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Observation of geometric phases for three-level systems using NMR interferometry
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Inspired by the optical experimental scheme [Phys. Rev. Lett. 86, 369 (2001)], we propose and implement
a NMR experiment to observe an Abelian geometric phase shift arising from the cyclic evolution of U(2)-in-
variant states. Such a phase shift geometrically refers to the Bargmann invariant in a four-dimensional SU(3)/
U(2) parameter space, while the usual geometric phases arise in the evolution of U(1)-invariant states and is
related to solid angles in a two-dimensional SU(2)/U(1) = §? parameter space (or Poincaré sphere). We present
the experiment in a four-level system and investigate its topological invariance for different circuits. This may
provide a realistic candidate to design complex geometric quantum circuits for future quantum computers.
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I. INTRODUCTION

Cyclic evolution can enable a nondegenerate state to ac-
quire geometric phase (GP) factors [1] that depend only on
the geometry of the state in its parameter space. If the cyclic
variation is adiabatic, this GP is known as Berry’s phases [2].
Otherwise it is related to Aharonov-Anandan phases [3],
which has been pointed out to be a continuous version of
earlier Pancharatnam phases [4]. The geometric phase is im-
portant not only for its fundamental interests but also for its
potential usages. Due to the independence of energy and time
and relying only on the geometry in the parameter space, GP
is argued to be resilient to certain types of errors and suggest
the possibility of an intrinsically fault-tolerant way of per-
forming quantum gate operations [5,6].

Experimental observation of GP, so far, has exclusively
concentrated on the Abelian geometric phase arising in the
evolution of U(1)-invariant states [7—12]. These states can be
for instance a two-level state parameterized by a polar angle
and an azimuth angle in the Poincaré sphere. The GP of it
corresponds to a solid angle subtended by closed evolution
paths on the sphere. This geometric property of GP is the
main concern in experiment before. But when considering in
a three-level system, things will become different and inter-
esting. A general state in this system resides on a four-
dimensional SU(3)/U(2) parameter space and its GP for the
cyclic evolution has been studied theoretically [13,14,16]. Tt
is found that GP in the three-level ray space is geometrically
referred to the Bargmann invariant [15-17] on a hypersur-
face instead of the solid angle on a sphere. Unitary evolution
in it belongs to the SU(3) group operation that provides more
controllable parameters than that of SU(2) does in the two-
level case. All these substantially provide more choices for
designing complex geometric quantum circuits [18,19]. Al-
though it is well known in theory what is lacking is an ex-
perimental to observe three-level GP in any physical system.
To this aim, precise controlling operation is needed. NMR
system happens to have mature techniques of controlling op-
eration, and therefore it seems to be one of the best physical
systems to carry out this experiment.
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In this paper inspired by the optical experimental scheme
[20], we propose and implement a NMR experiment to ob-
serve an Abelian GP, which arises from geodesic transforma-
tions of U(2)-invariant states in a four-dimensional SU(3)/
U(2) parameter space. Four levels generated by two
interacting spin-1/2 nuclei are exploited to contribute three
target levels and one auxiliary level. Unitary evolutions, be-
longing to SU(3), for performing cyclic paths in the three-
dimensional ray space are implemented by using quantum
controlled logic gates [21]. Aimed at obtaining a measurable
GP, we utilize the auxiliary level to be as a reference state
that is kept unchanged during all evolutions. The dynamical
phase factor can be vanished by evolving along geodesics in
the projective Hilbert space. As a result, an observable geo-
metric phase factor appears as a local phase between the
three-level target state and the reference state.

II. GEOMETRIC PHASE OF THREE-LEVEL SYSTEMS

Let us begin by considering a three-level Hilbert space >
and an arbitrary three-component state can be characterized
by four real parameters (a;,a,, x;,x2) besides a trivial glo-
bal phase parameter 7,

[y) = e(e™1 cos ay,e™2 sin @) cos ay,sin @ sin a,)?. (1)

The real parameters have the range a;, € [0,7/2] and x;»
€[0,27). These parameters are independent and form a
four-dimensional parameter space. Although it cannot di-
rectly draw a four-dimensional geometry for illustration, we
can respectively view (a;,a,) as points on an octant of S°
and (x;,x») on a torus (see Fig. 1). By doing this, we should
remember that only the combination of these two geometri-
cal spaces determines the parameter space in consideration,
which is indicated by using a Kronecker product in Fig. 1.
Now, consider a state evolving from |¢(s;)) to |¢(s,)) and
curve parameters s, , consisting of the five parameters de-
fined in Eq. (1). Corresponding to this evolution, in 7{? there
is a continuous piecewise smooth parametrized curve, C
={y(s)|s, =s=s,}, and its image in the ray space R is like-
wise continuous and piecewise smooth denoted by C={p(s)
=|(s))(i(s)|| s =s=s,}. Then the GP B associated with the
curve C equals the difference between a total phase ¢, and a
dynamical phase vy, [14], that is,
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FIG. 1. (Color online) An illustration of the four-dimensional
Hilbert space. We can visually image it as the direct product ® of
two two-dimensional surfaces, one octant (a;,a,) of a sphere $>
and a torus (x;,x2). Their coordinate parameters are marked in the
figure.

HC1= 0ulC1- L€, lCl=are(hisy | ps2),
1=~ | " astors) i lutsn. @
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with both ¢, and vy, being functionals of the curve C. If the
curve C is closed, the state change can be simply expressed
as [(sy)y=exp{i(y [ Cl+ BICD}|i(s))).

The geodesics in ray space R are given through variations
in a nondegenerate positive-definite length functional; see
details in [16]. In two-level systems geodesics are related to
the parallel transport condition. But for the three-level case,
every geodesic in ray space has a vanishing geometric phase
and it plays a crucial role in the observation of geometric
phases in the following. The simplest description of geodesic
can always be achieved as follows [14]. Let p; and py,;
denote the end points of a smooth curve C associated with
unit vectors ¢ and ., in H>. There is a requirement for the
chosen state vectors that (i |,,) must be real positive.
Then the geodesic C,, connecting p; to pk+ 1 1s the ray space
image of the curve Cy,={¢(s;)|0=s,=s}} and

ieer — Uil s
/ =—si
V1= <lﬂk|¢k+1>

with 0=s,=s) and sk—arccos(¢k+1|¢k> From Eq. (3), one
can see that $(0)=4 and |¢(52)><¢/(Sk)|—|¢k+1><'/fk+1|—Pk+1
For a set of points py,p,,**,p,CR in order, suppose that
no two consecutive points are mutually orthogonal and that
p, and p; are also nonorthogonal. So we can obtain a closed
curve C in R in the form of an n-sided polygon by joining
these n points cyclically with geodesic arcs. The geometric
phase is then according to Eq. (2)

BLC = arg(n|gy) — arg(y |[ih,) — -+~ — arg(afy,| )
=—argTr(pipy " p,). (4)

1n which it has used relations of | )(i]|=|¢){¢|=p, and
pl—pl Equation (4) combined with geodesic condition, i.e.,
(| sy is real positive, shows a vanishing dynamlcal
phase for these cyclic evolutions. It thus provides us a con-
venient evolution way to observe the geometric phase.

Psy) = Py cos s; + n sy, (3)

III. EXPERIMENTS

Experiments were performed on the three-dimensional
subspace of two interacting spin-% nuclei—spin a ("H) and
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FIG. 2. Energy level diagram for (solid lines) two spins coupled
by a Hamiltonian of the form of 27%][;1? and (dashed lines) two
uncoupled spins.

spin b (**C) in the *C-labeled chloroform molecule CHCl5.
The reduced Hamiltonian for this two spin system is, to an
excellent approximation, given by H= walg+wblf + Zq-rJI?If.
The first two terms in the Hamiltonian describe the free pre-
cession of spin a and spin b around the magnetic field B,
with Larmour frequencies w,/27=~400 MHz and w,/27
~ 100 MHz. The third term of the Hamiltonian describes a
scalar spin-spin coupling of the two spins with J
=214.5 Hz. °C nucleus’s T relaxation time is 17.2 s and its
T, relaxation time is 0.35 s. 'H nucleus’s 7T, relaxation time
is 4.8 s and its 7, relaxation time is 3.3 s. Experiments were
performed at room temperature on a Bruker AV-400 spec-
trometer. If we denote the spin up and down by |0) and |1),
the energy levels of such system are displayed in Fig. 2. It

ing to energy e1genvalues { ﬁ(—wl w2+7TJ) h(—w1+w2
-l), 2ﬁ(co1 wy—), h(w1+w2+71'])} We choose basis

space H? and |01> as the reference state which is kept un-
changed during evolutions.

The system was first prepared in a pseudopure state |00)
using the method of spatial averaging [22] with the pulse
sequence

Rf(ﬂ'/S) -G, — Ri’(’n’/4) — 1/2J — Rf,(’n'/4) — G,

which is read from left to right (as the following sequences).
The rotations RP™(angle) are implemented by radio-
frequency pulses. G, is a pulsed field gradient which destroys
all coherences (x and y magnetizations) and retains longitu-
dinal magnetization (z magnetization component) only. 2%
represents a free precession period of the specified duration
under the coupling Hamiltonian.

The complete sequence for state evolutions started by pre-
paring the initial superposition state %(|OO>+|01>) with a
Hadamard operation on the second qubit of the pseudopure
state [00). Then the reference term |01) was kept unchanged
through bipartite control operations. The |00) term (denoted
by |¢)) was first evolved to |¢,(s;))=cos 5,|00)+sin s,|10)
with  unitary  operation  U§(s))|¢;)—[¢(s))),  then
to state |g5(s,))=(cos s) cos s,—e'® sin 5! sin s, cos 6)|00)
+ (sin s? cos 5,+¢'? cos s| sin s,cos 6)[10) — sin @ sin s,|11)
with US(s,)|4(sY)) — |45(s,)), and last to state |¢])=e"P|y)
with U%(sg)|¢3(sg)>—> |). The experimental network has
been shown in Fig. 3. In order to show the evolving path
obviously, here we have written the states and their evolution
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FIG. 3. Experimental network: two spin-1/2 nuclei perform uni-
tary evolutions controlled by each other. Each circle at the second
line means that spin-1/2 nuclei performs its linked unitary evolution
when the second nucleus at |0), state. Each dot at the first line
means that spin-1/2 nuclei performs its linked unitary evolution
when the first nucleus at |1), state.

operations in a curve-parameter form. The curve parameters
81 2.3 take values from O to 5(1),2,3’ respectively. Corresponding
to three smooth geodesics, the unitary operations can be fac-
tored into more clear forms,

Ui(s)) = R(sy),
US(s2) = R(sDRo3(6.0,0)R(:)R33 (6,0, 0)R™(s1),
US(s3) = Rys(x. 7= OR(=s)R3(x. 7= . (5)
where the controlled rotation quantum gates have the form

cossy 0 —sins, O

0 1 0 0
Ris = sins;, 0 coss;, O]
0 0 0 1
10 0 0
Rys(V, b, b)) = 0 ; 0 ; ’
T 0 0 é%cosd e rsind

0 0 —¢%sind e cosd

The concrete experimental realization for these quantum
gates is discussed at last. Parameters &, y, 7, and sg in Eq. (5)
are fixed by the reparametrization, |¢s)=e¢ cos s3/00)
+¢X sin 5§ cos 7110)—sin s sin 711). Obviously the cho-
sen unit vectors ¢ and ¢y, satisfy the condition of
(| ¥s1) being real positive. This combined with Eq. (4)
shows a vanishing dynamical phase during these cyclic evo-
lutions and we obtain the GP

BLC] = arg(cos s(l) cos s(z) — €' sin s? sin sg cos 6). (6)

So after one cyclic evolution described above, it effectively
produces a GP and can be measured as a relative phase shift
between [0), and [1), for the qubit b, ie., 5(/00)+[01))
— 5(#00)+(01)) —[0), ® S(e%[0) +|1)),. At last the local
phase 3 can be read out directly by a phase-sensitive detector
on qubit b in NMR.

Though it is hard to image how a state evolves in a high-
dimensional Hilbert space, here we would take an example
to explain this. If we set the unitary operation parameters as
si=m/2, so=m/4, 0=1/4, and ¢=m/4, there are four steps
in the following for a cyclic evolution: (i) The evolution
begins with an initial state |i;)=|00) or |¢;)=(1,0,0)7,
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FIG. 4. (Color online) Experimental results on the GP B versus
the parameter s(l) or sg. Changing s?, sg means changing the posi-
tions of states i, (point B) and 3 (point C). The evolution paths
have been depicted out illustratively in parameter space (a direct
product manifold of an octant of sphere S? and a torus) and the
concrete values of (@, ay,x1,x2) can be calculated by Eq. (1). (a)
shows the result in the cases of =0 and ¢=/4; the evolution path
A-B-C on the octant of 2 is a curve while it runs a period on the
torus. (b) shows the result in the cases of =m/4 and @=1/4; the
evolution A-B-C on the octant of S? is a triangle while it runs a
period on the torus. Theoretical curves for GP have been marked
out by solid lines.

which in comparison with Eq. (1) actually defines a point A
with (a;=a,=x,=x»=0) in the parameter space. (ii) A uni-
tary operation U, drives the state vector from |i;) to |i)
[|4)=(cos(s;),sin(s;),0)7]. Compared with Eq. (1), the state
|¢,) defines a point B with (a;=7/2,a,=x,=x,=0) in the
parameter space. So in octant, the vector moves from point A
(a;=a,=0) to B (a;=7/2,a,=0), while in the torus param-
eter space, the point A (x;=x,=0) coincides with B (x,
=x,=0). (iii) A unitary operation U, drives the state vector
from | i) to |¢) [|13)=—(0.3536+0.3536i,-0.707,0.5)7]. In
the parameter space, |#3) can be expressed as a point C with
(a;=7/3,a,=0.6155) and (x,=m/4,x,=m). (iv) A unitary
operation U drives the state vector |¢;) back to the start
point A with an extra phase B, which is nothing but the
three-level geometric phase of a cyclic evolution. In the
above description, we have omitted the energy level |01)
because it is the reference level which is kept unchanged
during evolutions.

In Fig. 4 we show the measured phase B versus param-
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eters {s(l),sg, 0, ¢} that are determined by evolution states i,
(point A), ¢, (point B), and ¢ (point C). All are carried out
at ¢=1r/4, and total pulse sequence time T for cyclic evolu-
tion is about 5-25 ms for different evolution paths. We set
6=0 and 6=/4, respectively, at which correspondent geo-
desics have disparate trajectories in ray space. The measured
phase is in all cases seen to fit the theoretical curve [Eq. (6)]
well with a root-mean-square deviation across all data sets of
5.6°. Thus, all results are in close agreement with the pre-
dicted geometric phase, and it is clear that we are able to
accurately control the amount of phase geometrically. The
total experimental time of ~18 ms was short compared to
the shortest relaxation time 7, of ~350 ms. The sign decay
during evolution progress is less than 5%, and this will not
effect the measurement of geometric phase shift. The experi-
ment errors are mostly due to errors in the rotation angles of
the radio-frequency pulse, which arise from the imhomoge-
neity of the radio-frequency field.

The controlled operation between the two qubits plays the
main role in the experiment. It goes as that the qubit a (or b)
undergoes a SU(2) operation if the qubit b (or a) is in state
|1) while kept unchanged if it is in state |0). This is used to
realize the controlled operations R and R,3. The detailed op-
erations in experiment work as follows.

For the subsystem of qubit a, we can write the reduced
Hamiltonian

H,= wJ* + 2mIm’I* = [w, - 2mJ(d* - 1/2)]I%,

where mf is the eigenvalue of Iﬁ' (== %) and d” the corre-
sponding computational value (=0,1). If we use a rotating
frame with a frequency of w)=w, and w,=w,, the Hamil-
tonian turns into, for d”=0, HEIO)=7TJIZ, while it becomes
Hfll)=—7-rJIZ for d°=1. This Hamiltonian generates controlled
rotations around the z axis. Qubit b is the control qubit and
qubit a is the target qubit. To generate the control gate R(S)),
we rotate the rotation axis using radio-frequency pulses. To
generate a 25 rotation around the y-axis, e.g., we use the
sequence

S
RY(m/2) — =% — RY(= m/2) — RY(S)).
] Y

This represents the controlled gate operation R(S}).
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For another controlled gate operation R,;(x,7,—§), we
have to reverse the roles of control and target qubit and apply
the following sequence to qubit b:

!

o
Ri-¢') > RU-7-PB') — 57 RY(m+p')

— RU($") — R)(a'12,B,¢"),

R(a'/2,B',¢") denote the rotation of the second qubit &' /2
around the axis 7i(8’, '), and &', B, and ¢’ are calculated
from y, 7, and —&.

IV. CONCLUSION

In summary, we present the first experiment for producing
and measuring an Abelian SU(3)/U(2) geometry-dependent
phase shift in a three-level system. Although the increased
dimensions in parameter space complicate the analysis of
unitary evolution, we succeed in designing a scheme in con-
trol by using NMR techniques. In a two interacting qubits
system, it provides naturally three target levels that are used
to perform cyclic evolution and an auxiliary level that is kept
unchanged to create a reference state. Thus an easily mea-
surable geometric phase factor appears as a local phase fac-
tor. Obviously our experiment by using NMR techniques
turns out to be more feasible than the optical scheme pro-
posed in Ref. [20]. It should be noted that our operations
adopted may be readily extended to perform the geometric
quantum gates as proposed in [18,19]. If some new geomet-
ric quantum circuits are developed based on the SU(3)/U(2)
geometry, our experimental scheme also serves as a realistic
candidate.
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