PHYSICAL REVIEW A 80, 054302 (2009)

Simple encoding of a quantum circuit amplitude as a matrix permanent

Terry Rudolph
Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
and Institute for Mathematical Sciences, Imperial College London, London SW7 2PG, United Kingdom
(Received 18 September 2009; published 25 November 2009)

A simple construction is presented which allows computing the transition amplitude of a quantum circuit to
be encoded as computing the permanent of a matrix which is of size proportional to the number of quantum
gates in the circuit. This opens up some interesting classical Monte Carlo algorithms for approximating

quantum circuits.

DOI: 10.1103/PhysRevA.80.054302

In a recent article [1] Loebl and Moffatt gave a method
for expressing the computation of the Jones polynomial of a
braid in terms of a matrix permanent. Although computing
permanents is believed difficult (#P complete in the lan-
guage of complexity theory), there exist probabilistic algo-
rithms [2] which sample the permanent. This suggests some
interesting new classical algorithms for estimating the output
amplitudes of quantum circuits because evaluating the Jones
polynomial at certain roots of unity is bounded-error quan-
tum polynomial (BQP) complete [3]. The route to encoding a
quantum circuit as the Jones polynomial of a knot, and then
as a matrix permanent, is somewhat complicated—the pur-
pose of this Brief Report is to present a simpler construction.

We restrict to quantum circuits built from Toffoli and
Hadamard gates, which are universal [4,11]. We rely heavily
on the construction of Dawson et al. [5]. There it is shown
how the transition amplitude for such a quantum circuit is
equivalent to counting the number of solutions of a GF(2)
(i.e., XOR-AND) polynomial over some binary valued vari-
ables. More precisely, the results of [5] imply the following:
given a quantum circuit U and input and output computa-
tional basis states |in),|out) the amplitude (out|U|in) can be
expressed as the difference in the number of solutions to a
GF(2) polynomial over (roughly) as many Boolean variables
as there are Hadamard gates in the circuit. It is perhaps easi-
est to explain the construction using an example such as in
Fig. 1. The a;,b;,... are Boolean variables, which we imag-
ine traveling along the qubit lines. Every time the qubit goes
through a Hadamard gate we create a new such variable, and
whenever a variable z; travels through the target of a Toffoli
gate we replace it by z; ® x;y;, where x;,y; are the variables at
the control lines of the Toffoli gate as indicated.

Having labeled the circuit with these variables, we then
create the function f(x) by taking the sum (mod 2) of the
product of every pair of variables on either side of a Had-
amard gate. For the example of Fig. 1 we obtain

f(x) =aay 2] aras D asay D b]bz D b2b3 D (b3 52 d2C4)b4
@D b4b5 ©® C1Cy @ (C2 @ bzaz)C3 @ C3Cy @ CyCs @ d1d2
® dods.

If we are interested in, for example, the amplitude
(0011|U|0000) we then fix the input and output variables of f
accordingly: in this case we would set a;=b;=c|=d|=ay
=b5=0, cs5=d3=1, and f simplifies to

1050-2947/2009/80(5)/054302(4)

054302-1

PACS number(s): 03.67.Lx

f(.x) =dayas @D b2b3 @D b3b4 S5} d2C4b4 @ CrC3 (&3] b202C3 D C3Cy
@ Cy @ dz.

What is shown in [5] is that given a function constructed
in this way, one has

o= #
= (M

(out|Ulin) =

Here #,,#, denote the number of solutions to the equations
f(x)=0 and f(x)=1, respectively, and & denotes the number
of Hadamard gates in the circuit. Note that #,+#; =2, where
v is the number of variables in the function f once the input
and output qubit values have been fixed. If there are ¢ qubits
in the circuit then v=h—gq.

There are several other points to note in terms of the
construction of f. First it will be convenient to assume that
every variable goes through at most one Toffoli gate—this
can be arranged by inserting double Hadamard (i.e., identity)
gates where necessary [12]. This should also be done at the
final outputs to the quantum circuit. Doing so ensures that
the function f has the following properties: (i) it is (mono-
tone) cubic; (ii) every variable appears in at most one cubic
clause and two quadratic clauses.

Now counting solutions to a general GF(2) polynomial is
a #P-complete problem [6]. That is, it has the same complex-
ity as computing the permanent of a matrix—the prototypical
#P problem—as was famously proven by Valiant in 1979
[7]. So we know that in principle we can map between these

aif[a2 a: [Llas [L]las
I H H

b H b2 b2 Ebs H bs
[o31 H C2 3 H c; Ec«; Ca ECS
d: H d2 d: Ed3

FIG. 1. (Color online) Mapping from a standard Toffoli-
Hadamard circuit to counting solutions of a GF(2) polynomial.

©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.80.054302

BRIEF REPORTS

(b)
@a
Ly
d f® Od e od

’per(M) = afd + gbe

+ gcd‘

FIG. 2. The permanent of the matrix
a b c
M=|0 d e

g 0 f
is the sum of the weighted cycle covers of the associated graph.

problems and find some matrices M, and M; such that
per(M,)=#, and per(M,)=#,, and then

_ per(M,) — per(M)

(out|Ulin) =
U] B

However, the actual mapping between these problems is not
particularly simple or economical. In addition Valiant’s con-
struction of the matrix to count solutions of a satisfiability
problem is also not particularly economical.

The purpose of this Brief Report is to present a very
simple, direct, and economical construction relating quantum
computing to evaluating a matrix permanent, which is also
considerably more efficient than following the preceding
route. Moreover, instead of expressing the solution to the
problem as the difference in two matrix permanents, we will
construct a single matrix or graph G such that

(out|Ulin) = pe\%hG)) (2)

The route to finding G uses some of the same tricks as in
Valiant’s proof. As this Brief Report is intended to also be
accessible for physicists possibly unfamiliar with Valiant’s
result, we will try and make the presentation as self-
contained as possible.

Any nXn matrix can be considered the weighted adja-
cency matrix for a weighted graph on n vertices, where the
weight on the edge between vertices i and j is simply the
(i,j)th element of the matrix. The permanent of a matrix,
formally defined by

Per(M) = 2]._[Mi,w(i)’

mes, i

with S, as the symmetric group on n symbols, is then graphi-
cally equivalent to the sum total of the weighted cycle covers
of the graph: a cycle in a graph is a closed path; a cycle cover
is a set of cycles for which each vertex belongs to one and
only one cycle. The weight of a cycle cover is the product of
the weights on the edges involved in that particular cycle
cover—so the permanent is the sum of all such weights. An
example is provided in Fig. 2. A brief summary of how the
permanent arises in some physical considerations can be
found in [8]; from the perspective of this Brief Report the
close connections between evaluating permanents and cer-

PHYSICAL REVIEW A 80, 054302 (2009)

FIG. 3. (Color online) A big-picture view of the construction.
The external edges form loops through the graph gadgets, and each
such cycle is associated with one particular Boolean variable x;. If
the cycle is traversed in a particular cycle cover then that corre-
sponds to setting that particular variable to 0. Conversely, if the
particular cycle is not traversed then this corresponds to the associ-
ated variable having a value of 1. The graph gadgets have two or
three vertices connecting to external edges according to whether
they are gadgets for a quadratic or cubic clause. This graph would
correspond to the polynomial x;x,x3® xx5® XyXs5x6 D X5X6 D XpXy
@ XeX7 @ X3X7.

tain statistical mechanical models suggest there should be
connections between this work and that of [9].

Let us first give an overall view of the construction. We
will be constructing a graph in such a way that the presence/
absence of one particular cycle in any given cycle cover
corresponds to whether a particular Boolean variable x; as-
sociated with this cycle is 0 or 1. We will use the convention
that if the particular cycle is present in the cycle cover then
this matches the variable assignment x;=0; if it is not then
x;=1. Not all cycles within the graph will correspond to vari-
able assignments—the ones which do we term external
cycles. In the figures the “external edges” which can make
up such cycles will be thicker and colored in blue (to aid the
eye only—there is no mathematical difference between these
edges and other edges in the graph). The overall graph will
consist of some “graph gadgets” (small subgraphs) con-
nected by external edges. An example is given in Fig. 3.
Each of the gadgets corresponds to a clause—in the figure
we show only the vertices of the gadget which connect to
external edges. The blue external edges form loops around
two or three of the graph gadgets according to whether the
variable appears in two or three clauses, and obviously they
loop through a clause gadget with their corresponding part-
ners of that clause looping through the other vertices of the
gadget.

Now as we compute the sum of the weighted cycle covers
of the graph (i.e., the permanent of the associated matrix)
each cycle cover in the sum corresponds to a particular as-
signment of values to the Boolean variables—i.e., it will
have a particular set of external cycles traversed setting those
variables to a value 0. The graph gadgets will be designed so
that if none of the external edges connected to that gadget are
traversed—corresponding to all of the variables in that
clause being equal to 1—then the weight which that gadget
contributes to the particular cycle cover is —1. In all other
cases the weight contributed by that gadget will be +1. Re-

054302-2

BRIEF REPORTS

(a)
@1@.31

(b)
SNAG

B2

(c)
QV v | Yo7 [L7
A;;W 2 A de

FIG. 4. (Color online) (a) The inner workings of the quadratic
clause graph gadget. The weight on any edge is 1 unless otherwise
indicated. (b) The inner workings of the cubic clause gadget. The
weights 3; need only satisfy 3;3,8;=-2, which can be achieved by
setting B;=-2, B,=pB;3=1 if a graph with integer weights is de-
sired. (c) The various ways in which the gadgets can be involved in
a cycle cover with external edges. These are the cases when some of
the associated Boolean variables in the clause are equal to 0 and, as
can be seen, these cases all contribute a weight of +1 to the cycle
cover. When no external edges are incident on the gadget the weight
it contributes must be —1 as discussed in the text.

call that the weight of any given cycle cover is the product of
the weights over all cycles in the cover. So for a fixed cycle
cover (corresponding to a fixed assignment to the Boolean
variables) the total weight will be +1 or —1 according to
whether an even or an odd number of clauses are satisfied by
that particular assignment. Assuming without loss of gener-
ality an even number of clauses in total, this in turn means
that the weight of the particular cycle cover is +1 if f(x)=0
and -1 if f(x)=1. As we sum over all weighted cycle covers
we automatically are calculating the difference in the number
of solutions of f(x)=0 to f(x)=1, which is precisely what we
need by Eq. (1).

The inner workings of graph gadgets which act in the
desired manner are shown in Fig. 4. If in some cycle cover
no external edges are incident on the gadget then its contri-
bution will be —1, which can be readily verified by comput-
ing the permanents of their adjacency matrices:

0 -11 1 B 0
-1 0 1 and 0o 1 B
I 1 1 B 0 1

If one, two, or three external edges are incident on the gad-
gets then the contribution to the cycle cover has weight +1;
this is depicted in Fig. 4(c).

There is one potential problem which has not been ad-
dressed. What is to stop a particular cycle cover involving
only part of an external cycle corresponding to some given
variable. Why, for example, do we not get screwed up by
cycle covers which, say, enter at one vertex of the graph

PHYSICAL REVIEW A 80, 054302 (2009)

aT3

FIG. 5. (Color online) (a) The sort of cycle covers we need to
avoid: cycles which only partially traverse an external cycle, as
such setting the associated variable to 0 in one clause and 1 in
another. (b) The inner workings of the quadratic clause gadget
which ensure that any external edge must exit by the same vertex it
entered. The two depicted contributions to the cycle cover have
opposite signs and cause the necessary cancellation.

gadget but leave at a different one? A figurative picture of
such an undesirable type of cycle is given in Fig. 5(a).

The possibility of such problematic cycles is ruled out by
the internal workings of the quadratic clause graph gadget.
This is shown in Fig. 5(b). Any cycle cover which enters the
gadget along one external edge and tries to leave out via the
external edge on the other side of the gadget has two possible
paths for doing so. These paths pick up opposite signs, and
so when summed over contribute O to the total. The process
is somewhat reminiscent of Mach-Zender interferometry.
Note that we did not need to design the cubic graph gadget to
have the same property. This is because in the formulation
we have chosen any variable appears in only one cubic
clause, and it must then also appear in two quadratic clauses.
The quadratic clause gadgets suffice to “force” an external
edge which is incident into the cubic clause gadget to leave
via the same vertex it entered.

In terms of the basic construction the final thing to men-
tion is that it is simple to force the values at the boundaries
(the input or output to the circuit) to be 1 or 0. This is done
either by simply not connecting any external edges into the
associated gadget (setting the variable to 1) or by forcing an
external edge through the gadget by having that edge also
loop through a vertex which has no “self-loop” (setting the

FIG. 6. (Color online) Putting everything together—how to
draw the final graph G over the top of the associated circuit. Note it
is the variable on the target line of a Toffoli gate which is created by
the Hadamard that acts after the Toffoli that is involved in the
associated cubic clause. This graph would be computing the transi-
tion amplitude with |in)=[1111) and |out)=|1100).

054302-3

BRIEF REPORTS

variable to 0). An example of this can be seen in Fig. 6 where
the input qubits are all fixed to have value 1, and the top two
qubits have value 1 at the output while the bottom two qubits
are set to the value of 0 at the output [13].

The overall construction can be naturally laid out by
drawing the graph directly on top of the circuit diagram. This
is illustrated in Fig. 6 for the same circuit of Fig. 1.

Note that the number of vertices in the graph G we asso-
ciate to a given circuit is basically three times the number of
gates in the circuit. Let us denote this number of vertices as
m. We have that

PHYSICAL REVIEW A 80, 054302 (2009)

L per(G) B G
(out|Ulin) = o —per< T)’

If it were the case that ||G/2""||< 1 then the results of [10]
imply there would exist an efficient classical algorithm to
simulate this quantum circuit.

We acknowledge the support of the EPSRC-GB and help-
ful comments by S. Severini.

[1] M. Loebl and I. Moffatt, e-print arXiv:0705.4548.

[2] C. D. Godsil and I. Gutman, Algebraic Methods in Graph
Theory (North-Holland, Amsterdam, 1981), Vol. I, Vol. II; N.
Karmarkar, R. Karp, R. Lipton, L. Lovasz, and M. Luby,
SIAM J. Comput. 22, 284 (1993); A. Barvinok, Random
Struct. Algorithms 14, 29 (1999); M. Jerrum, A. Sinclair, and
E. Vigoda, J. ACM 51, 671 (2004).

[3] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, Bull. Am.
Math. Soc. 40, 31 (2002); M. Bordewich, M. Freedman, L.
Lovasz, and D. Welsh, Combinatorics, Probab. Comput. 14,
737 (2005); D. Aharonov, V. Jones, and Z. Landau, Proceed-
ings of the 36th Annual ACM Symposium on the Theory of
Computing (STOC, 2006) (ACM Press, New York, 1988), p.
427.

[4] Y. Shi, Quantum Inf. Comput. 3, 84 (2003); D. Aharonov,
e-print arXiv:quant-ph/0301040.

[5] C. M. Dawson, H. L. Haselgrove, A. P. Hines, D. Mortimer,
M. A. Nielsen, and T. J. Osborne, Quantum Inf. Comput. 5,
102 (2005).

[6] A. Ehrenfeucht and M. Karpinski, The Computational Com-
plexity of (XOR, AND)-Counting Problems, ICSI Technical Re-
port No. TR-90-033, 1990 (unpublished).

[7] L. G. Valiant, Theor. Comput. Sci. 8, 189 (1979).

[8] T.-C. Wei and S. Severini, e-print arXiv:0905.0012.

[9] D. A. Lidar, New J. Phys. 6, 167 (2004); J. Geraci and D. A.
Lidar, Commun. Math. Phys. 279, 735 (2008).

[10] L. Gurvits, On the Complexity of Mixed Discriminants and

Related Problems: Mathematical Foundations of Computer
Science 2005 (Springer, Berlin, 2005), Vol. 3618.

[11] These gates are universal in the sense of allowing simulation
of arbitrary quantum computations and not the generation of
arbitrary unitary evolution. To generalize the results of this
Brief Report to the latter, stronger, form of universality is not
trivial—at least for this author. The place to start would be the
obvious generalizations of the results of [5] to other finite
fields.

[12] As pointed out by the referee, at first this appears incompatible
with Eq. (1) remaining invariant, as the number of variables
increases by 2, meaning the number of cases increases by 4,
and yet the difference in number of solutions had better only
double as 71— h+2 implies only an extra factor of V22 in the
denominator. The trick is that such a splitting in terms of the
terms of f takes the form x;x, —x x| @ x[x; D x5x,, and com-
paring all cases of the original and expanded terms, one finds
that only one out of the four flip their parity. That is, in the new
formula f’(x) there are now 3#y+#, solutions to f'(x)=0 and
3#, +#, solutions to f'(x)=1, and so the difference is, to both
my and the referee’s relief, 2(#,—#,).

[13] In practice we can make things slightly more economical by
removing some of these redundant vertices and using the fact
that a suitable clause gadget for a clause consisting of a single
variable is simply a single vertex with a self-loop of weight
-1.

054302-4

