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The Raman gain of a probe light in a three-state � scheme placed into a defect of a one-dimensional
photonic crystal is studied theoretically. We show that there exists a pump intensity range, where the trans-
mission and reflection spectra of the probe field exhibit simultaneously occurring narrow peaks �resonances�
whose position is determined by the Raman resonance. Transmission and reflection coefficients can be larger
than unity at pump intensities on the order of tens of �W /cm2. When the pump intensity is outside this region,
the peak in the transmission spectrum turns into a narrow dip. The nature of narrow resonances is attributed to
a drastic dispersion of the nonlinear refractive index in the vicinity of the Raman transition, which leads to a
significant reduction in the group velocity of the probe wave.
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Microdefects and nanodefects in photonic crystals �PCs�
are capable of localizing light within a volume smaller than
�3 �� being the wavelength� with a high quality factor of
defect modes �see �1,2� and references therein�. Such struc-
tures are often referred to as photonic crystal cavities or mi-
crocavities and nanocavities �3�. They find an important ap-
plication in many different fields such as photonics �4�,
nonlinear optics �1�, quantum electrodynamics �5�, and oth-
ers. These structures also underlie the design of low-
threshold microlasers and nanolasers �6� and Raman lasers
�7,8�. Inserting a resonant medium �atoms or quantum wells�
into a defect results in a significant modification of spectral
properties of the PC �9–11�. Even more intriguing effects can
arise from combining PC properties with the properties of
electromagnetically induced transparency �EIT� �12�. It has
been shown recently that in a PC with a defect containing a
EIT material �13�, the defect mode Q factor for the probe
radiation noticeably increases under EIT �14,15�, whereas
the width of the transmission spectrum narrows. The increase
factor can be of order c /vg�1 as under EIT it is quite pos-
sible that vg�c �14� �c is the light velocity in vacuum and vg
is the group velocity of a probe wave in a EIT medium�. A
noticeable reduction in the group velocity �slow light� occurs
as well under conventional Raman interaction of a probe
�Raman� radiation with a strong pump �driving field�
�16–19�, and it occurs with a smaller loss and over a broader
spectral range than under EIT �16�.

In this Rapid Communication we suggest an approach to
reduce the width of the transmission �reflection� spectrum of
a PC. Our technique is based on the effect of Raman gain
�20,21� of a probe wave in a defect layer containing a three-
level medium �Fig. 1�. A probe �Raman� wave with fre-
quency �2 undergoes amplification when interacting with a
coherent pump �driving� wave with frequency �1 as the dif-
ference between the two frequencies comes close to the Ra-
man transition frequency �20=�1−�2. The pump intensity is
chosen so as to ensure the enhancement of the probe wave
without however exceeding the stimulated Raman scattering
�SRS� threshold. Here, unlike spontaneous Raman scattering,

phasing of atomic oscillations occurs throughout the entire
volume occupied by light waves, just as it happens under
SRS, but without uncontrollable instabilities and with the
spectral resolution being determined by the spectral width of
the applied laser radiation. This scheme is weakly sensitive
to pump field intensity fluctuations �21�. We note that Raman
gain is being extensively used in high-resolution Raman
spectroscopy in gases and liquids �21� as well as in designing
high-efficiency continuous-wave Raman amplifiers and la-
sers �22,23�.

Consider a one-dimensional photonic crystal having a
�HL�MHDH�LH�M-type structure. Here, H and L refer to dif-
ferent dielectric layers with high and low refractive indices,
nH and nL, and thicknesses tH and tL, respectively; D is the
defect layer with a tD thickness and the refractive index nD;
and M is the number of periods. The defect layer is filled
with three-level atoms. Figure 1 shows the energy-level dia-
gram and relevant laser couplings for the present study. The
concentration of atoms is such that we can assume that there
is no interaction between atoms. Parameters of the PC are
chosen to allow excitation of just one defect mode whose
spectral width is much larger than that of the allowed transi-
tions and of the Raman transition �0�− �2� �in contrast to �7,8�
and references therein�.

Two monochromatic plane waves �the pump and probe�
with �1,2 are normally incident on the PC and propagate
along the z axis �z=0 at the first layer boundary�, which is
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FIG. 1. Energy-level diagram of a three-level atom in a Raman
gain scheme. States 0 and 2 are the ground and metastable states,
respectively.
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perpendicular to the PC layers. The frequency difference
�1−�2 is close to the Raman transition frequency �20. The
pump field E1 interacts with the �0�− �1� transition and the
probe field E2 interacts with the adjacent transition �1�− �2�.
The �0�− �2� transition is dipole forbidden. Only the lower
ground state �0� is initially populated. Both waves are as-
sumed to fall within the transmission band of the photonic
crystal, i.e., the transition frequency �20 is less than the de-
fect mode width. For simplicity, a unity refractive index is
assumed for the medium containing the photonic crystal.

For rarefied medium the complex refractive index of the
defect layer nD=n2 for a probe field in the presence of a
pump wave is given by �24�

n2 = n2� + in2� = �1 + 4�N��2
�1� + �R�E1�2�

� 1 + 2�N��2
�1� + �R�E1�2� ,

where �2
�1� is the linear nonresonant susceptibility for the

probe field, E1 is the complex amplitude of the pump wave,
N is the concentration of atoms, and �R is the Raman sus-
ceptibility �25�

�R =
1

4	3

d21
2 d10

2

��10 − �1�2��20 − ��1 − �2� + i
20�
.

Here, �10 and �20 are the frequencies of atomic transitions,

20 is the �0�− �2� Raman transition half width, dij is the
matrix dipole moment of the transition, and 	 is the Planck
constant.

The formula for �R was obtained in the third order of
perturbation theory under the following conditions: �1
= ��10−�1�� �G1� , �G2� ,
10 and �G1�� �G2�, where 2G1 and
2G2 are Rabi frequencies of the pump and the probe waves,
respectively, and 
10 is the half width of the �0�− �1� transi-
tion. Population of the lower state �0� can be considered un-
affected under these conditions. For simplicity, we neglect
the Doppler broadenings because the one-photon detuning
�1 is sufficiently large and the residual Doppler broadening
of Raman transition is small.

Note that, in the given approximation, �Im �R�� �Im �2
�1��,

and the only effect of Re �2
�1� is to shift the resonant fre-

quency of the defect mode. Therefore, the contribution of
�2

�1� into the refractive index n2 will be neglected in our fur-
ther consideration. It is essential that the imaginary part of �R
is negative in the vicinity of the Raman resonance, which
implies the probe wave enhancement due to energy transfer
from the pump to the probe field. The real part of the refrac-
tive index n2�=Re n2 has normal dispersion �dn2� /d�2�0�
�26� in this region; therefore, the group velocity of the probe
wave can be smaller than the light velocity in vacuum �16�.

In a steady-state approximation, a field in an arbitrary jth
layer �j=H ,L ,D� can be treated as a superposition of coun-
terpropagating waves,

Ej = Aj exp�ikj�z − zj�� + Bj exp�− ikj�z − zj�� ,

where Aj and Bj are amplitudes of the forward �incident� and
backward �reflected� waves and kj =nj�1,2 /c, where nj is the
refractive index of a jth layer. Note that the refractive index
of a defect layer for the probe wave n2� depends on the spatial

coordinate z since the distribution of fields in a defect is
nonuniform due to the effect of localization.

Amplitudes Aj and Bj for each layer were found from
wave equations by means of recurrent relations �15,27� using
the continuity of tangential components of the electric and
magnetic fields at the interface of adjacent layers. The trans-
mission and reflection spectra were determined as

T��� = �A2�L��2/�A02�2, R��� = �B2�0��2/�A02�2,

where A02 and A2�L� are the input �z=0� and output �z=L is
the photonic crystal length� amplitudes of the probe wave,
respectively, and B2�0� is the amplitude of the probe wave
reflected from the input face of the photonic crystal.

For the purpose of numerical simulation, we used sodium
atomic parameters as a Raman medium. Wavelengths of the
probe and the pump fields were chosen to be close to D1 line
and �20 was chosen to be 1.8 GHz. The photonic crystal had
the following parameters: M =10, nHdH=nLdL=�2 /4, dDnD
=�2 /2, nH=2.35, and nL=1.45. The probe wavelength was
chosen so that its frequency under Raman resonance �1
−�2=�20 would match the defect mode resonance fre-
quency, with the pump detuning being �1=30
10, 
10=2�
108 s−1, 
20 /
10=0.1, and N�1012 cm−3. For the chosen
parameters, the calculation of field distribution in the empty
defect layer yields a virtually complete spatial overlapping of
the pump and the probe fields. Intensities of both fields in the
defect layer appear to be 105 times as strong as the input
ones. Since we assume that in a defect layer �G1�� �G2�,
simulation of the transmission and reflection coefficients for
the probe field was performed in the undepleted-pump ap-
proximation.

Figure 2�a� shows typical PC transmission and reflection
spectra calculated for the probe wave at different intensities
of the driving field. Narrow structures �a peak or a dip� due
to the Raman resonance can be observed in the center on the
background of a broad transmission band �Fig. 2�a��. The
transmittance can be larger than unity. A narrow peak is also
observed in the center of the dip in the reflection spectrum
�Fig. 2�b�� and again the reflectance can be larger than unity.
So in a PC with a defect producing the Raman gain, narrow
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FIG. 2. �Color online� �a� Transmission T and �b� reflection R
spectra of the photonic crystal cavity for the probe light vs the
probe field detuning �2= ��12−�2� scaled to 
10 for various values
of a Rabi frequency of the pump field G1. Insets: the large-scaled
�a� transmission and �b� reflection spectra.
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peaks are observed simultaneously in both the transmission
and the reflection spectra. In Fig. 3 transmittance and reflec-
tance maxima are plotted as functions of the Rabi frequency
of the driving field. It is seen that the amplitude of the trans-
mission and reflection peaks enhances with the growing
pump intensity until the Rabi frequency reaches a threshold,
whose value depends on the system parameters. Once this
frequency goes beyond the threshold, the amplitude of the
transmission peak decreases and the narrow peak is replaced
with a dip while the reflectance tends to unity.

A qualitative interpretation of the features of the transmis-
sion and reflection spectra of a probe field becomes possible
if we look at the problem in terms of a Fabry-Pérot cavity
�FPC� �2� with the length d equal to the thickness of the
defect layer tD, which is filled with a Raman medium. The
FPC transmittance for a probe wave T= I2 / I20 �I20 is the light
intensity as it enters FPC and I2 is the transmitted light in-
tensity� can be found from the formula

T =
TM

2 e�d

�1 − RMe�d�2 + 4RMe�d sin2��/2�
,

where TM and RM are the transmission and reflection coeffi-
cients of mirrors, �=−�4� /��nef f� �0 is the Raman gain fac-
tor of the probe wave, �= �4� /��nef f� d is the phase shift after
two passes through the cavity, nef f� =2�N�R�F�E1�2 and nef f�
=1+2�N�R�F�E1�2 are effective imaginary and real parts of
the refractive index n2, E1 is the pump field amplitude in
FPC, and F=	0

dsin�k2z�sin2�k1z�dz /	0
dsin2�k2z�dz is the spa-

tial overlapping integral of the pumping wave and the probe
field �29�.

The requirement that �=2�m �m=1,2 , . . .� determines a
resonance frequency of the cavity, for which maximum
transmission is observed,

Tmax =
TM

2 e�d

�1 − RMe�d�2 . �1�

For �d�1, formula �1� can be rewritten as

Tmax �
TM

2

�TM − �dRM�2 . �2�

From formula �2� it follows that at �dRM �TM the trans-
mission coefficient grows with the pump intensity ��TM
−�dRM�→0� and can become Tmax�1. In an opposite situ-
ation, when �dRM �TM, the transmittance Tmax decreases as
the pump field grows �Fig. 3�, and when �dRM �2TM a dip
is formed in the transmission curve. A similar approach can
be applied to analyze the reflection coefficient.

The width �at half maximum� of the narrow transmission
peak is given by the expression

�� =
��

1 + �
, �� =

c

d

�1 − RMe�d�

e�d/2�RM

�
c

d

�TM − �dRM�
�RM

,

�3�

where �=2�NF�E1�2�0��R� /���2�=K12�G1�2 /�1
2
20

2 , �0 is
the resonance frequency of the empty cavity, and K12
=2�NF�0�d12�2 /	. A frequency derivative is taken at �2
=�0. For �=0, the formula for �� turns into a familiar

expression for a transmission bandwidth of the empty FPC
�28�. Note that, when F=1, the value of 1+� equals the
group velocity index Ng=c /vg for a probe wave under Ra-
man interaction �16�, which can be much larger than unity if
the dispersion is high �at a small width of the Raman transi-
tion�.

It is seen from Eq. �3� that the width of the transmission
peak for ��1 is a factor of � narrower than that of the
empty cavity, i.e., there appears a narrow transmission peak.
The value of � is determined by Raman susceptibility dis-
persion and depends on the pump intensity. Analysis reveals
that the resonance width can be less than the width of the
Raman transition 
20. The intensity required for these effects
to be observed depends on a number of factors �one-photon
pump frequency detuning, Raman resonance width, and
quality factor of defect modes� and can be anything from
several to hundreds of �W /cm2 and less.

To summarize the above, we have studied theoretically
light propagation through a photonic crystal with a defect
filled with a Raman gain medium and shown that narrow
peaks can arise simultaneously in the transmission and re-
flection spectra of the probe radiation. The position of reso-
nant peaks is determined by the Raman resonance. Transmis-
sion and reflection coefficients can be larger than unity. The
nature of narrow resonances is attributed to the dispersion of
the nonlinear refractive index near a Raman transition.
Narrow-band lasers are required to be able to observe the
described effects. We believe that the predicted effects can be
also observed in cold atoms, including single atoms placed
into a PC defect, similar to EIT in a cavity �30,31�. A com-
bination of the Raman gain effect with the advantages of
photonic crystal cavities can be useful for various applica-
tions. For example, this could help us to further reduce the
group velocity and obtain longer pulse delays thereby facili-
tating the designing of Raman lasers of a new generation and
atomic clock.

This work was supported in part by the Presidium of the
RAS �Project No. 27.1�, by the Department of Physical Sci-
ences, RAS �Project No. 9.1�, and also by Federal Task Pro-
gram �Contract No. g/c 02.740.11.0220�.
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FIG. 3. �Color online� The transmission �T� and reflection �R�
maxima vs the Rabi frequency of the driving field G1.
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