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Exchange interaction strongly influences the long-range behavior of localized electron orbitals and quantum
tunneling amplitudes. In the Hartree-Fock approximation the exchange produces a power-law decay instead of
the usual exponential decrease at large distances. To show that this effect is real �i.e., not a result of the
approximation� we consider a simple model where different effects may be accurately analyzed. Applications
include huge enhancement of inner electron ionization by a static electric field or laser field considered by
Amusia �e-print arxiv:0904.4395�.
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One of the first famous results of quantum mechanics was
that a particle may tunnel through a potential barrier. The
tunneling amplitude is exponentially small in the classical
limit. This result may be incorrect if we take into account the
exchange interaction and correlation effects. In the Hartree-
Fock equations the exchange interaction is described by the
nonlocal �integration� operator, and the well-known theorems
proven for the Schrödinger equation with a local potential
U�r� are violated if we add the exchange term �or any other
nonlocal operator�. According to Flambaum �1� �see also
�2–4�� the exchange can produce a power-law decay instead
of the usual exponential decrease at large distances. For inner
orbitals inside molecules decay is r−2 for macroscopic sys-
tems cos�kFr�r−�, where kF is the Fermi momentum and �
=3 for one-dimensional, �=3.5 for two-dimensional, and �
=4 for three-dimensional crystals. Slow decay increases the
spin-spin interaction between localized spins in solids and
the underbarrier tunneling amplitudes.

A very interesting manifestation of this phenomenon has
been suggested by Amusia in Ref. �5�. He showed that the
exchange interaction may increase probability of ionization
of inner atomic electrons by an external electric field by
many orders of magnitude �in one of the examples the en-
hancement factor was 1039�. Amusia claimed that this en-
hancement may explain experimentally observed enhance-
ment of multielectron ionization by a strong laser field �see,
e.g., Ref. �6�� �a different explanation, an “atomic antenna”
mechanism, was suggested by Kuchiev �7� and rediscovered
by Corkum �8��.

All theoretical results �1–5� mentioned above have been
obtained in the Hartree-Fock approximation. Naturally, one
may ask a question: is this enhancement real or is it just an
artifact of an approximate solution? Indeed, the Hartree-Fock
method ignores correlation effects which sometimes play a
very important role. An estimate of the correlation effects has
been done in Ref. �1�. The conclusion is that if the correla-
tion corrections may be treated using perturbation theory,
their long-range effect is less significant than that of the ex-
change. However, it is important to consider a simple model
where different effects can be accurately analyzed and check
if the enhancement of the quantum tunneling by the ex-
change interaction really takes place.

Let us consider a model of resonance tunneling from one
potential well to another potential well. The case of symmet-
ric double-well potential has been solved, e.g., in the text-
book �9�. There are two levels corresponding to the symmet-
ric �ground state� and antisymmetric wave functions. The
tunneling produces the splitting of these levels, E�=E1� t1,
where t1�exp�−��p�dr /�� is the tunneling amplitude, �p�
=�2m�U�r�−E1� is the semiclassical underbarrier
momentum, and the integral is taken between the classical
turning points.

If the first potential well �a� is slightly deeper than the
second potential well �b�, the ground state wave function
may be presented as �g=�1a+Bt1�1b, where Bt1� t1 / �E1a
−E1b�. Here we assume that the distance to other levels is
large, t1� �E1a−E1b�, and the probability of the particle in
the ground state to be in the well b is exponentially small
�proportional to the squared tunneling amplitude, Bt1

2

� t1
2 / �E1a−E1b�2�.
Now we add a second particle �identical fermion or bo-

son� to a higher state 2 which has energy close to the top of
the barrier. We can present its wave function as �2=A2�2a
+B2�2b, where the coefficient B2 is not necessarily small. In
this case the probability of the particle in the ground orbital
to be in the potential well b is no longer proportional to the
exponentially small parameter t1

2. Indeed, the following two-
step process takes place.

Step 1. The second particle tunnels from the potential well
a �orbital �2a� to the potential well b �orbital �2b�.

Step 2. Two-body process 2b, 1a→1b, 2a due to a non-
diagonal Coulomb exchange interaction which transfers the
first particle from orbital 1a to the orbital 2a and the second
particle from 2b to 1b.

As a result of these two steps, we have no change in the
occupation of state 2 and transfer of a particle from the
ground state 1a to 1b. This gives the amplitude for the
ground state particle to be in the well b,

BG1 �
G�2,1a;1b,2�

E1a − E1b
, �1�

where
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G�2,1a;1b,2� =	 �2�r�†�1a�r�
e2

�r − r��
�1b�r��†�2�r��dr�dr

�2�

is the Coulomb exchange integral. Note that the potential
wells here may have one, two, or three dimensions.

This result may also be derived from the Hartree-Fock
equation for the orbital �1=�1a+��1,

−
�2

2m

d2

dr2�1�r� + �U�r� − E1��1�r� = K�r� , �3�

by projecting it to the orbital �1b. Here

K�r� = �2�r�	 �2�r��† e2

�r − r��
�1�r��dr� �4�

is the exchange term. Note that the contribution of the direct
term in the Coulomb interaction between particles 1 and 2 is
included into the mean field potential U�r�.

Equation �2� gives us dependence of the amplitude BG1 on
the distance �a−b� between the wells a and b. If the distance
�a−b��r1 where r1 is the size of the orbital 1a, we can
expand 1 / �r−r�� near �r−r��= �a−b�. Integral with the first
term 1 / �a−b� of this expansion vanishes due to the orthogo-
nality of the wave functions �1a�r� and �2�r�. Therefore, the
expansion starts from 1 / �a−b�2.

Now we may discuss a contribution of the correlation
effects. They correspond to higher orders in the perturbation
theory in the Coulomb interaction integrals G, so they decay
with distance faster than 1 / �a−b�2.

Similarly, the enhancement of the tunneling takes place
for the ionization of an inner atomic electron by an external
electric field. We just need to make the length of the potential
well b infinitely large, so the orbitals 1b and 2b will be in the
continuum.

It is instructive to compare the exchange enhancement
mechanism with the atomic antenna mechanism �7,8�. In the
antenna mechanism an external electron is ionized by a
strong laser field, oscillates in this field, and accumulates
energy. Then this electron collides with the parent ion and
ionizes it. In the exchange mechanism the external electron
plays a passive role; it does not change its initial state. This
may give an additional coherent enhancement if the number
of electrons in an external subshell is large. Indeed, in many-
electron atoms the exchange term in the Hartree-Fock equa-
tion �Eq. �3�� contains sum over all electron orbitals,

K�r� = 

q

�q�r�	 �q�r��† e2

�r − r��
�1a�r��dr�. �5�

Therefore, all external electrons contribute coherently into
the effective tunneling amplitude for an inner electron. Amu-
sia �5� claimed that this may give an additional enhancement
factor Next

2 in the probability of the ionization where Next is
the number of external electrons �this dependence Next

2 is

probably observed in the ionization of noble gas clusters in
Ref. �10�; see discussion in Ref. �5��. Note, however, that
different subshells may contribute to this sum in Eq. �5� with
different signs, so the interference is not completely con-
structive. Consider, for example, the ionization of 1s elec-
tron, �1a=�1s. The sign of the integrals in Eq. �5� is deter-
mined by the sign of �q�r� near the origin where �1s is
located. The large distance behavior of the corresponding
term in K�r� is determined by the �q�r� which stays outside
the integral. Therefore, the sign of the contribution of a sub-
shell depends on the number of radial oscillations of the
wave function �q�r� which determines the sign of the prod-
uct �q �near zero� �q �outside the atom�. One should take
into account this fact when estimating the coherence
enhancement factor N2.

In the discussion above we assumed that the residual Cou-
lomb interaction �beyond the mean field� between the elec-
trons is sufficiently small to be treated perturbatively. We
should check if the exchange enhancement survives in the
case of a stronger Coulomb interaction. Consider the two-
well problem with a very large Coulomb repulsion between
two particles. A minimum of the Coulomb energy is achieved
when the particles are in different wells in state �1a�2b or
�1b�2a. Mixing between these states may be produced by the
nondiagonal exchange interaction G�2b ,1a ;1b ,2a�, i.e., it
does not require any tunneling at all. Two other states �1a�2a
and �1b�2b are separated from the lower states by the large
Coulomb energy Q=Qaa−Qab, where Qaa and Qab are the
Coulomb energies for the particles in the same well and dif-
ferent wells, respectively. Mixing between the states �1a�2a
and �1b�2b may be achieved in three steps.

Step 1. Tunneling of particle from 2a to 2b with creation
of an intermediate state �1a�2b separated by the energy
interval Q.

Step 2. The nondiagonal exchange interaction
G�2b ,1a ;1b ,2a� transfers �1a�2b to �1b�2a. At this step we
have mixing of the single-particle states 1a and 1b, BG1
� t2G�2b ,1a ;1b ,2a� /Q2.

Step 3. The tunneling from 2a to 2b.
We see again that we do not need the exponentially small

tunneling amplitude t1, i.e., the exchange enhancement
works. The only suppression we have here is due to the large
Coulomb matrix element Q in the denominator of the mixing
amplitude, tef f � t2

2G�2b ,1a ;1b ,2a� /Q2. �Note that a similar
suppression due to a large value of Q transforms a half-filled
conducting band in solids into the Mott insulator. This tran-
sition influences the exchange power tail for a localized elec-
tron in solids; see discussion in �1�.�

Similar results may be obtained for an attraction between
the particles. This may be a model for a tunneling of an inner
electron through a Josephson junction.

Thus, the exponential enhancement of the tunneling due
to the exchange interaction really exists.

This work was supported by the Australian Research
Council. I am grateful to J. Berengut for useful comments.

BRIEF REPORTS PHYSICAL REVIEW A 80, 055401 �2009�

055401-2



�1� V. V. Flambaum, Phys. Rev. A 79, 042505 �2009�.
�2� V. A. Dzuba, V. V. Flambaum, and P. G. Silvestrov, J. Phys. B

15, L575 �1982�.
�3� C. Froese Fischer, The Hartree-Fock Method for Atoms

�Wiley, New York, 1977�.
�4� N. C. Handy, M. T. Marron, and H. J. Silverstone, Phys. Rev.

180, 45 �1969�; G. S. Handler and D. W. Smith, J. Chem.
Phys. 73, 3936 �1980�.

�5� M. Amusia, e-print arXiv:0904.4395.

�6� L. A. Lompre, A. L’Huillier, G. Mainfray, and L. Y. Fan, J.
Phys. B 17, L817 �1984�.

�7� M. Yu. Kuchiev, Pis’ma Zh. Eksp. Teor. Fiz. 45, 319 �1987�;
�JETP Lett. 45, 404 �1987��.

�8� P. B. Corkum, Phys. Rev. Lett. 71, 1994 �1993�.
�9� L. D. Landau and E. M. Lifshits, Quantum Mechanics �Nauka,

Moscow, 1974�, $50, problem 3.
�10� A. B. Borisov, J. Davis, X. Song, Y. Koshman, Y. Dai, K.

Boyer, and C. K. Rhodes, J. Phys. B 36, L285 �2003�.

BRIEF REPORTS PHYSICAL REVIEW A 80, 055401 �2009�

055401-3


