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Quantum random walks have received much interest due to their nonintuitive dynamics, which may hold the
key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that
is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on
arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a Bose-Einstein
condensate trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required
to physically step between the nodes; only flipping coins is sufficient.
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Random walks have been employed in virtually every sci-
ence related discipline to model everyday phenomena such
as the DNA synapsis �1�, animals’ foraging strategies �2�,
diffusion and mobility in materials �3�, and exchange rate
forecast �4�. They have also found algorithmic applications,
for example, in solving differential equations �5�, quantum
Monte Carlo methods for solving the many body
Schrödinger equation �6�, optimization �7�, clustering and
classification �8�, fractal theory �9� or even estimating the
relative sizes of Google, MSN and Yahoo search engines
�10�. Whilst the so-called classical random walks have been
successfully utilized in such a diverse range of applications,
quantum random walks are expected to provide us with a
new paradigm for solving many practical problems more ef-
ficiently �11,12�. In fact quantum walks have already in-
spired efficient algorithms with applications in connectivity
and graph theory �13,14� as well as quantum search and el-
ement distinctness �15,16� due to their nonintuitive and
markedly different properties including faster mixing and hit-
ting times.

The question we address in this Rapid Communication is
how to physically implement a quantum random walk in the
laboratory. Over the last few years there have been several
proposals for such a physical implementation using nuclear
magnetic resonance �17�, cavity QED �18�, ion traps �19�,
classical and quantum optics �12,20�, optical lattice and mi-
crotraps �21,22� as well as quantum dots �23,24�. None of the
existing proposals however consider quantum random walks
on general graphs, with the majority describing only a one-
dimensional implementation. This is while from an applica-
tion point of view most useful algorithms would involve tra-
versing graphs with arbitrarily complex structures.

In this Rapid Communication, we present a scheme which
considerably simplifies the evolution of the quantum walk on
a general undirected graph. We then describe a systematic
procedure capable of performing this quantum walk on a
variety of existing as well as prospective quantum computing
platforms. Finally we present an example of one such imple-
mentation, using a Bose-Einstein condensate �BEC� of 87Rb
atoms trapped inside a two-dimensional �2D� optical lattice
�25�.

First we consider a complete graph with all possible con-
nections between the N nodes including self loops �Fig.
1�a��. Here the quantum walker requires an N-sided coin for
moving from one node to N other nodes. The complete state
of the walker is therefore described by ���
=� j=1

N �k=1
N A j,k�j ,k�, where A j,k are complex amplitudes and

�j� and �k� represent the node and coin states, respectively. A
quantum coin flip corresponds to a unitary rotation of the
coin states at every node j using an N�N matrix ĉj also
known as the coin operator. The coin operation is followed
by the walker stepping from node j simultaneously to all
other nodes on the graph using a conditional translation op-

erator T̂ such that T̂�j ,k�→ �j� ,k��, where j and j� label the
two nodes at the end of an edge ejj� �26�. The quantum walk
evolves via repeated applications of the coin followed by the
translation operator. More explicitly, we have ��n�
= T̂nĈn¯ T̂2Ĉ2T̂1Ĉ1��0�, where ��0� is the initial state of the

walker, ��n� is its state after n steps, Ĉi and T̂i are the coin

and translation operators at the ith step, and Ĉ incorporates
the individual coin operators ĉ1¯ ĉN which simultaneously
act on all the nodes. The operators ĉ can in principle invoke
different rotations at each node j but are often uniformly set
to be the Hadamard rotation.

In traversing the edge ejj�, we define T̂�j ,k�→ �k , j� �Fig.
1�b��. Without undue loss of generality, this choice of trans-
lation operator has the unique advantage of being indepen-
dent of graph connectivity and thus enabling a quantum walk
to be systematically implemented on any arbitrary graph.
Upon visualizing the Hilbert space of the walk as an

*wang@physics.uwa.edu.au

2

1 6

4

5

3
61

2

3 4

5

61

2

3 4

5

61

2

3 4

5

61

2

3 4

5

61

2

3 4

5

61

2

3 4

5

1

2

3 4

5

6

T̂

1̂c

2ĉ
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FIG. 1. �Color online� �a� A complete six graph. Any general-
ized graph can be constructed by removing edges �dotted lines�
from the complete graph; �b� quantum walk Hilbert space and a

particular mapping T̂�j ,k�→ �k , j�; �c� T̂ is replaced by alternating

the direction in which Ĉ is applied in successive steps of the walk.
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N�N square array H with entries hjk representing the states
�j ,k�, the application of the translation operator T̂ to the state
space of the walk simply becomes equivalent to a transposi-
tion of the array elements. Let us now consider the first few
steps in the evolution of a quantum walk. Applying Ĉ1 to the
state space of the walk involves performing N simultaneous
unitary transformations ĉj, each on the coin states of the node
corresponding to the jth row. This leads to a natural grouping
of the states along the rows of H, and we employ the rela-

beled operator Ĉ1
H to highlight that it operates on horizontally

grouped states �Fig. 1�c��. What is particularly convenient

now is that instead of transposing H due to the action of T̂1
we can simply transpose the application of the next coin

operator Ĉ2. By transposing Ĉ2 we mean regrouping the
states, this time along the columns of H and performing N
simultaneous unitary transformations ĉj, each on the states of
the jth column. As before we employ the relabeled operator

Ĉ2
V to highlight that it operates on vertically grouped states.

In the above formulation, the effect of the translation op-

erator T̂ is implicit in the regrouping of states and does not
appear in the expression governing the evolution of the walk,

which can now be written as ��n�= Ĉn
VĈn−1

H
¯ Ĉ2

VĈ1
H��0�,

halving the number of required operations. It is in this sense
that we have qualified this process as a “quantum random
walk without walking”; the walker is not required to physi-
cally step between the nodes, only flipping the coin is suffi-
cient. As we will see, removing the quantum walk’s depen-

dence on the translation operator T̂ greatly facilitates its
physical implementation.

We now construct our intended graph G by simply remov-
ing all the unwanted edges �dotted lines in Fig. 1�a�� from its
complete counterpart Gmax. In turn this has the effect of re-
moving some of the states from the Hilbert space H �dotted
circles in Fig. 1�c��. Removing the edge ejj�, for example,
corresponds to removing two states �j , j�� and �j� , j�. In our
approach however, instead of removing these unwanted
states from H, we simply isolate them from interaction with
other states by appropriately designing the coin operators

ĉ1¯ ĉN. Taking ĈH as an example, matrix ĉj
H performs a

unitary transformation on the jth row of H. Hence to isolate
the state �j ,k� we obtain a modified coin matrix whose col-
umn elements c1k¯cNk and row elements ck1¯ckN are all
set to zero except for ckk which is 1. Using this modified coin
matrix guarantees that if initially the walker has no ampli-
tude in state �j ,k�, this state will remain unpopulated
throughout the evolution of the walk.

It is clear from the preceding discussion that a physical
implementation of this walk requires two basic properties
commonly found in a variety of systems proposed for tradi-
tional quantum computing: �a� N2 basis states arranged in a
square array formation and �b� implementing the operators
ĉj

H�ĉj�
V �, which at once perform an N-state unitary rotation on

all the amplitudes in row j �column j�� of the 2D state space.
Such a mechanism can indeed be efficiently constructed if
the system is capable of performing pairwise unitary opera-
tions on non-neighboring states similar to those demon-
strated in �27–30� and discussed in �31,32� and references

therein. The key to our implementation is a cosine sine �CS�
decomposition �33� which effectively takes the single unitary
operator ĉj

H�ĉj�
V � and replaces it with a series of pairwise op-

erators which we know how to implement. One requirement
of this implementation is that N=2N for some integer N,
which can introduce some redundancy in the Hilbert space of
the quantum walk but only adds a linear overhead. Consid-
ering the wave function along row j, we represent the opera-
tor ĉj

H as an N�N unitary matrix acting on a vector A j
H

= ��1¯�N� of amplitudes in row j. Performing N−1 recur-
sive CS decompositions on ĉj

H we obtain

ĉj
H = �

i=1

N−1

Ui�di�, where Ui�di� = 	ui,1

ui,2

�


 �1�

and ui,k represent di�di square blocks along the Ui diagonal
with k=1,2 , . . . ,N /di. Block dimensions can vary for each
Ui with values restricted to di=2,4 ,8 , . . . ,N /2. For di=2,
blocks ui,k represent general 2�2 unitary matrices, but for
di�2 they assume the special form

⎛
⎜⎜⎜⎜⎝

. . . . . .

. . . . . .
. . . . . .

. . . . . .

⎞
⎟⎟⎟⎟⎠

ui,k =

cr sr

− sr cr

i,k

,

�2�

where each quadrant is diagonal with respective entries cr
and sr corresponding to cos��r� and sin��r� for some angle
�r and r=1,2 , . . . ,d /2. The action of each matrix Ui�di� on
the vector A j

H can now be directly implemented using pair-
wise interactions. Upon a closer examination of ui,k in Eq.
�2� we find that each crsr square block �dotted� performs a
pairwise unitary transformation ūi,k,r on the amplitudes
��k−1�d+r and ��k−1�d+r+d/2, which are non-neighboring for
d�2. Hence the rotation Ui�di� can be applied at once by
simultaneously activating pairwise interactions between all
states in the range �j ,kd−d+1�¯ �j ,kd−d /2� and their cor-
responding counterparts �j ,kd−d /2+1�¯ �j ,kd� for all k.
Note that conveniently, all interacting pairs of states have the
same interval d /2 which greatly facilitates the design of a
physical implementation.

In the following we describe one such physical implemen-
tation using a BEC trapped in a 2D optical lattice �34�, where
states �j ,k� of the walk are encoded using the individual trap-
ping sites and the BEC wave function acts as the quantum
walker with some initial distribution throughout the lattice
sites. The system is driven into Mott insulator phase �40�
thereby supressing the tunneling between neighboring lattice
sites. A series of specially tailored control laser operations
are then introduced to address, manipulate, and interact the
BEC wave packets in individual sites in a way that corre-
sponds exactly to the action of the operators ĉj

H�ĉj�
V � along the

lattice rows �columns�. Although the control laser wave-
length and the lattice period �lattice are comparable in size,
problems associated with unwanted interactions of the con-
trol laser with neighboring sites can be circumvented by
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adopting techniques such as those detailed in �35,36� or more
readily by choosing every second, third, or �th lattice site to
represent the walk states. From an application point of view
one would commonly start with the BEC entirely localized in
one site or uniformly loaded into every �th site using pattern
loading �37� or by employing a recently developed imaging
and manipulation technique based on scanning electron mi-
croscopy �38,39�. The design of all subsequent control op-
erations ensures that the initially empty intermediate sites
would, in principle, remain unpopulated throughout the
walk. In practice however the spatial separation � also acts as
a buffer zone to contain any spilling of the BEC out of its
confinement lattice site due to unavoidable experimental im-
perfections.

To manipulate the trapped BEC wave packet at a given
lattice site we propose performing arbitrary unitary transfor-
mations on the internal states �0���F=1, mF=1� and
�1���F=2, mF=2� of the BEC with the aid of a pair of
three-photon stimulated Raman adiabatic passage �STIRAP�
operations �41�. Each STIRAP requires the use of three con-
trol lasers �with wavelengths ��lattice� applied in the coun-
terintuitive order to transfer the atomic population in states
�0� and �1� to and from an auxiliary state �a���F=2, mF
=0� via an intermediate upper state �u���F�=1, mF=1� that
does not get populated during the transfer �Fig. 2�. The two-
photon � STIRAP �1�↔ �u�↔ �a� has already been experi-
mentally demonstrated using circularly polarized lasers and a
magnetic field to lift the degeneracy in the sublevels mF �42�.
Our proposal simply extends this implementation through the
addition of a third linearly polarized laser to facilitate
�0�↔ �u�.

For performing a unitary transformation of BEC ampli-
tudes in a pair of lattice sites, we utilize a scheme for the spin
�state�-dependent transport of neutral atoms in an optical lat-
tice �27,28�. By setting the wavelength �lattice=785 nm, in-
ternal states �0� and �1� experience different corresponding
dipole potentials V0�x ,��= 1

4V+�x ,��+ 3
4V−�x ,�� and

V1�x ,��=V+�x ,��, where V	�x ,��=Vmax cos2�k̃x	� /2�,
k̃=2
 /�lattice is the wave vector of the laser light propagating
in the x direction, and � is the relative polarization angle
between the pair of counterpropagating lasers. Hence for an
atom in the superposition state ��0�+��1�, increasing the po-
larization angle � will lead to a split in the spatial wave

packet of the atom as it perceives a relative motion between
the two potentials, resembling that of a pair of conveyor belts
moving in opposite directions, each carrying one of the com-
ponents � and �. The relative displacement is given by
�x=��lattice /2
.

Let us take a BEC initially prepared in the internal state
�0� and distributed between two lattice sites �j ,k� and �j ,k��
such that ��0�=�k�j ,k� � �0�+�k��j ,k�� � �0�. We can now
manipulate the amplitudes �k and �k� according to any de-
sired unitary transformation in five steps depicted in Fig.
3�a�. �1� Using the three-photon STIRAP we apply a

-rotation to the BEC at �j ,k� which transfers it entirely to
the internal state �1� and the new state of the system becomes
��1�=�k�j ,k� � �1�+�k��j ,k�� � �0�. �2� Making use of the
spin �state�-dependent transport, we increase the polarization
angle by �=2��k−k�� /�lattice causing the two wave packets
to fully overlap at �j ,k�� �selected as the stationary
reference frame� and hence ��2�= �j ,k�� � ��k�1�+�k��0��. �3�
Using another three-photon STIRAP we perform an

arbitrary unitary rotation R̂, this time at �j ,k��, such that
��3�= �j ,k�� � ��̃k�1�+ �̃k��0��. �4� Reversing the change
in the polarization angle we transport the new BEC
amplitudes �̃k and �̃k� back to their original sites, i.e.
��4�= �̃k�j ,k� � �1�+ �̃k��j ,k�� � �0�. �5� Finally performing
another 
 rotation on the state �j ,k� we transfer the BEC
back to the internal state �0� producing the desired outcome
��5�= �̃k�j ,k� � �0�+ �̃k��j ,k�� � �0�. Note that internal states
�0� and �1� are only used to facilitate the pairwise interactions
and both BEC wave packets will be in their internal ground
state �0� before and after they interact.

This scheme can be readily extended to simultaneously
activate all the pairwise interactions required for performing
the unitary rotations in Eq. �1�. We emphasize that all the
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FIG. 2. �Color online� Schematic diagram of a three-photon
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ĉj
H�ĉj�

V � operations along the rows �columns� of the optical
lattice are performed concurrently, since the structure of the
CS decomposition �Eq. �2�� is identical for all coin operators
and changing the polarization angle � triggers the same spin
�state�-dependent transport across the entire optical lattice.
The effect of using different coin operators for each node
appears in step �3�, where the control STIRAP can perform
different unitary rotations at various lattice sites. At the con-
clusion of the walk, BEC densities throughout the lattice can
be determined via scanning electron microscopy �38,39� or
spin-selective absorption imaging �43� although the latter re-
quires repeated runs of the experiment for each node density
measurement. The corresponding quantum walk distribution
is then derived by integrating the BEC amplitudes over an
area ��lattice���lattice centered around the key lattice sites.
This will effectively include in the distribution, any residual
amplitudes in the neighboring intermediate sites, which are
nonetheless substantially lower than the amplitudes in key
lattice sites and would therefore have a minimal effect on the
final result.

The proposed quantum walk scheme offers a polynomial
speedup over an equivalent quantum circuit implementation,
highlighting the expected trade off between resource and
time scalability. A quantum circuit can in principle represent
the walk’s Hilbert space using m=log2�N2� entangled qubits,
which is by far more resource efficient. Then, implementing

a generalized N2�N2 unitary operator T̂iĈi for each step of

the quantum walk amounts to performing a m-qubit gate op-
eration that can be realized with around 4m controlled-NOT

�CNOT� gates �44�. Since the quantum circuit can
perform at most m /2 simultaneous CNOT operations at any
one time, each step of the quantum walk requires at least
�4m� / � m

2 �=2N4 / log2�N2� operational stages. This is com-
pared to only N−1 operational stages needed for implement-
ing Eq. �1�.

Spin �state�-dependent BEC systems have also been con-
sidered as serious contenders for building a quantum com-
puter �45�. This is despite the acute sensitivity of the BEC
internal states �0� and �1� to the external magnetic-field en-
vironment, leading to phase decoherence times that are pres-
ently in the order of a few ms �29�. Nonetheless, comparing
this with a single-site transport time ��50 �s� �27,28� and
STIRAP pulse durations ��60 �s� �42�, and also noting the
successful realization of spin �state�-dependent BEC trans-
port for up to seven sites reported in �27�, a “proof of prin-
ciple” implementation �i.e., the first few steps of the walk on
an arbitrary graph with a few nodes� should indeed be pos-
sible, utilizing the existing experimental techniques. Since
our proposed implementation scheme is in fact not inherently
bound to any one physical system, naturally as this and other
prospective quantum computing hardware grow in scale and
fidelity of operations so will the complexity of graphs on
which the quantum walk can be performed.
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