find a sufficient condition on the operator T12 for probability
to be conserved in the two-particle scattering problem,

0 = T12 − T12
‡ − �i��−1T12

‡ U1
�1�U2

�1�T12. �30�

This is the desired statement of the optical theorem in the
two-particle case.

We investigate now how the transition operator T12 relates
to �H12 of Eq. �5�. A straightforward generalization of Eqs.
�A25b� and �A26a� does not work for the following reason.
In fact, let us manipulate Eq. �5� to obtain

T12 � �H12�I1I2 − i�G1
�1+�G2

�1+��H12�−1. �31�

Operator algebra along the lines of Eq. �A27a� now shows
that this particular T12 only satisfies the optical theorem �30�
to first order in the ‡-Hermitian operator �H12, since

U1
�1�U2

�1� = �i��2�G1
�1+� − G1

�1−���G2
�1+� − G2

�1−�� �32a�

��i��2�G1
�1+�G2

�1+� + G1
�1−�G2

�1−�� . �32b�

Evidently what is needed in T12 is second- and higher-order
terms in �H12 that involve the intermediate “crossed”
Green’s function G12

�1��, defined as follows:

G12
�1�� = − i��G1

�1+�G2
�1−� + G1

�1−�G2
�1+�� �33a�

=− G12
�1��‡. �33b�

This Green’s function is zero if we assume equal times as in
Eq. �6�, corresponding to instantaneous interparticle interac-

tions. Noninstantaneous interactions between the particles
seem to entail unavoidably the use of some anticausal
Green’s functions in order to secure global probability con-
servation.

I have discovered a compact expression for a correction
operator to �H12 in Eq. �5�, such that the resulting Bethe-
Salpeter equation conserves probability flow overall. I do not
know of a concise derivation of the result from simple be-
ginnings, however, so I shall just state the result and verify
the optical theorem. Instead of Eq. �5�, we shall propose the
following, given in operator form, and preceded by three
nested definitions:

M12 = �H12G12
�1��, �34a�

K12 = I1I2 + �I1I2 + M12M12�1/2, �34b�

R12 = M12�K12�−1�H12 = − R12
‡ , �34c�

�12
�2+� = �12

�1+� + i�G1
�1+�G2

�1+���H12I1I2 + R12��12
�2+�.

�34d�

The second part of Eq. �34c� requires some computation.
Note that in a space-time position coordinate representation
of the rhs’s of Eqs. �34a�–�34d�, the operators depend on 16
variables, as in R12��1� ,�2� ;�1� ,�2��, so �H12I1I2 stands for

�H12��1�,�2��

4��1� − �1��


4��2� − �2�� . �35�

We can now infer a transition operator,

T12 = ��H12I1I2 + R12��I1I2 − i�G1
�1+�G2

�1+���H12I1I2

+ R12��−1, �36�

and undertake to verify Eq. �30� using Eq. �36� for T12. Ma-
nipulating as in Eq. �A27a�, and using Eqs. �34c�, �32a�, and
�33a�, we work the rhs of Eq. �30� into
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2R12 − ��H12I1I2 − R12�G12
�1����H12I1I2 + R12�

= �2M12K 12
−1 − �I1I2 − M12K 12

−1�

�M12�I1I2 + M12K 12
−1���H12

= �2K12 − �K12 − M12��K12 + M12��M12K 12
−2�H12 = 0,

�37�

where we used the fact that M12 and K12 commute, and the
last step follows from straightforward algebra.

We can combine Eqs. �26� and �27� to define an S matrix
for two particles,

S12
�2,z��w1,�1,w2,�2;w1�,�1�,w2�,�2��

= S1
�1,z��w1�1;w1�,�1��S2

�1,z��w2�2;w2�,�2��

+ �i��−1�w1,�1,w2,�2�T12�w1�,�1�,w2�,�2�� . �38�

That S12
�2,z� is unitary is implied by the unitarity of S1 and S2,

and by Eq. �28�. We can now state the total wave function in
the exterior regions in a simplified form as follows:

�12
�2+��s1,z1,s2,z2� = �

open
d3w1�

�1

�
open

d3w2�
�2

�
open

d3w1��
�1�
�

open
d3w2��

�2�

1�s1,z1;w1,�1�2�s2,z2;w2,�2�

��
�1P1�z1�
�2P2�z2�

3�w1 − w1��
�1�1�


3�w2 − w2��
�2�2�
+ 
�1Q1�z1�
�2P2�z2�S1

�1,z��w1,�1;w1�,�1��

3�w2 − w2��
�2�2�

+ 
�1P1�z1�
�2Q2�z2�

3�w1 − w1��
�1�1�

S2
�1,z��w2,�2;w2�,�2�� + 
�1Q1�z1�
�2Q2�z2�

�S12
�2,z��w1,�1,w2,�2;w1�,�1�,w2�,�2���g12�w1�,�1�,w2�,�2�� . �39�

IV. TWO-PARTICLE DWELL-CORRELATION TIMES

We will now derive a formula for the dwell-correlation
time for two particles scattering from one another and from
background vector potentials. According to the principle es-
tablished in �6�, the 16-component current of product time is
just j�1�2��1 ,�2��1

0�2
0, and the total amount of product time

created in the domain �14� is the integral over the domain of
the double four-divergence of this current. Therefore, given
the input function g12 of Eq. �15�, the total product time
created in the domain is, following an application of the
divergence theorem �compare Eqs. �23� and �24��,

�t1t2�g12
= ��12

�2+��J12
33�z1,z2�t1t2��12

�2+���z1=z1a

z1b �z2=z2a

z2b . �40�

Next, let us define differential operators that come up re-
peatedly in the following:

�l�wl,�l,zl� =
1

i

�

�wl
0 + ���l�

mlzl

�Kl
3�wl�

, for l = 1,2.

�41�

The operators tl �with l=1,2� will be represented by �l, as
can be inferred from Eq. �C15�.

The open-channel ingredients of �12
�2+� in the region exte-

rior to the scattering domain are given in Eq. �39�. In evalu-
ating Eq. �40�, we shall omit contributions arising from in-
terference between ingoing and outgoing waves. �he latter
contributions were accounted for in the one-particle study of
�6� �Eqs. �63b� and �91��, as were the contributions from
closed-channel output in �6� �Eqs. �64b� and �93���. This
means that there will be no overlap between the four groups
of terms on the rhs of Eq. �39�, which involve in turn the
unit, the S1

�1,z�, the S2
�1,z�, and the S12

�2,z� matrices. Accordingly,
Eq. �40� reduces to

�t1t2�g12
=� d3w1 �

P1=B

F � d3w2 �
P2=B

F

�g12�w1,P1,w2,P2���1„w1,P1,z1�P1�…�2„w2,P2,z2�P2�…g12�w1,P1,w2,P2��

−� d3w1��
�1�
� d3w1 �

Q1=B

F � d3w2 �
P2=B

F � d3w1��
�1�

�g12�w1�,�1�,w2,P2��S1
�1,z�†�w1�,�1�;w1,Q1��1„w1,Q1, z̃1�Q1�…

��2„w2,P2,z2�P2�…S1
�1,z��w1,Q1;w1�,�1��g12�w1�,�1�,w2,P2��

−� d3w2��
�2�
� d3w1 �

P1=B

F � d3w2 �
Q2=B

F � d3w2��
�2�

�g12�w1,P1,w2�,�2��
�S2

�1,z�†�w2�,�2�;w2,Q2��1„w1,P1,z1�P1�…

��2„w2,Q2, z̃2�Q2�…S2
�1,z��w2,Q2;w2�,�2��g12�w1,P1,w2�,�2���
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+� d3w1��
�1�
� d3w2��

�2�
� d3w1 �

Q1=B

F � d3w2 �
Q2=B

F � d3w1��
�1�
� d3dw2��

�2�

�g12�w1�,�1�,w2�,�2��
�

�S12
�2,z�†�w1�,�1�,w2�,�2�;w1,Q1,w2,Q2��1„w1,Q1, z̃1�Q1�…�2„w2,Q2, z̃2�Q2�…

�S12
�2,z��w1,Q1,w2,Q2;w1�,�1�,w2�,�2��g12�w1�,�1�,w2�,�2��� . �42�

In order to compute the expected product dwell time with the centered times, that is,

��t1 − �t1�g12
��t2 − �t2�g12

��g12
= �t1t2�g12

− 2�t1�g12
�t2�g12

�43�

�the factor of 2 arises because the expectation value of a constant is zero here�, we need the expectation values of the operators
t1I2 and I1t2. These can be obtained by replacing the operators �2 and �1, respectively, in all the integrands in Eq. �42� with
the unit operator. In particular, in calculating �t1�g12

, the summand involving no S matrices cancels with the summand involving
the S2

�1,z� matrix due to the unitarity of the latter. The result is

�t1�g12
= −� d3w1��

�1�
� d3w1 �

Q1=B

F � d3w2 �
P2=B

F � d3w1��
�1�

�g12�w1�,�1�,w2,P2��S1
�1,z�†�w1�,�1�;w1,Q1��1„w1,Q1, z̃1�Q1�…

�S1
�1,z��w1,Q1;w1�,�1��g12�w1�,�1�,w2,P2��

+� d3w1��
�1�
� d3w2��

�2�
� d3w1 �

Q1=B

F � d3w2 �
Q2=B

F � d3w1��
�1�
� d3dw2��

�2�

�g12�w1�,�1�,w2�,�2��
�

�S12
�2,z�†�w1�,�1�,w2�,�2�;w1,Q1,w2,Q2��1„w1,Q1, z̃1�Q1�…S12

�2,z��w1,Q1,w2,Q2;w1�,�1�,w2�,�2��g12�w1�,�1�,w2�,�2��� . �44�

We note that, in Eq. �44�, in the term involving S1
�1,z�, the

integral and sum of g12’s over w2 ,�2 can be replaced with a
Hermitian density matrix,

�1�w1�,�1�;w�,�1�� = �
open

d3w2�
�2

g12�w1�,�1�,w2,�2�

�g12�w1�,�1�,w2,�2��. �45�

A similar combination of formulas holds for �t2�g12
. We shall

attempt to correlate formulas �42� and �44� with prospective
physical measurements in the discussion of the next section.

V. DISCUSSION

We shall first discuss the physical and operational mean-
ings of the results derived in Secs. III and IV. Let us consider
the probability conservation of Eq. �23�. In physical terms,
we have the following scenario. A large number of trials,
each comprising the launch of a pair of particles into the
interaction zone, are affected with the common normalized
correlated input amplitude g12�w1 ,�1 ,w2 ,�2�, and with the
input-to-geometry correlations of Eq. �25�. We have four
quantum states corresponding to the four summands within
the square brackets on the rhs of Eq. �39�: �i� the input state,
�ii� the state in which particle 1 evolves and egresses but
particle 2 remains in its input state, �iii� the state in which
particle 1 remains in its input state while particle 2 evolves
and egresses, and �iv� the state in which both particles are

permitted to evolve such that both have egressed from the
zone of interaction. Each of these four states in a sense has
unit probability; but, in the computation of the overall result,
�i� and �iv� contribute +1, while �ii� and �iii� contribute −1. A
convenient rule can be inferred �we leave a detailed physical
argument to the reader�: when particle 1 is entering the zone,
apply a minus sign; if exiting, a plus sign; multiply by the
corresponding sign for particle 2; the product is the algebraic
sign for all contributions from the associated substate. To
show this mathematically, we substitute Eq. �39� into Eq.
�23�. The first through fourth summands in square brackets in
Eq. �39� lead to mutually orthogonal states anywhere com-
pletely outside the zone of interaction since the P’s and Q’s
are complementary. Each of these four parts of the wave
function therefore contributes separately. The minus sign for
the second and third parts arises from the products of the 	
signs arising from the -state norms, and the 	 signs arising
from the end and evaluation points. The overall sign at each
evaluation point is �(P1�z1�)�(P2�z2�)�(Q1�z1�)�(Q2�z2�) for
the contributions to �i�,
�(Q1�z1�)�(P2�z2�)�(Q1�z1�)�(Q2�z2�) for the contributions
to �ii�, �(P1�z1�)�(Q2�z2�)�(Q1�z1�)�(Q2�z2�) for the contri-
butions to �iii�, and �(Q1�z1�)�(Q2�z2�)�(Q1�z1�)�(Q2�z2�)
for the contributions to �iv�; this algebraic sign is the same
for each contribution to �i�, �ii�, �iii�, and �iv�, and is +1,
−1,−1,+1, respectively. Hence, probability is conserved.

We now consider some aspects of the computation or
measurement of the expectation value of a nontrivial opera-
tor, in particular t1t2. The theoretical prediction of this result
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is Eq. �42�. The contributions arising from interference be-
tween ingoing and outgoing waves were assumed to be of
negligible importance; correspondingly, a measurement ap-
paratus for testing the theory is presumed to be able to re-
spect this separation of effects. The operators �l �with l
=1,2� represent crossing times. To measure �t1t2�g12

, we
measure four times for each trial in an ensemble: �t1�in and
�t2�in, which are the respective ingress times of particles 1
and 2, and �t1�ex and �t2�ex, which are the egress times. If N is
the number of trials, we expect that

�t1t2�g12
= lim

N→�
N−1 �

trials
��t1�ex − �t1�in���t2�ex − �t2�in�

�46�

= lim
N→�

N−1 �
events

��t1�in�t2�in − �t1�ex�t2�in

− �t1�in�t2�ex + �t1�ex�t2�ex� . �47�

The four summands within square brackets on the rhs of Eq.
�47� correspond one by one to the four summands on the rhs
of Eq. �42�.

Let us also consider the expectation values of the opera-
tors t1I2 and I1t2. The first of these is given in Eq. �44�. The
physical meaning, and expected experimental correlate, of
this prediction seems to be the following: given the same
input amplitude g12, do N trials with both particles launched
into the interaction zone and determine the average value
�t1�ex. Do another N trials with the second particle held in
abeyance, where the input of particle 1 is specified by the
density matrix of Eq. �45�; again determine an average �t1�ex.
Subtract the two averages. This is the predicted value for Eq.
�44�. A formula for large N is

�t1�g12
= N−1 �

trials
�t1�ex�both particles launched�

− N−1 �
trials

�t1�ex�particle 2 not launched;

density matrix for input of particle 1� . �48�

The BSE dates to the early 1950s �9,10�; a brief history of
its origins was given recently by Salpeter �11�. The equation
was directed primarily to the relativistic description of bound
states in quantum mechanics and was based on Feynman’s
theory of positrons �12�. A subsequent publication �13� de-
rived the BSE from quantum field theory. In the intervening
years much work with the BSE has been done on relativistic
bound states, but we shall not consider that work here.

Starting with the paper �14� in 1980, the BSE has been
applied to nonrelativistic condensed-matter physics, in par-
ticular to the dynamics of excitons, or bound electron-hole
pairs, and thereby to the optical properties of solids. There is
now a website �15� dedicated to discussion of applications of
the Bethe-Salpeter equation to the latter subjects. The work
in hand in its present development has little overlap either
with the theory of bound states or with the applications of the
BSE to condensed matter.

Finally, although this possibility has not been investi-
gated, it may be that the integral �34d� can treat systems in

which one particle enters the interaction zone across a t
=constant surface, while the other enters across a cylindrical
surface in spacetime that contains the zone of interaction,
with a radius as the evolution parameter. This construction
could model joint problems involving bound states of the
former and scattering or dwell times of the latter, problems
that are conventionally described in the space-energy do-
main.

APPENDIX A: SINGLE-PARTICLE SCATTERING

In this appendix we shall describe that single-particle
scattering theory needed for the two-particle theory advanced
in the main text. We do this on the grounds that we want to
show �1� that formal scattering theory extends straightfor-
wardly to the case that the zone of interaction is compact in
spacetime, so that energy is not conserved, and �2� that im-
portant dynamical ingredients—Green’s functions and tran-
sition operators—are the same for the evolution of the wave
function along families of z=constant planes as along t
=constant planes. Unlike the formalism in �6�, we shall not
carry along the z derivative of the wave function as a sepa-
rate entity in a two-component wave function: the wave
function will be a single-component complex-scalar-valued
function of the particle’s four space-time coordinates, such
that z derivatives are to be computed first and specialization
to a particular z value is effected subsequently.

Let the particle’s mass be m and its electrical charge be e,
and let there be a given background four-vector electromag-
netic potential field (A0��� ,A���), where A= �A1 ,A2 ,A3�, and
���= �t ,r�= �s ,z�= �t ,x ,y ,z�. The four A fields are supposed
to have compact support contained between the planes t= ta
and t= tb, and between the planes z=za and z=zb, with ta
� tb and za�zb. The Schrödinger dynamics is governed by a
Hamiltonian H�1� that is the sum of a free-particle Hamil-
tonian H�0� and an interaction Hamiltonian �H,

H�1��A0,A� = H�0� + �H�A0,A� , �A1a�

H�0� = −
�2

2m
� · � , �A1b�

�H�A0,A� = eA0 +
ie�

2mc
�A · �+ � · A� +

e2

2mc2A · A .

�A1c�

�The parentheses around a superscript on H are to distinguish
this signifier from a vector index.� After some kinematical
preliminaries, we shall treat the dynamics of a particle scat-
tering from this background field.

Let ���� and ���� be two kinematical wave functions, that
is, having compact support or having rapidly decreasing
magnitude in all directions in spacetime. Then in contrast to
the usual inner product we define �� ��� in terms of a four-
dimensional integral,
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����� =� d4���������� , �A2�

where the integral is over all spacetime. We can define ma-
trix elements of operators accordingly, including operators
involving time derivatives. The ‡-Hermitian conjugate �‡ of
an operator � will be defined as follows: for all acceptable
kinematical wave functions � and �, we must have

����‡��� = ��������. �A3�

We call an operator ‡ Hermitian if it equals its ‡-Hermitian
conjugate; the operators i��� /�t�, H�0�, and �H are all ‡ Her-
mitian. Note that the ‡ operation here is not the same as
Lippmann’s ��16�, Eq. �4�� similarly named conjugation �see
also �17�, Eq. �1.2.18b��. The operators and matrix elements
for the components of four-momentum p� are

p� =
�

i

�

���
, � = 0,1,2,3, �A4a�

���p���� =� d4������
�

i

��

���
��� . �A4b�

�There is no 4�4 metric tensor in this nonrelativistic
spacetime—all vector and tensor indices will be superscripts;
−p0 will be the energy, +p1 will be the x component of linear
momentum, etc.� The operators associated with the probabil-
ity current density at the space-time point � are j����,
which have the following space-time matrices:

���j0������� = 
4�� − ��
4�� − ��� , �A5a�

���jk������� =
�

2im
�4�� − ��� �

��k −
�

��k��4�� − ���,
→ →

k = 1,2,3. �A5b�

The underarrows indicate the direction the differentiation
acts when the operator is sandwiched into a matrix element
with functions of �’s. We shall have need of integrals of the
normal component of the current over t=constant slices and
over z=constant slices of spacetime, so we define the opera-
tors J0�t� and J3�z� as follows:

���J0�t����� = 
1��0 − t�
1�t − �0��
3�r − r�� , �A6a�

���J3�z����� =
�

2im
�1��3 − z�� �

�z
−

�

�z�
��1�z − �3���3�s − s�� .

←→
�A6b�

Matrix elements of J0�t� entail four-dimensional integrals
that reduce to three-dimensional integrals over the t slice of
spacetime, and hence correspond to a conventional inner
product introduced into nonrelativistic quantum mechanics;
if another operator � that commutes with J0�t� is involved,
the matrix element of J0�t�� reduces to the conventional ma-
trix element of � on a slice t in spacetime. Matrix elements
���J3�z���� yield the total z current across the z slice of
spacetime that is associated with the transition �→�. If the

operator � commutes with J3�z�, the matrix element
���J3�z����� will be construed to be the “expectation value”
in the state � of the current of the entity represented by �
across the z plane; in this paper, we shall sometimes take
�= t.

Let us define complete sets of on-shell plane-wave states
for t propagation and for z propagation of solutions of the
Schrödinger equation. �Note that completeness here is con-
strained to mean completeness within the subset of on-shell
states, not to completeness for general complex-valued func-
tions on spacetime.� This equation is

i�
��

�t
+
�2

2m
� · �� = 0. �A7�

In both cases we have a wave four-vector �k��, but the spe-
cialization to the on-shell condition is different. For t evolu-
tion we take

�k�� = „K0�k�,k… , �A8a�

K0�k� = ��/�2m��k · k � 0. �A8b�

�Note that �k0=�K0�k� is the non-negative kinetic energy,
and so is the negative of the eigenvalue of momentum p0.�
For z evolution we have four subcases, corresponding to for-
ward and backward propagations and to open and closed
channels. For open channels we define

�k�� = „w, 	 K3�w�… , �A9a�

K3�w� = ��2m/��w0 − �w1�2 − �w2�2�1/2 � 0, �A9b�

and for closed channels we have

�k�� = „w, 	 i�3�w�… , �A10a�

�3�w� = ��w1�2 + �w2�2 − �2m/��w0�1/2 � 0. �A10b�

The borderline cases that �3�w�=0 are studied in �6� �Eqs.
�53� and �54�� but will be ignored here as being of measure
zero on the w space. We have the normalized wave functions
for t propagation,

��t,r;k� = �2��−3/2exp�− iK0�k�t + ik · r� , �A11a�

���k��J0�ta����k��� = 
3�k − k��, for any ta.

�A11b�

For z propagation we define, as in �6�,

� = �F , label for forward propagation along z

B , label for backward propagation along z ,
�

�A12a�

��F� = + 1, �A12b�

��B� = − 1. �A12c�

We then have �be reminded that �s�= �t ,x ,y�, and �w�
= �w0 ,w1 ,w2�= �k0 ,k1 ,k2��
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�s,z;w,�� = �2��−3/2exp�i�− w0t + w1x + w2y�� � �m/��K3�w���1/2exp�i����K3�w�z� , for w open

m/���3�w���1/2exp− �����i�/4 + �3�w�z�� , for w closed,
�
�A13a�

��w,���J3�za���w�,���� = �����
���

3�w − w�� , for w open

�
�F
��B + 
�B
��F�
3�w − w�� , for w closed.
� �A13b�

The normalization and product integrals are independent of
za.

Let us now define Green’s functions for the free particle.
We want

�i�
�

�t
+
�2

2m
� · �	G�0	��t,r;t�,r�� = 
1�t − t��
3�r − r�� ,

�A14�

with G�0+� and G�0−� being the causal and anticausal Green’s
functions, respectively. We have

G�0	��t,r;t�,r�� =� d4k
exp�− ik0�t − t�� + ik · �r − r���
��k0 	 i�� − ��2/�2m��k · k

.

�A15�

�� is the usual small positive quantity that specifies the inte-
gration contour around the singularity.� If in Eq. �A15� we do
the integral over k0, we find that

G�0	��t,r;t�,r�� = �	i��−1�„	�t − t��…

�� d3k��t,r;k���t�,r�;k��,

�A16�

where � is the unit step function. If in Eq. �A15� we do the
integral over k3, we find that

G�0	��s,z;s�,z�� = �	i��−1�
open

d3w��„	�z − z��…

��s,z;w,F��s�,z�;w,F��

+ �„	�z� − z�…�s,z;w,B��s�,z�;w,B���

+ �i��−1�
closed

d3w���z − z��

��s,z;w,F��s�,z�;w,B�� − ��z� − z�

��s,z;w,B��s�,z�;w,F��� . �A17�

Note that in either environment

G�0−���;��� = G�0+����;��� = G�0+�‡��;��� . �A18�

We shall have need of the U�0� function, which takes the
place of the operators exp�−iH�0��t− t�� /�� or 2��
1�E
−H�0�� that occur in formal scattering theory when energy is
conserved �see, e.g., �17�, Eq. �2.5.29��,

U�0� = �i���G�0+� − G�0−�� = U�0�‡. �A19�

In coordinates, we have for the t-evolution environment

U�0��t,r;t�,r�� =� d3k��t,r;k���t�,r�;k��, �A20�

and for z evolution

U�0��s,z;s�,z�� = �
open

d3w�
�=B

F

�s,z;w,���s�,z�;w,���.

�A21�

There is no contribution to U�0� from closed-channel states.
For the dynamics of Eq. �A1�, we can infer integral equa-

tions for the forward and backward evolving wave functions,

��1	���� = ��0���� +� d4��G�0	���;���

��H„A0����,A����…��1	����� . �A22�

In the above, the superscript “�1�” means that at most one-
body interactions are involved. The input state ��0���� is
defined in the two cases as follows:

��0��t,r� =� d3k��t,r;k�f�k�, for t evolution,

�A23a�

��0��s,z� = �
open

d3w�
�=B

F

�s,z;w,��g�w,��,

for z evolution, �A23b�

where in Eq. �A23b� the �=F contribution is input from the
left �z=za� of the slab, and the �=B part is input from the
right �z=zb�. We are assuming that there is no closed-channel
input; this simplification avoids the case that the problem is
divided such that there are two adjacent or closely parallel
slabs with faces za�zm�zb, for then at the intermediate face
z=zm, closed-channel states can propagate from left to right
or vice versa as output from one slab and input to the other.
The weight functions f and g are both normalized to 1 for
unit input current,

� d3k�f�k��2 = 1, �A24a�
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�
open

d3w�
�=B

F

�g�w,���2 = 1. �A24b�

I have not succeeded in establishing a continuously evolving
density-matrix formulation for the z evolution case; however,
once the input-to-output mapping is obtained for the needed
wave functions, partially incoherent mixtures of input, and
accordingly of output, states can be constructed as dictated
by the physics of the system. Moreover, I have not tackled
the problem that a measurement is performed at an interme-
diate z=zm plane, which would lead to a partial collapse of
the wave function �or density matrix� for the F or the B
components, or both, at z=zm. The resulting feedback loops,
involving one or more reflections, would lead to a change in
the input and the output states at z=zm; something like an
iterated self-consistent analysis might be needed to converge
to the result.

We can solve Eq. �A22� for ��1	� in terms of a formal
power series, condensed as follows:

��1	� = ��1	���0�, �A25a�

��1	� = �I − G�0	��H�−1. �A25b�

Here ��1	� are the Møller wave operators, I is represented
by the four-dimensional delta function as on the rhs of Eq.
�A14�, and each operator product entails a four-dimensional
integral over spacetime. If we define the transition operator
T�1� and manipulate its ‡-Hermitian conjugate, we have

T�1� = �H��1+� = ��1−�‡�H , �A26a�

T�1�‡ = ��1+�‡�H = �H��1−�. �A26b�

Considered as a function, T�1��� ;��� has its support in each
��� and ���� the same compact domain in spacetime as that of
�H. We can now prove an optical theorem at the operator
level �compare �17�, Eq. �2.5.29��,

T�1� − T�1�‡ = �H�I − G�0+��H�−1 − �I − �HG�0−��−1�H

= �I − �HG�0−��−1�H�G�0+� − G�0−���H�I

− G�0+��H�−1 = �i��−1T�1�‡U�0�T�1� �A27a�

=�I − �HG�0+��−1�H − �H�I − G�0−��H�−1

= �i��−1T�1�U�0�T�1�‡. �A27b�

Further manipulations of Eqs. �A25� and �A26� yield

��1+� = I + G�0+�T�1�, �A28a�

��1−� = I + G�0−�T�1�‡, �A28b�

��1−�‡ = I + T�1�G�0+�. �A28c�

We shall need the complete Green’s functions and the U
operator for the interacting case,

G�1	� = ��1	�G�0	� = G�1��‡, �A29a�

U�1� = �i���G�1+� − G�1−�� = U�1�‡. �A29b�

The operator U�1� corresponds to exp�−iH�1��t− t�� /�� or
2��
1�E−H�1�� of the energy-conserving case. The S matrix
is defined only for on-shell open-channel states as follows:

S�1,t��k;k�� = 
3�k − k�� + �i��−1���k��T�1����k��� ,

�A30a�

for t evolution, with any k ,k�, and

S�1,z��w,�;w�,��� = 
���

3�w − w�� + �i��−1��w,���T�1�

���w�,���� �A30b�

for z evolution, w ,w� open.
Both of these S matrices prove to be unitary. In fact, we

have for z evolution �note that since S’s are matrices rather
than space-time operators, we use “†” rather than the “‡” to
denote Hermitian conjugation�,

�
open

d3w��
��

S�1,z�†�w,�;w�,���

�S�1,z��w�,��;w�,��� − 
3�w − w��
���
= �i��−1��w,����T�1� − T�1�‡ − �i��−1T�1�‡

��
open

d3w��
��

��w�,������w�,����T�1����w�,���� = 0,

�A31a�

where the last step follows from Eqs. �A21� and �A27a�. It
follows from Eqs. �A21� and �A27b� that

�
open

d3w��
��

S�1,z��w,�;w�,���S�1,z�†�w�,��;w�,���

= 
3�w − w��
���. �A31b�

One can prove similarly that both

� d3k�S�1,t�†�k;k��S�1,t��k�;k�� = 
3�k − k�� ,

�A32a�

� d3k�S�1,t��k;k��S�1,t�†�k�;k�� = 
3�k − k�� .

�A32b�

We shall now show that unitarity of the S matrices entails
probability current conservation. We shall first need expres-
sions for the wave functions in the exterior regions, that is, at
t= ta , tb in the t-evolution case, and z=za ,zb in the z-evolution
case. Combining Eqs. �A16�, �A17�, and �A22�, we find that
the input at ��1+��ta ,r� is given by Eq. �A23a�, and the out-
put at t= tb is
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��1+��tb,r� =� d3k� d3k���tb,r;k�S�1,t��k;k��f�k�� .

�A33�

At z=za we have, dropping any closed-channel output,

��1+��s,za� = �
open

d3w��s,za;w,F�g�w,F�

+ �
open

d3w��
��

�s,za;w,B�

�S�1,z��w,B;w�,���g�w�,���
 , �A34�

and at z=zb, again dropping closed-channel output,

��1+��s,zb� = �
open

d3w��s,zb;w,B�g�w,B�

+ �
open

d3w��
��

�s,zb;w,F�

�S�1,z��w,F;w�,���g�w�,���
 . �A35�

It is well known that the wave function for the dynamical
system represented by Eq. �A1� admits a locally conserved
current �see �18�, Eq. �57.2��. The current derived from the
same wave function and the operator �A5� is globally con-
served, however, in that if we integrate the four-divergence
of that current over a space-time domain that covers the re-
gion of significant interaction, we get zero as a result of the
‡-Hermitian property of �H. Therefore, with an application
of the divergence theorem, we have for t evolution �� is to
be summed from 0 to 3�

0 = �
ta��

0�tb

d4�
�

��� ���1+��j�������1+��

= ���1+��J0��0����1+����0=ta

�0=tb �A36a�

=� d3k�� d3k� d3k�f�k���S�1,t�†�k�;k�

�S�1,t��k;k��f�k�� −� d3kf�k��f�k� , �A36b�

which is consistent with the unitarity of S�1,t�. For z propaga-
tion we have, accounting for the algebraic signs in Eq.
�A13b�,

0 = �
za��

3�zb

d4�
�

��� ���1+��j�������1+��

= ���1+��J3��3����1+����3=za

�3=zb �A37a�

=�
open

d3w��
��
�

open
d3w�

�
�

open
d3w�

��
��

g�w�,����S�1,z�†�w�,��;w,��

�S�1,z��w,�;w�,���g�w�,���

− �
open

d3w�
�

g�w,���g�w,�� , �A37b�

which is consistent with the unitarity of S�1,z�.
We shall need some other results for the main text. First,

we show that operatorwise �and, hence, in both environ-
ments�

��1	�U�0���1	�‡ = U�1�, �A38�

where the upper �lower� signs correspond. In fact, we can use
Eqs. �A27a� to simplify

��1−�U�0���1−�‡ = �i���I + G�0−�T�1�‡��G�0+� − G�0−��

��I + T�1�G�0+��

= �i���G�0+� − G�0−� + G�0+�T�1�G�0+�

− G�0−�T�1�G�0+� + G�0−�T�1�‡G�0+�

− G�0−�T�1�‡G�0−�

+ �i��−1G�0−�T�1�‡U�0�T�1�G�0+��

= �i���G�1+� − G�1−�� . �A39�

Similarly, Eq. �A27b� can be used to show the validity of Eq.
�A38� with ��1+�’s.

Second, we want to show that

�
open

d3w�
�

��1−���w,���S�1,z��w,�;w�,���

= ��1+���w�,���� . �A40�

The above is to be true in general, that is, whatever be a
compactly supported test function ��� applied to both sides
on the left. In fact, we can use Eqs. �A28b� and �A30b� to
write out the lhs of Eq. �A40� and manipulate as follows:

�
open

d3w�
�

�I + G�0−�T�1�‡���w,����
���

3�w − w��

+ �i��−1��w,���T�1���w�,�����

= I + G�0−�T�1�‡ + �i��−1�U�0�T�1� + G�0−�T�1�‡U�0�T�1���

���w�,���� = �I + G�0−�T�1�‡ + �G�0+� − G�0−��T�1� + G�0−�

��T�1� − T�1�‡����w�,����

= �I + G�0+�T�1����w�,����

= ��1+���w�,���� . �A41�

Third, we consider what gauge invariance entails in the
dynamical system of Eq. �A1�, in the integral equation pre-
sentation of Eqs. �A22�. We define the Schrödinger operator
S�1��A0 ,A� as follows:

QUANTUM DWELL-CORRELATION TIMES IN THE… PHYSICAL REVIEW A 80, 062101 �2009�

062101-13



S�1��A0,A� = i�
�

�t
− H�1��A0,A� . �A42�

Let ���� be a smooth real-valued function on spacetime.
Then we have the Schrödinger operator with gauge-
transformed four-vector potential satisfying

S�1��A0 − ��/�t,A + c � ��

= exp�ie�/��S�1��A0,A�exp�− ie�/�� . �A43�

We define the gauge-transformed wave functions, Green’s
functions, and interaction part of the Hamiltonian with su-
perscript �’s as follows:

���,1	���� = exp�ie����/����1	���� , �A44a�

���,0���� = exp�ie����/����0���� , �A44b�

G��,0	���;��� = exp�ie����/��G�0	���;���exp�− ie�����/�� ,

�A44c�

�H���
„A0���,A���… = exp�ie����/���S�1��0,0�

− S�1��A0,A��exp�− ie����/�� �A44d�

=exp�ie����/���H�A0,A�

�exp�− ie����/�� �A44e�

��H�A0 + ��/�t,A + c � �� . �A44f�

The inequality �A44f� says that the gauge transformation of
�H�A0 ,A� is not achieved by transforming its ingredient
four-vector potential components, unlike Eq. �A43�. We now
ask whether it is true that the integral �A22� is satisfied by
the gauge-transformed entities, as in

���,1	���� = ���,0���� +� d4��G��,0	���;���

��H���
„A0����,A����…���,1	����� .

�A45�

In fact Eq. �A45�, after the substitutions of Eqs. �A44�, yields
Eq. �A22�. We now recognize the following operator gauge
transformation results:

���,1	���;��� = exp�ie����/����1	���;���exp�− ie�����/�� , �A46a�

T��,1���;��� = exp�ie����/��T�1���;���exp�− ie�����/�� , �A46b�

T��,1�‡��;��� = exp�ie����/��T�1�‡��;���exp�− ie�����/�� , �A46c�

G��,1	���;��� = exp�ie����/��G�1	���;���exp�− ie�����/�� , �A46d�

j������� = exp�ie����/��j����exp�− ie�����/�� �A46e�

=� j0��� , if � = 0

jk��� − 
4�� − ��
e

m

�����
��k 
4�� − ��� , if � = k = 1,2,3.� �A46f�

Finally, we shall partially restate a result from �6� �Eq. �65��
on the matrix elements of the time current for a wave func-
tion of type �A23b�. We have

���0��J3�z�t���0�� = �
open

d3w�
�

g�w,��������1

i

�g

�w0 �w,��

+ ����
mz

�K3�w�
g�w,��
 , �A47�

wherein terms arising from interference between F and B
states were omitted.

APPENDIX B: CLASSICAL VARIATIONAL PRINCIPLES
FOR ONE PARTICLE

The Hamiltonian formalism in this appendix goes back at
least to the work of Lanczos ��19�, Chap. VI.10�. We shall
introduce an action functional for the one-particle problem
that involves constraints and associated Lagrange multipli-
ers, such that it reduces to either the Lagrangian form or the
Hamiltonian form of the variational principle if one or an-
other set of variational equations is factored back into the
action functional. We begin with the action functional A
�summation convention on j ,k from 1 to 3, and � is a param-
eter�,
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A = �
�a

�b

d��p0�d�0

d�
− u0	 + pj�d� j

d�
− uj	 +

m

2

ujuj

u0 − eA0u0

+
e

c
Ajuj
 . �B1�

The desired equations are obtained by the calculus of varia-
tions: A is supposed to be stationary under independent
variations of the momenta p0 , pj to recover the constraints, of
u0 ,uj to obtain the momenta as functions of u’s, and of the
�0 ,� j to obtain differential equations of motion. In these con-
tinuously differentiable variations, the p’s and u’s can be
varied without end-point limitations, but variations in �’s
must go to zero at the end points. We find that

d�0

d�
− u0 = 0, �B2a�

d� j

d�
− uj = 0, j = 1,2,3, �B2b�

− p0 −
m

2

ujuj

�u0�2 − eA0 = 0, �B3a�

− pj + m
uj

u0 +
e

c
Aj = 0, j = 1,2,3, �B3b�

−
dp0

d�
− e

�A0

��0 u0 +
e

c

�Aj

��0 uj = 0, �B4a�

−
dpj

d�
− e

�A0

�� j u0 +
e

c

�Ak

�� j uk = 0, j = 1,2,3. �B4b�

The Lagrangian form of the variational principle is recov-
ered if we use Eqs. �B2a� and �B2b� to eliminate all u’s in
Eq. �B1� and use the fact that, in the result, the parameter �
can be eliminated in favor of t=�0. The Hamiltonian form of
the variational principle is recovered if we use Eq. �B3b� to
eliminate uj /u0 �with j=1,2 ,3�. Let us carry out the latter
procedure: we find that

uj

u0 =
1

m
�pj −

e

c
Aj	 . �B5�

With the replacement �B5�, the action functional becomes
A�, where

A� = �
�a

�b

d��p0d�0

d�
+ pj d�

j

d�
− u0�p0 +

1

2m
�pj −

e

c
Aj	

��pj −
e

c
Aj	 + eA0
� . �B6�

The quantity in square brackets on the rhs of Eq. �B6� is p0

plus the Hamiltonian; this quantity serves as a classical
model for the Schrödinger operator that annihilates dynami-
cal wave functions �see �6�, Eqs. �5�–�9��.

The equations of motion are effectively gauge invariant: if
the gauge function is ���� and we substitute into Eqs. �B3�
and �B4�,

p0 → p0 + e � �/��0, �B7a�

pj → pj + e � �/�� j , �B7b�

A0 → A0 − ��/��0, �B7c�

Aj → Aj + c � �/�� j , �B7d�

then Eqs. �B3� are gauge invariant and Eqs.�B4� are gauge
invariant modulo the constraints �B2�.

APPENDIX C: PHYSICS OF ONE-PARTICLE CURRENTS

We shall evaluate and interpret currents of particle pres-
ence and particle time for a generic one-free-particle state
�A23b�. We find, according to Eq. �A13a�, that

���0��J3�z����0�� = �
open

d3w��g�w,F��2 − �g�w,B��2� ,

�C1�

which is just the net forward flow of particle presence minus
the net backward flow of particle presence. For the time op-
erator from Eq. �A47�, having neglected interference terms
between forward and backward flows, we find that

���0��J3�z�t���0��

� �
open

d3w��g�w,F���1

i

�

�w0 +
mz

�K3�w�
	g�w,F�


− �g�w,B���1

i

�

�w0 −
mz

�K3�w�
	g�w,B�
� . �C2�

This is the net current of time across the given z=constant
surface in the positive z direction. We shall argue in the next
paragraph that this current represents a mean time at which a
forward-moving particle crosses the given z plane minus a
mean time at which a backward-moving particle crosses the
same z plane. If there are N total trials, counting both F- and
B-type launches, the average current of time at z is to be
taken by division by N, as follows:

���0��J3�z�t���0��

↔ �N�−1�� �time of each forward crossing at z�

− � �time of each backward crossing at z�� . �C3�

In order to verify Eq. �C3�, it is convenient to simplify to
two space-time dimensions with coordinates �t ,z�; then the
wave vector is �we take open channels only�

„w0, 	 K3�w0�…, with w0 � 0,

K3�w0� = �2mw0/��1/2 � 0. �C4�

Let the free-particle wave function be
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��0��t,z� = �
0

�

dw0� m

2��K3�w0�
1/2
exp�− iw0t�

�exp�iK3�w0�z�g�w0,F�

+ exp�− iK3�w0�z�g�w0,B�� , �C5�

with the normalization condition �compare Eq. �A24b��

1 = �
0

�

dw0��g�w0,F��2 + �g�w0,B��2� . �C6�

Let us make changes of variables in the rhs’s of Eqs. �C5�
and �C6�, both from �w0 ,�� to kz and from g�w0 ,�� to r�kz�,

kz = ����K3�w0� , �C7a�

r�kz� = � ��kz/m�1/2g��kz
2/2m,F� , for kz � 0

���kz�/m�1/2g��kz
2/2m,B� , for kz � 0.

�
�C7b�

After some manipulations, Eqs. �C5� and �C6� become

��0��t,z� = �
−�

+�

dkz�2��−1/2exp�− i
�kz

2

2m
t + ikzz
r�kz� ,

�C8�

1 = �
−�

+�

dkz�r�kz��2. �C9�

That is, ��0� is a free-particle wave function that is normal-
ized to 1 in the conventional sense on any t=constant slice of
spacetime. This suggests that we calculate the average value
of z on any t=constant slice of spacetime,

zav�t� = �
−�

+�

dz��0��t,z��z��0��t,z� . �C10�

Substituting Eq. �C8� into Eq. �C10�, we find next

zav�t� = �
−�

+�

dkzr�kz���i
dr

dkz
�kz� +

�kzt

m
r�kz�
 . �C11�

Now let us apply the transformations �C7a� and �C7b� in
reverse to Eq. �C11�. If we define

S�w0� = �2�w0/m�1/2 = �K3�w0�/m , �C12�

where S�w0� is the speed of a particle of energy �w0, we find
now that

zav�t� = �
0

�

dw0S�w0�g�w0,F���i
dg

dw0 �w0,F�

+ � i

4w0 + t	g�w0,F�
 − �
0

�

dw0S�w0�g�w0,B��

��i
dg

dw0 �w0,B� + � i

4w0 + t	g�w0,B�
 . �C13�

Suppose that g�w0 ,F� and g�w0 ,B� are concentrated in mag-
nitude around wF

0 and wB
0 , respectively, and that the speed is

slowly varying at those values of w0. We also neglect �i /4w0�
in both integrands. Then we have

zav�t� � S�wF
0��

0

�

dw0g�w0,F���i
dg

dw0 �w0,F� + tg�w0,F�

− S�wB

0��
0

�

dw0g�w0,B���i
dg

dw0 �w0,B� + tg�w0,B�
 .

�C14�

If, respectively, g�w0 ,B� and g�w0 ,F� are zero identically,
we solve for t in these two cases and obtain

tF � �
0

�

dw0g�w0,F���1

i

dg

dw0 �w0,F� +
zav�tF�
S�wF

0�
g�w0,F�
 ,

�C15a�

tB � �
0

�

dw0g�w0,B���1

i

dg

dw0 �w0,B� −
zav�tB�
S�wB

0�
g�w0,B�
 .

�C15b�

These two expressions for time, respectively, resemble the
terms on the rhs of Eq. �C2�, except for the overall minus
sign in front of the second square bracket in Eq. �C2�. If the
validity of equating parameter values with averages for both
t and z is granted, we can now assert that the conjectured
association �C3� has been rendered plausible.

A difficulty remains. Kijowski �20� and Mielnik �21� �the
latter based his argument in part on that of the former�
pointed out that a state vector made up entirely of a super-
position of F-type waves can nevertheless give rise to locally
negative currents on a t=constant plane. There appears to be
no consistency problem in principle in measuring just the
local current density as a function of position, including
time, on a z=constant surface; the problem arises in obtain-
ing both the local current density and the overall direction of
motion of the particle. It was argued in �6� �Sec. 4� that only
a sufficiently encompassing subset of that plane could permit
the measurement of the global direction of flow of a particle
at a crossing, so that the localized zones of highly oscillating
flow would integrate out. We shall now try to make this
assertion more quantitative in the present context. Kijowski
proposed a free-particle wave function comprised of the su-
perposition of two wave packets with strongly peaked, but
distinct, positive z momenta �kz and �lz and adjustable rela-
tive amplitudes, at t=0,

��0,z� � �
0

�

dwz�A��wz − kz� + B��wz − lz��exp�iwzz�� ,

�C16�

where ��u� resembles a Dirac delta function centered at u
=0. Then, by a suitable choice of kz , lz ,A ,B, the z component
of probability current can come out negative at z=0 due to
interference terms between the two packet waves. Let us try
to translate Kijowski’s model into the formalism proposed
herein. We need a wave function and its z derivative as a
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function of t on the z=zb line in two-dimensional spacetime.
Let A and B be real, and

��t,zb� = A exp�ikzzb − i
�kz

2

2m
�t − tb� −

�2

2
�t − tb�2


+ B exp�ilzzb − i
�lz

2

2m
�t − tb�� −

�2

2
�t − tb��

2
 .

�C17�

In order to guarantee purely F-type states, we also need to
specify �� /�z�t ,zb� appropriately. If the transform of � is

�̃�w0 ,zb�, that is,

�̃�w0,zb� = �2��−1/2�
−�

+�

dt exp�iw0t���t,zb� , �C18�

we take

��̃

�z
�w0,zb� =� i�2mw0/��1/2�̃�w0,zb� , if w0 � 0

− �2m�w0�/��1/2�̃�w0,zb� , if w0 � 0,
�

�C19�

and apply the inverse of Eq. �C18� to yield �� /�z�t ,zb�.
Note that we have assumed that the two packets cross the z
=zb plane at different times tb and tb�: due to the uncertainty
����� in kinetic energy of each of the two packets, we can-
not determine the time of crossing to an accuracy better than
��−1; therefore, the individual trials in the ensemble each
entail a different crossing time for the packets, distributed
over a time difference of about

�tb − tb�� � �−1. �C20�

The cross terms in the z current associated with Eqs. �C18�
and �C19� will be approximately

���kz + lz�
2m

AB exp�i�kz − lz�zb − i
�kz

2

2m
�t − tb� + i

�lz
2

2m
�t − tb��

−
�2

2
�t − tb�2 −

�2

2
�t − tb��

2
� + complex conjugate� .

�C21�

As t ranges from tb to tb�, the phase of the cross term changes
by

��phase� � 	 ��2kz
2

2m
−
�2lz

2

2m

�tb� − tb�/� , �C22�

In order for these wave packets to have distinguishable en-
ergies, we want the difference in their kinetic energies to be
several times greater than their individual energy uncertain-
ties ��. Therefore, the phase difference �C22� will be several
times greater than 1, so that the interference term �C21� will
oscillate considerably in the times tb� t� tb�, say. The upshot
seems to be that across the range of uncertainty of time t of
departure of the particle �manifested in the form of a
quantum-mechanical amplitude and current� from the z=zb
plane, its z current can oscillate a lot, and the oscillatory
terms average to zero, leaving a positive residue for this

superposition of F-type waves. Similarly, we expect that in
observing the time of departure these oscillations will not
contribute significantly to a measurement of this quantity
within the known range of time uncertainty. The oscillatory
terms presumably represent eddies, localized in space and
time, of the current of flow of the particle’s presence. The
detection of these eddies requires a measurement in time and
space that is so precise that information on the global direc-
tion of motion of the particle is inaccessible or lost.

We emphasize more generally that, with respect to the last
paragraph’s discussion, the physics of nonprobability
measures—as the spatial components of currents across a
surface—is inadequately analyzed at present. We re-
emphasize that the quantities being calculated here are net
flows of the currents of particle presence and of particle time
across z=constant surfaces; these reduce approximately to
conventional averages with probability �i.e., non-negative�
measures only in carefully controlled circumstances. Ki-
jowski �20,22�, Piron �23�, and Mielnik �21� studied the
problem of locally negative currents in spatial propagation vs
probabilities, but supported quantitatively different explana-
tions from that proposed here. We shall not consider this
subject further in this paper.

To conclude, we evaluate the net divergence of the current
of time when scattering is present. We return to four-
dimensional spacetime, with the exterior wave functions of
Eqs. �A34� and �A35�. We find, again neglecting F�B inter-
ference, that

���1+���J3�zb�t − J3�za�t����1+��

= ��
open

d3w��
��
�

open
d3w��

��
�

open
d3wg�w�,����

��S�1,z�†�w�,��;w,B��1

i

�

�w0 −
mza

�K3�w�
	

�S�1,z��w,B;w�,��� + S�1,z�†�w�,��;w,F��1

i

�

�w0

+
mzb

�K3�w�
	S�1,z��w,F;w�,���
g�w�,����

− ��
open

d3w�g�w,B���1

i

�

�w0 −
mzb

�K3�w�
	g�w,B�

+ g�w,F���1

i

�

�w0 +
mza

�K3�w�
	g�w,F�
� . �C23�

We infer from Eqs. �C3� that in observational terms the rhs
of Eq. �C23� is the approximate prediction for

�N�−1 �
trials

��time of egress of the particle�

− �time of ingress of the particle�� , �C24�

that is, the ensemble average dwell time measured for each
of the N trials.
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APPENDIX D: FLUX-FLUX CORRELATIONS

Following a suggestion, I have studied the method of
FFCs for computing single-particle dwell times. This method
was recently investigated by Muñoz et al. �24�, where the
original derivation was given by Pollak and Miller �25�.

Taking �24�, Eq. �13� as a starting point, I reformulated
this equation and used the methods proposed in the present
work to rederive the dwell time formulas given in Eq. �C23�
and in �6� �Eqs. �89�, �90�, and �92��; I did not attempt to
rederive the contributions in �6� �Eqs. �91� and �93�� as these
involve F-wave against B-wave interference and closed-
channel contributions to the dwell time, respectively. Con-
cerning the F-B interference, the terms appear as
	sin kL /kL in �24�, five lines below Eq. �6�; it is clear from
�6�, Eq. �91� that these contributions are very sensitive to
phase and thereby to the position of a detector at either end
of the slab within which dwell time is defined and measured.
Moreover, a detector would have to be unable to distinguish
F-type motion from B-type motion of a particle crossing
through the detector at or near a given time, in order for
quantum-mechanical interference to occur. I infer that F-B
interference in detectors can be ignored for most purposes in
computing dwell times, as I have done elsewhere in this
paper.

Concerning the rederivation of the dwell time formulas of
�6� �Eqs. �89�, �90�, and �92��, I shall merely give an initial
formula and make a few remarks on the computation. We
combine �24�, Eqs. �13�, �14�, and �17�, which establish an
expression for the dwell time TD for a particle in a slab in
two-dimensional space-time with coordinates �t ,z�, such that
the slab is bracketed by za�z�zb. Then we have �� is the
free-particle input state at time zero�

TD = −
1

2
�

−�

+�

���d��
−�

+�

dt���J�t + �,z��J�t,z �����z�=za

z�=zb�z =za

z =zb.

�D1�

In Eq. �D1�, J�t ,z� is the J3�z� operator of Eq. �A6b� in the
Heisenberg picture, that is,

J�t,z� = exp�iH�1�t/��J3�z�exp�− iH�1�t/�� . �D2�

The factor of 1/2 and �−�
+����d� in Eq. �D1� arise from taking

the real part of an original expression, following �24� �Eqs.
�13� and �14��. If we re-express Eq. �D1� into the
Schrödinger picture for a scattering problem where the
Hamiltonian can be time dependent, we find that �all inte-
grals from −� to +��

TD = −
1

2
� dt1� dz1� ���d�� dz2� dt� dz3� dt4� dz4

���1+��t1,z1���t1,z1�J3�z���t + �,z2�U�1��t + �,z2;t,z3�

��t,z3�J3�z ��t4,z4���1+��t4,z4��z�=za

z�=zb�z =za

z =zb. �D3�

The wave function ��1+��t ,z� and the operator U�1� are as in
Eqs. �A25a� and �A38�, and for z’s in the slab’s exterior
regions they can be expressed in terms of the  functions of
Eq. �A13a� and the S matrices of Eq. �A30b�. Note that be-
cause of the particular dependence of the integrand on � and
t, and the presence of ���, Eq. �D3� is not reducible to simple
space-time operator products.

The factor ��� in the integrand gives rise to Cauchy
principal-value �PV� integrals in the reduction of Eq. �D3� to
integrals over the spectrum of open-channel time momenta
w0�0. It is worth remarking that in order to get the algebraic
signs of these PV integrals to yield the desired results, I had
to make the additional restrictions that za�0 and zb�0;
these restrictions are needed neither in the free-particle prob-
lem treated in �24�, nor in the derivations of �6�, Eq. �89�,
where any za�zb can be used. I have no deeper explanation
of this mathematical phenomenon. In view of the length of
the computations using the FFC method and of the need of a
congeries of approximations to evaluate the PV integrals, I
do not recommend the FFC method for calculating dwell
times.
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