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We propose a realistic protocol to generate entanglement between quantum memories at neighboring nodes
in hybrid quantum repeaters. Generated entanglement includes only one type of error, which enables efficient
entanglement distillation. In contrast to the known protocols with such a property, our protocol with ideal
detectors achieves the theoretical limit of the success probability and the fidelity to a Bell state, promising
higher efficiencies in the repeaters. We also show that the advantage of our protocol remains even with realistic
threshold detectors.
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If two distant parties hold quantum memories in a maxi-
mally entangled state �Bell state�, they can accomplish appli-
cations such as quantum teleportation �1� and quantum key
distribution �2�. In order to prepare their memories in a Bell
state, optical pulses are used as media to exchange quantum
information of the memories. However, the real transmission
channel for optical pulses suffers from loss that increases
with the length l of the channel, which renders direct distri-
bution of Bell states over long distances �e.g., �1000 km�
practically impossible. Instead, in entanglement distribution
using quantum repeaters �3,4�, a number of nodes at moder-
ate intervals �e.g., �10 km� are set between the two parties,
and many nonmaximally entangled states are shared between
neighboring nodes through the lossy channel. From these
nonmaximally entangled states, neighboring nodes prepare a
Bell state by entanglement distillation �5,6�, and then the
Bell states connecting nodes are further converted into a Bell
state between the two end parties by entanglement swapping
�1,7�. In this way, quantum repeaters enable the distribution
of Bell states over long distances through a series of “en-
tanglement generation,” “entanglement distillation,” and “en-
tanglement swapping.” As the first stage in quantum repeat-
ers, entanglement generation between neighboring nodes
plays an important role in improving the efficiency of the
whole process. Thus, it is crucial to implement good en-
tanglement generation protocols with efficient production of
high quality entanglement to be fed to the entanglement dis-
tillation stage.

In general, the feasibility and the efficiency of entangle-
ment generation protocols depend on the available systems
for constructing quantum memories. The first realistic en-
tanglement generation protocol proposed by Duan et al. �8�
and the subsequent protocols �9–11� are based on atomic-
ensemble quantum memories giving off a single photon de-
pending on the state of the atoms. Although the protocols

generate high quality entanglement, they suffer from low
success probabilities. This is due to the necessity to suppress
the generation of multiple photons. On the other hand, quan-
tum memories used in hybrid quantum repeaters �12–15� do
not have such a restriction, and the repeaters are expected to
be more efficient. For example, the memory M used in the
first proposal of van Loock et al. �12� interacts with the
optical pulse c in coherent state ���c=e−���2/2e�â†

�0�c with
amplitude � according to Û���0�M���c�= �0�M��ei�/2�c,
Û���1�M���c�= �1�M��e−i�/2�c, where the parameter � depends
on the strength of the interaction �e.g., ��0.01 �12��. Such
quantum memories may be realized by individual �-type
atoms, single electrons trapped in quantum dots, and
nitrogen-vacancy �N-V� centers in a diamond with a nuclear
spin degree of freedom �12,13�. Until now, many proposals
have been made for entanglement generation in order to
achieve higher efficiencies in the repeaters �12–15�.

In this Rapid Communication, we provide a definitive
step in the search of good entanglement generation methods
for hybrid quantum repeaters by proposing a protocol with
an optimal performance. Using linear optical elements and
photon detectors, our protocol generates entanglement with
only one type of error, which is a favorable property that
makes subsequent entanglement distillation efficient �15�. In
the case where ideal photon-number-resolving detectors are
used, the performance of our protocol in terms of fidelity and
efficiency exceeds all known protocols �12–17� including a
protocol generating entanglement with two types of errors
�12,13�. In fact, we show that our protocol achieves the the-
oretical limit of performance among the protocols with the
single-error-type property. We also show that, even if realis-
tic detectors are used, our protocol shows higher perfor-
mance than known realistic protocols, which makes it a
promising protocol to achieve more efficient hybrid quantum
repeaters.

Our entanglement generation protocol is illustrated in Fig.
1�a�. In what follows, we call the sender and the receiver at
neighboring nodes as Alice and Bob, respectively, who are
connected via an optical fiber with transmittance T=e−l/l0,
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where l is the distance between the nodes. Alice first
prepares a probe pulse in a coherent state ���a with ��0 and
a quantum memory A in state �e−i��+���0�A+ei��+���1�A� /�2
with �ª �1 /2�T�2 sin � and �ª �1 /2��1−T��2 sin �, where
phase factors � and � are chosen to offset irrelevant phases
appearing later. Alice then makes the probe pulse interact
with her memory by Û� and sends the output probe pulse to
Bob through the fiber together with the local oscillator �LO�.
Optical loss in the fiber is effectively described by
N̂���a= ��T��b1

��1−T��E, where N̂ is an isometry from
input mode a into output mode b1 and the environment E.
Then, the state of Alice’s memory A, the received
probe pulse in mode b1, and the environment E is
described by ���Ab1E= ��0�A�u0�b1

�v0�E+ �1�A�u1�b1
�v1�E� /�2

with �uj�b1
ªe−i�−1�j���T�ei�−1�j�/2�b1

and �v j�E

ªe−i�−1�j���1−T�ei�−1�j�/2�E.
The above recipe for Alice is also shared by the protocols

in Refs. �12–14�, while that for Bob is not. In these proto-
cols, Bob first interacts the received probe pulse with his
memory, and then he either performs homodyne measure-
ment on the probe pulse �protocol I� �12,13� or displaces the
probe pulse and conducts photon counting �protocol II� �14�.
As seen below, our protocol differs from these in the sense
that it uses two probe pulses, which inherits the approach
adopted by Duan et al. �8–11,16,17�.

In our protocol, upon receiving the probe pulse and the
LO pulse, Bob first generates a second probe pulse in state
��T��b2

from the LO with a beamsplitter �BS2� and then
makes it interact with his memory initialized in state
�e−i��0�B+ei��1�B� /�2. Then, his memory and the second
probe pulse are in state ���Bb2

= ��0�B�u0�b2
+ �1�B�u1�b2

� /�2.
Bob further applies a 50/50 BS �BS3� described by
��1�b1

��2�b2
→ ���2−�1� /�2�b3

���2+�1� /�2�b4
to the pulses in

modes b1 and b2, which is followed by a phase-space dis-

placement D̂�−�2T� cos�� /2�� �18� to the pulse in

mode b4. These operations correspond to the following
isometry: �u0�b1

�u0�b2
→ �0�b3

�	�b5
, �u0�b1

�u1�b2
→ �−	�b3

�0�b5
,

�u1�b1
�u0�b2

→ �	�b3
�0�b5

, and �u1�b1
�u1�b2

→ �0�b3
�−	�b5

, where
	ª i�2T� sin�� /2�. Then, the state of the total system is
described by

�
�ABb3b5E = �0�b3
��00�AB�	�b5

�v0�E + �11�AB�− 	�b5
�v1�E�/2

+ �0�b5
��01�AB�− 	�b3

�v0�E + �10�AB�	�b3
�v1�E�/2.

The pulses in b3 and b5 go to photon detectors D1 and D2,
respectively, and Bob announces the success of the protocol
when either photon detector D1 or D2, but not both, reports
the arrival of nonzero photons.

Let us consider the case where D1 and D2 are ideal
photon-number-resolving detectors. Since the detectors have
no dark counts, the output state �
�ABb3b5E never provokes an
event where both detectors receive photons. Hence our pro-
tocol fails only when the pulses in modes b3 and b5 are in the
vacuum state �0�b3

�0�b5
, which leads to the success probabil-

ity of Ps���=1− 	b3

0�b5


0��
�ABb3b5E	2=1−e−2T�2 sin2��/2�.
The type of the generated entanglement in qubits

AB depends on which detector informs how many
photons have arrived. If detector D1 announces that
the number of arriving photons is odd �even but
nonzero�, the generated entangled state has fidelity F���
= �1+e−2�1−T��2 sin2��/2�� /2 to the nearest Bell state ��−�AB
ª ��10�AB− �01�AB� /�2 ���+�ABª ��10�AB+ �01�AB� /�2�, and it
is diagonalized by Bell states �����AB�. Similarly,
detector D2 informs whether the nearest Bell state to the
obtained entanglement is �−�ABª ��00�AB− �11�AB� /�2
or �+�ABª ��00�AB+ �11�AB� /�2. These facts can be
confirmed by simple calculations, e.g., b3


n��
�ABb3b5E

= �0�b5
�
n �−	��01�AB�v0�E+ 
n �	��10�AB�v1�E� /2 for the

number state �n�b3
�n�0�, 
n �	�= �−1�n
n �−	�, and 
v1 �v0�

=e−2�1−T��2 sin2��/2�. Then, using a local unitary operation de-
pending on the outcome of the detectors, Alice and Bob can
transform the generated entangled state into the standard
state, F����+�
+�AB+ �1−F�����−�
−�AB. Since the stan-
dard state includes only one type of error, they can use effi-
cient entanglement distillation at a later stage �15�. This
property is also shared by protocol II �14� and by another
protocol �15�.

In order to evaluate the potential of our protocol, we com-
pare its performance with protocols I and II in Fig. 1�b�,
assuming ideal photon-number-resolving detectors and ideal
homodyne detectors. The figure suggests that our protocol
has the best performance among the protocols. In addition,
the figure shows that, in the vicinity of zero success prob-
ability, protocol II and our protocol achieve a fidelity close to
unity, while protocol I does not unless T=1 �l=0�. This dif-
ference comes from the choice of different types of detectors,
and it is further amplified with the increase of distance l: in
fact, for l�40 km, protocol I can generate almost separable
states at best �14�, but our protocol and protocol II can gen-
erate acceptable entanglement. The better performance of our
protocol was also supported by numerical simulations for
various values of T.
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FIG. 1. �Color online� �a� Schematic diagram of our protocol.
�b� The performance of protocols with ideal detectors: fidelity of the
obtained entanglement to a Bell state as a function of the success
probability when l0=25 km �corresponding to �0.17 dB /km at-
tenuation� and �=0.01 for �i� protocol I �12,13�, �ii� protocol II
�14�, and �iii� our protocol.
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Actually, such a high potential of this protocol is not ac-
cidental because it can be shown to have the maximal per-
formance among a wide range of protocols, which generate
entangled states with only one type of error. That is to say,
our protocol achieves the optimality of entanglement genera-
tion in qubits AB among all the protocols that satisfy the
following conditions: �i� Alice prepares qubit A and pulse a
in a state � j=0,1ei�j�j�A�� j�a� /�2, with ��� j�a� j=0,1 being arbi-
trary coherent states, and sends the pulse a to Bob; �ii� upon
receiving the pulse �in mode b1�, Bob may perform arbitrary
operations and measurements on b1, the LO, and his memory
qubit B, but whenever he declares success, Alice and Bob

must be able to apply a local unitary operation ÛA � ÛB such
that the final state of AB is represented only by ����� �con-
tained in the subspace spanned by ������. Condition �i� is
satisfied by protocol I, protocol II, and the others �12–17�.
Condition �ii� is met by recently proposed protocols �14,15�
and is considered to make subsequent entanglement distilla-
tion efficient �15�.

From condition �i�, we see that the state of the system
Ab1E when the pulse arrives at Bob is written by

���Ab1E = 
j=0,1

�j�A�uj�b1
�v j�E/�2 �1�

with

�1 − T�ln�
u1�u0�� = T ln�
v1�v0�� , �2�

where T is the transmittance of the fiber. Since the cases with
�
v1 �v0��=1 are trivial, we assume �
v1 �v0���1 in what fol-
lows, and we use condition �ii� and Eq. �1� to derive bounds
on the success probability Ps and the fidelity F in terms of
�
u1 �u0�� and �
v1 �v0��. Then we use Eq. �2� to determine the
achievable region of �Ps ,F� for given T.

Let us define a phase flip channel �A on qubit A by
�A��̂�ªq�̂+ �1−q��̂z

A�̂�̂z
A, with qª �1+ �
v1 �v0��� /2 and �̂z

A

ª �0�
0�A− �1�
1�A. From Eq. �1�, we have TrE����
��Ab1E�
=�A�����
���Ab1

�, where ����Ab1
ª j=0,1ei�−1�j��j�A�uj�b1

/�2
with 2�ªarg�
v1 �v0��. The effect of the lossy channel is
thus equivalently described as preparation of ����Ab1

fol-
lowed by �A. Since any operation of Bob commutes with
�A, the protocol is equivalent to the following sequence: �a�
system Ab1 is prepared in ����Ab1

; �b� Bob does his opera-
tions and measurements and leaves system AB in a state �̂AB;
and �c� �A is applied on qubit A. Now condition �ii� requires
that, whenever Bob declares success, there exists a unitary

ÛA � ÛB such that 
�����A��̂AB������=0 with �����AB

ª ÛA
†

� ÛB
† ����AB. Since �̂AB is positive and 0�q�1, we

have ��̂AB�����=0 and ��̂AB�̂z
A�����=0 for both �. Adding

and subtracting these equations, we obtain

��̂AB�xj�A�yj�1�B = ��̂AB�̂z
A�xj�A�yj�1�B = 0 �3�

for j=0,1, where �xj�Aª ÛA
† �j�A and �yj�Bª ÛB

† �j�B. Since
�̂AB�0, the set ��xj�A�yj�1�B , �̂z

A�xj�A�yj�1�B� j=0,1 must be lin-
early dependent, which only happens when ��xj�A� j=0,1 is an
eigenbasis of �̂z

A.
Without loss of generality, the fidelity F of the final state

is given by F= 
�+��A��̂AB���+�, where ����ABª ÛA
†

� ÛB
† ���AB= ��x0�A�y0�B� �x1�A�y1�B� /�2. Since ��xj�A� j=0,1 is

an eigenbasis of �̂z
A, we have �̂z

A��+�= � ��−�. Hence
F=q
�+��̂AB��+�+ �1−q�
�−��̂AB��−�, leading to

F � �1 + �
v1�v0���/2. �4�

In order to find a bound on Ps, imagine a situation where,
after the steps �a�–�c� above, Alice and Bob proceeds as fol-
lows: �d� Bob measures qubit B on basis ��yk�B�k=0,1; �e� Al-
ice measures qubit A on basis ��j�A� j=0,1. Whenever Bob has
declared success, we see from Eq. �3� that the state of qubit
A after step �d� should be �xk�A, which is an eigenvector of
�̂z

A. Hence Bob can certainly predict Alice’s outcome j in
step �e�. Now if we look at the whole sequence �a�–�e�, we
notice that Alice’s measurement �e� can be equivalently done
just after �a�, and �c� becomes redundant. Then, when Alice
finishes steps �a� and �e�, Bob is provided with ��uj�b1

� j=0,1

with equal a priori probabilities, from which he proceeds
with steps �b� and �d�. At this point, he can determine the
value of j precisely whenever he declares success. Thus, the
total success probability Ps is not larger than that of the
unambiguous state discrimination, which is known �19–21�
to be 1− �
u1 �u0��. Hence we have

Ps � 1 − �
u1�u0�� . �5�

Combining Eqs. �2�, �4�, and �5�, we conclude that, for
given T�1, the performance �Ps ,F� of any protocol satisfy-
ing conditions �i� and �ii� must lie within the boundary
��1− t , �1+ t�1−T�/T� /2� �0� t�1�. Conversely, this boundary
is always achievable by our protocol with the choice of am-
plitude � satisfying t=e−2�2 sin2��/2�.

Finally, we show that our protocol shows high perfor-
mance even if we replace the photon-number-resolving de-
tectors with threshold detectors �TDs� that just report the
arrival of photons and do not tell how many of them have
arrived. We represent quantum efficiency and mean dark
count of the detector as � and �, respectively. The function
of a TD is �22� represented by the following positive opera-

tor valued measure elements: Ênc=m=0
� e−��1−��m�m�
m�,

Êc= Î− Ênc, where Êc �Ênc� corresponds to an event reporting
the arrival �nonarrival� of photons. When the used TDs are
ideal ��=1, �=0�, the generated state has only one type of
error and has fidelity �1+e−2�2 sin2��/2�� /2 to the nearest Bell
state. The success probability is the same as that with ideal
photon-number-resolving detectors. For the realistic values
of �� ,��, we numerically calculated the performance �Ps ,F�
of our protocol and depicted it in Fig. 2. Note that the chosen
values �� ,�� are typical for currently available detectors,
e.g., superconducting transition-edge sensors �23� and ava-
lanche photodiode �24�. The dark counts of such detectors
increase the types of errors occurring in generated entangle-
ment. However, such additional errors occur with a small
probability ���Ps

−1−1�+O��2� and hence can be neglected.
To evaluate the performance of our protocol, we also plotted
the performance of protocol I with an ideal homodyne detec-
tor and that of protocol II with its photon-number-resolving
detector replaced by TD1 and TD2. The figure shows that
our protocol has higher efficiency than protocol II. We see
that there is a region where the performance of protocol I
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exceeds that of ours, but this region decreases with the in-
crease of distance l. Hence, we can safely say that our pro-
tocol outperforms the other protocols in the cases where
long-distance and/or high quality entanglement generation is
required. It is also worth mentioning that entanglement gen-
erated by protocol I always includes two types of non-
negligible errors, which will affect its performance in the
entanglement distillation stage.

In conclusion, we have proposed a realistic entanglement
generation scheme for hybrid quantum repeaters, which out-

performs the generation schemes proposed so far. More im-
portantly, we have shown that our protocol achieves the op-
timal performance among all the schemes satisfying a couple
of plausible conditions ��i� and �ii� above�. Due to these con-
ditions, our argument does not exclude the possibility of a
better protocol starting with an asymmetric state of the send-
er’s quantum memory or one resulting in multiple types of
errors possibly combined with a novel realistic distillation
protocol that has yet to be discovered. Although such a pro-
tocol, if any, may be quite interesting, we believe it is un-
likely and our protocol is indeed the best scheme for hybrid
quantum repeaters. The performance of our scheme will also
serve as a benchmark when one compares other types of
quantum repeaters to hybrid quantum repeaters.
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FIG. 2. �Color online� The performance of protocols with real-
istic detectors: �i� protocol I with an ideal homodyne detector, �ii�
protocol II with a TD1 ��=0.89, �=1.4�10−6�, �ii�� protocol II
with a TD2 ��=0.12, �=3.2�10−7�, �iii� our protocol with TD1s,
and �iii�� our protocol with TD2s.
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