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We show that it is possible to achieve laser oscillation and two-mode entanglement by using dressed-state
phase-dependent electromagnetically induced transparency �EIT� in a double � system. Under certain condi-
tions, two beams of bichromatic fields induce the depopulation of a coherent superposition state of the two
excited states and the quantum beat of a pair of cavity fields. While one of two beams of bichromatic fields
dresses the atoms, the other and the pair of cavity fields are in phase-controlled EIT interaction with the dressed
atoms. On the basis of this, the pair of cavity fields not only operates well above threshold and exhibit subshot
noise but also is in an entangled state. This mechanism suggests an efficient way to achieve bright entangled
source of light.
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I. INTRODUCTION

Electromagnetically induced transparency �EIT� is one of
the most important coherent phenomena. The underlying
mechanism of EIT is the coherent population trapping �CPT�
�1�. The essence of EIT and CPT is a creation of a coherent
superposition of long-lived states �1–8�. This superposition
state is usually called a dark state. In the exact EIT and CPT
situations, the atoms are prepared in the dark state and are no
longer excited by radiation. EIT is the basis for lasing with-
out population inversion �9–14�. Atoms in the lower-lasing
state do not absorb light and a small quantity of the atoms in
the upper lasing state via a weak additional excitation con-
tributes to the gain. The reduced absorption or excitation is
also the mechanism for the suppression of spontaneous emis-
sion and the generation of squeezed light. This gives the
possibilities of generating subshot light from a laser without
inversion �15–20�. In some situations, the EIT configuration
is created when ac-Stark splitting is included �21�. In this
case, one has dressed-state EIT. At the same time, the popu-
lation transfer between split levels is intrinsically existent, as
in dressed-state lasers, and thus no additional pumping is
required for the light amplification. This gives laser oscilla-
tion and output light with subshot noise �21�. Also, it is pos-
sible to achieve both large self-phase modulation and vanish-
ing absorption �22�, which lay a basis for frequency
conversion and squeezed-light generation �23�.

The dark state is created for any laser phases and intensi-
ties as in a two colored driven three-level � system. The
only necessary condition is two-photon resonance of the
atom-field interaction. As long as the applied laser fields do
not change or change adiabatically, the dark state is also
prepared via optical pumping in the continuous-wave regime
or via adiabatic following in the pulsed regime, independent
of the laser phases. This, however, is not the case when the
laser fields interact with atoms in a closed loop of transitions.

More often than not, one faces with a system with a closed
loop of transitions. In particular, Kosachiov et al. �24�
showed that the relative phase of the transitions plays a cru-
cial role in determining both dynamics and the steady state
of the atoms in closed-loop systems. In particular, the dark
state is existent only for specific values of the phase, even if
the multiphoton resonance condition is satisfied. Korsunsky
et al. �25,26� described and observed the phase-dependent
EIT. Fleischhaker and Evers �27� discussed the pulse propa-
gation in a phase-dependent EIT medium. The phase-
dependent EIT and CPT turn out to be the basis for control-
ling a type of the atom-field interactions. One can control the
properties of medium and optical fields by the input field
phases without changing neither frequencies nor input inten-
sities. This not only gives an additional degree of freedom in
the coherent optical control, but also allows one to manipu-
late the light-atom interactions in a more sophisticated man-
ner than in conventional EIT.

Here we present a scheme, showing that the dressed-state
phase-dependent EIT is an efficient way for obtaining bright
entangled source of light. We use two pairs of bichromatic
fields to couple the atoms in a double � configuration. On
multiphoton resonances in a closed loop �phase dependent�, a
superposition state of the two excited states has vanishing
population �coherent depopulation, i.e., the counterpart of
CPT �1��, which leads to the creation of quantum beat of a
pair of cavity fields. When one bichromatic field induces the
Stark splitting, the other bichromatic field and the pair of
cavity fields are in the phase-dependent EIT interaction with
dressed atoms. By this mechanism, the two generated fields
run well above threshold and display subshot noise and are
entangled with each other.

So far, there have been several schemes that have been
proposed for obtaining light entanglement via atomic coher-
ent effects. Examples include those that are based on corre-
lated spontaneous emission �28,29�, atomic reservoir engi-
neering with two-step four-wave mixing �30�, dispersive
atom-field interaction �31�, optical bistability with EIT, and
cavity dispersion �32�. Our scheme fundamentally differs
from those in that it is based on the coherent effects of mul-
tiphoton resonances, which are established in a closed loop
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of double � configuration. The characteristic features are as
follows. �i� Quantum beat is created due to coherent depopu-
lation effect. �ii� Phase-dependent dressed-state EIT is
formed when the ac-Stark splitting is included. �iii� Light
amplification of one collective mode is achieved by combin-
ing the dressed-state EIT and the intrinsic incoherent transfer
of population. �iv� Both the quantum noise squeezing and
quantum entanglement are achieved via intrinsic feedback
when the laser runs well above threshold. To our knowledge,
such phase-controlled coherent effects of multiphoton
resonances on light amplification and quantum correlations
have not been reported yet. Our main purpose of the present
paper is to show that the multiphoton resonances are efficient
in the coherent control of laser oscillation and light entangle-
ment.

This paper is organized as follows. In Sec. II, we present
the model and derive the master equation for the atom-field
system. In Sec. III, we give the steady-state intensities and
quantum correlations. Realistic considerations are presented
in Sec. IV and the conclusion is given in Sec. V.

II. MODEL AND MASTER EQUATION

An ensemble of N atoms in double-� configuration �Fig.
1� is placed in a two-mode cavity. Four external coherent
fields of frequencies �kl are applied to the four transitions
�k��− �l�� �k=3,4 ; l=1,2� of the �th atom in a closed loop
with complex Rabi frequencies �kl exp�−i�kl� ��kl�0� and
wave vectors kkl, respectively. Two cavity modes a1,2 of fre-
quencies �1,2 and wave vectors k1,2 are generated from the
transitions �1��− �3� ,4��, respectively. The transitions
�1��− �2�� and �3��− �4�� are dipole forbidden. The master
equation for the atom-field density operator is derived in the
dipole wave approximation and in the interaction picture as
�33�

�̇ = −
i

�
�H,�� + La� + L f� , �1�

where H=H0+V, the Hamiltonian H0 characterizes the inter-
action of the applied external fields with the atoms, and V
denotes the interaction of the cavity fields with atoms

H0 = �
k=3,4

�
�=1

N
�

2
��k1	k1

� exp�i�k̃k1 · r� − 
k1t − �k1��

+ �k2	k2
� exp�i�kk2 · r� − 
k2t − �k2��	 + H.c., �2�

V = �
�=1

N

��g1
�a1	31

� exp�i�k̃31 · r� − �1t��

+ g2
�a2	41

� exp�i�k̃41 · r� − �2t��	 + H.c. �3�

Here, H.c. represents Hermitian conjugates. 	kl
� = �k��
l��

�k , l=1–4� are the atomic projection operators �k= l� and the
flip operators �k� l� for �th atom. al ,al

† �l=1,2� are annihi-
lation and creation operators and g1,2

� describe the couplings
of the �th atom to the cavity modes 1 and 2. 
kl=�kl− �̄kl
are detunings of driving field frequencies from atomic reso-
nance frequencies, where �̄kl are the atomic resonance fre-
quencies. �1=�1− �̄31 and �2=�2− �̄41 are the detunings of
the cavity frequencies from atomic resonance frequencies.

The sum of wave vectors k̃31=k31+k1 �k̃41=k41+k2� origi-
nates from the simultaneous couplings of two fields to the
�1��− �3�� ��1��− �4��� transition. La� and L f� represent the
atomic and field damping terms, respectively,

La� = �
k=3,4;l=1,2

�klLlk� ,

Llk� = �
�=1

N
1

2
�2	lk

��	kl
� − �	kl

�	lk
� − 	kl

�	lk
��� , �4�

L f� = �
l=1,2


lLal
�, Lal

� =
1

2
�2al�al

† − �al
†al − al

†al�� ,

�5�

where �kl are the atomic decay rates from �k�� to �l�� and

l �l=1,2� are the decay rates of the cavity fields.

A. Quantum beat due to coherent depopulation

For clarity, we replace �2�, �3�, and �4�
by exp�i�k32− k̃31� ·r���2�, exp�ik̃31·r���3�, and

exp�i�k̃31−k32+k42� ·r���4�, respectively, and then rewrite
Hamiltonians �2� and �3� as

H0 = �
�=1

N
�

2
��31	31

� exp�− i�
31t + �31��

+ �32	32
� exp�− i�
32t + �32��

+ �41	41
� exp�− i�
k · r� + 
41t + �41��

+ �42	42
� exp�− i�
42t + �42��	 + H.c., �6�

V = �
�=1

N

��g1
�a1	31

� exp�− i�1t� + g2
�a2	41

�

�exp�− i�
k · r� + �2t��	 + H.c., �7�

|2µ>

|1µ>

a1

Ω41

Ω31

|4µ>

|3µ>

Ω42

Ω32
a2

FIG. 1. �Color online� Level diagram for the double-� system.
Four external fields are applied to atomic transitions �k��− �l�� with
complex Rabi frequencies �kl �k=3,4 ; l=1,2�. al �l=1,2� are the
annihilation operators for the cavity fields.
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where we have defined 
k= �k31−k32�− �k41−k42�
+ �k1−k2�. It should be noted that the above substitutions do
not change the forms of the damping terms �4� and �5�. For
simplicity, we consider the case of the wave vector matching

k=0. Since four applied external fields interact with the
atoms in a loop of double-� configuration, even in the ab-
sence of the cavity fields, the system dynamics is dependent
on the harmonic factor �34� ein
t, n=0, �1, �2, . . ., with the
detuning 
=
31−
32+
42−
41. This is very complicated.
To simplify the treatment and clarify the physics, we assume
that 
=0. In particular, we focus on the case

�i� 
31 = 
41,
32 = 
42, �8�

under which we have two-photon resonances
�3��− �1��− �4�� and �3��− �2��− �4�� and the four-photon
resonance �1��− �3��− �2��− �4��− �1��. Note that even when
the condition �i� and the following conditions �ii� and �iii� are
satisfied, the four applied external fields are not necessarily
in an EIT interaction configuration unless the detuning rela-
tions 
31=
32 and 
41=
42 are satisfied. Instead, the present
scheme works in the cases of 
31�
32 and 
41�
42.

The collective phase of these fields is important
for the interaction of the cavity fields with atoms. We
assume that the driving fields satisfy the condition
�31 exp�−i�31�
�41 exp�−i�41� =

�32 exp�−i�32�
�42 exp�−i�42� , i.e.,

�ii�
�31

�41
=

�32

�42
�9�

and

�iii� ��31 − �32� − ��41 − �42� = 2m�,

�m = 0, � 1, � 2, . . .� . �10�

Under the conditions �i�–�iii�, the interaction Hamiltonian
between the atoms and the applied driving fields is written as

H0 = �
�=1

N
�

2
��1	c1

� exp�− i
31t� + �2	c2
� exp�− i
32t�� + H.c.,

�11�

where 	cl
� = �c��
l��, �l= ��3l

2 +�4l
2 �1/2, and l=1,2. The state

�c�� is a coherent superposition of the higher two excited
states �3�� and �4��. There is the other coherent superposition
state �d�� orthogonal to �c��. These two superposition states
are

�c�� = cos � exp�i�31��3�� + sin � exp�i�41��4�� ,

�d�� = − sin � exp�− i�41��3�� + cos � exp�− i�31��4�� ,

�12�

with tan �=
�41

�31
. It is seen from Hamiltonian �11� that only

the superposition state �c�� is coupled to the applied fields
while the coherent superposition state �d�� is decoupled. This
means that �d�� is not excited. We have vanishing population
�coherent depopulation� in the state �d��,


	dd
� � = sin2 �
	33

� � + cos2 �
	44
� �

− sin�2��Re�exp�i��31 − �41��
	34
� �	 = 0, �13�

which reflects destructive interference when 
	33
� ��0 and


	44
� ��0. It is the very case for the above detuning condi-

tions. So long as the conditions �i�–�iii� are satisfied, the
present four-level system is reduced to a three-level one
��1�� , �2�� , �c���.

For the cavity fields, we assume that �1=�2, g1
�=g2

�=g�

for simplicity. Hamiltonian �7� is rewritten in the equivalent
form

V = �
�=1

N

�g��A	c1
� + B	d1

� �exp�− i�1t� + H.c., �14�

where we have introduced a pair of collective modes

A = a1 cos � exp�− i�31� + a2 sin � exp�− i�41� ,

B = − a1 sin � exp�i�41� + a2 cos � exp�i�31� . �15�

It is seen from Hamiltonian �14� that the collective modes A
�the sum mode� and B �the difference mode� are coupled to
the �1��− �c�� and �1��− �d�� transitions, respectively. Be-
cause the state �d�� is empty, the mode B undergoes only
absorption and there is no gain mechanism for it. This fact
determines that the mode B always stays in its vacuum state.
This also determines that the original cavity modes are in a
quantum beat �35–42�. The reasons are as follows. Since the
mode B is in vacuum state, we have 
B�= 
B†B�=0, from
which we have the phase locking and the amplitude locking

�1 − �2 = �31 − �41,
r1

r2
= cot � , �16�

where 
al�=rl exp�i�l� �l=1,2 ;rl�0� have been used. For
the phase locking, we have the beat signal between the two
original modes a1,2,

Re
a1
†a2� =

1

2
sin�2��cos��43t + �41 − �31�
A†A� . �17�

Using the Hermitian operators �39� B� and Br corresponding
to the imaginary and real parts of the relative mode B, to-
gether with an additional phase factor

B� =
sin �

i�2
�a1e−i�31 − a1

†ei�31� −
cos �

i�2
�a2e−i�41 − a2

†ei�41�

= − �2 Im�Be−i��31+�41�� , �18�

Br =
sin �

�2
�a1e−i�31 + a1

†ei�31� −
cos �

�2
�a2e−i�41 + a2

†ei�41�

= − �2 Re�Be−i��31+�41�� , �19�

we obtain the variances of B� and Br as


�
B�,r�2� =
1

2
, �20�

which are at their vacuum-noise levels. For the particular
choice sin �=cos �= 1

�2
, the present case is exactly the same
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as in correlated spontaneous emission lasers �39�. For the
quantum beat, we can separate the mode B and reduce
Hamiltonian �14� for the interaction of the cavity fields with
atoms to

V = �
�=1

N

��g�A	c1
� e−i�1t + g��A†	1c

� ei�1t� . �21�

The total Hamiltonian of the system is described by the sum
of Eqs. �11� and �21�. The present system is reduced to an
equivalent three-level system, as shown in Fig. 2�a�. The
effective driving field �1 and the collective cavity mode A
are both coupled to the �1��− �c�� transition while the effec-
tive driving field �2 is coupled to the �2��− �c�� transition.

B. Dressed state EIT

As has been pointed out, the four applied fields are
not in the EIT interaction with the atoms unless

31=
32, 
41=
42 �24–27�. For arbitrary detunings 
31 and
�1, it is necessary to use harmonic expansion �43�
exp�in�
31−�1�t�, n=0, �1, �2, . . .. However, it is greatly
simplified for the case where the coherent driving field �1 is
strong, �= �
31

2 +�1
2�1/2 ���2 , �gl

�
al�� ,�kl� , �k=3,4 ; l=1,2�.
It causes the large Stark splitting of each of levels �1�� and
�c�� into �−�� and �+��, as shown in Fig. 2�a�. The effective
driving field �2 is tuned to a sideband resonance, i.e., it is
resonant with the transition �2��− �+��. This is why �1 and
�2 are not in the EIT interaction. At the same time, the
cavity fields are tuned resonant with the high-frequency tran-
sitions between split levels, which is similar to the case of
two-level dressed-state lasers �44–47�. Now, the effective
driving field �2 and the collective mode A are both in the
resonant interaction with dressed atoms. Thus the EIT inter-
action configuration is created in terms of dressed states.

In particular, the dressed states can be obtained by diago-
nalizing the interaction Hamiltonian associated with the driv-

ing field �1 �48� in an appropriate frame rotating with
exp�i
31t��=1

N 	cc
� �. After doing so, we write the dressed

states in terms of the bare states as

�+�� = sin ��1�� + cos ��c�� ,

�−�� = cos ��1�� − sin ��c�� , �22�

where tan�2��=− 1
� , �=


31

�1
, and 0�2���. The correspond-

ing eigenvalues are ��= 1
2 �−
31���. We tune the effective

control field �2 �i.e., �32,�42� such �
32=
31+�+� that it is
resonant with the �2��− �+�� transition and tune the cavity
fields such ��1=
31+�� that they are resonant with Rabi
sideband transition �+��− �−��. We make a rotating transform
in terms of dressed states and adopt the secular approxima-
tion �neglecting the fast oscillating terms such as ei�t� as for
the dressed-state lasers �44,45�. Then, the interaction Hamil-
tonian for the total system is then written as

H = �
�=1

N

���d	+2
� + gA

�A	+−
� � + H.c., �23�

with 	kl
� = �k��
l�� �k , l= � ,2�, �d= 1

2�2 cos �, and
gA

�=g� cos2 �. After the above all transformations, we can
rewrite the master Eq. �1� in terms of atomic dressed states
and the collective field modes. Since the difference mode B
remains in the vacuum state, the density operator for it can
be separated from that of the total system. The master equa-
tion for the density �̃ of the sum mode A and the dressed
atoms is derived as

�

�t
�̃ = −

i

�
�H, �̃� + La�̃ + LA�̃ . �24�

Here, the atomic damping terms La�̃ have the form

La�̃ = �1L+−�̃ + �1L−+�̃ + �2L2+�̃ + �2L2−�̃ + �pLp�̃ ,

�25�

with the phase damping

Lp�̃ = �
�=1

N
1

4
�2	p

��̃	p
� − �̃	p

�	p
� − 	p

�	p
��̃� , �26�

where 	p
�=	++

� −	−−
� . For the atomic damping, we have taken

�31=�41, �32=�42 for simplicity. Llk�̃ has the same form
as Llk� in Eq. �4�. For the damping of cavity fields, we
have assumed that 
1=
2=
. The damping term LA�̃ for the
collective mode A has the same form as Lal

� in Eq. �5�
except for the substitutions of A for al. The parameters in
Eq. �25� are �1=�31 cos4 �, �1=�31 sin4 �, �2=�32 cos2 �,
�2=�32 sin2 �, and �p= 1

2�31 sin2�2��. The coherent and in-
coherent atomic transitions described by Eq. �24� are indi-
cated in Fig. 2�b�. So far, three features should be empha-
sized.

�i� Dressed state EIT. It is seen from Hamiltonian �23� that
the cavity mode A is on resonance with the �+��− �−�� tran-
sition and the effective driving field �2 is on resonance with
the �2��− �+�� transition. These two effective fields are in a
standard EIT interaction configuration together with the in-
coherent pathways �1,2. The coherent transition �2��− �+��

|−µ>

|+µ>

|2µ>

A

Λ2

Γ2

(a) (b)

Γ1 Λ1

Ωd

Ω1
Ω2

|cµ>

|2µ>

|1µ>

γ31

γ32

A

FIG. 2. �Color online� �a� An equivalent three-level system. One
effective driving field �Rabi frequency �1� and the collective mode
A are coupled to the �1��− �c��, while the other effective driving
field �Rabi frequency �2� is coupled to the �2��− �c�� transition. �3l

��3l=�4l , l=1,2� are the decay rates. �b� Dressed state EIT configu-
ration. In a picture dressed by the effective field �1 �i.e., �31,�41�,
the effective control field �2 �i.e., �32,�42� is tuned resonant with
the �2��− �+�� transition and the collective mode A is resonant with
the �−��− �+�� transition. �l ,�l �l=1,2� are the rates for incoherent
population transfer.
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plays three roles in the manipulation of the cavity field A �or
a1,2�. First, it is necessary for light amplification. Once
�d=0, we have 
	++

� �= 
	−−
� �=0 and 
	22

� �=1. In this case, it
is impossible to have laser gain. Second, the coherent tran-
sition �2��− �+�� greatly suppresses the absorption from the
state �−��. A small population in state �+�� will lead to the
laser gain �9–14�. Third, the coherent transition is a neces-
sary channel for recycling the electron via the loop
�2��→ �+��→ �−��→ �2��. The intrinsic feedback is possible
only in the presence of �2��→ �+�� �16–20,49–53�.

�ii� Phase dependence. Under conditions �8�–�10�, the co-
herent superposition state �d�� and the collective mode B are
both decoupled from the dynamics. Instead, the coherent su-
perposition state �c�� as a single state and the collective
mode A as a single mode mediate into interaction. This de-
termines that the difference phase between a1,2 is equal to
that of the driving fields �31 and �41 �or �32 and �42�.

�iii� Intrinsic incoherent transfer of population. From the
master equation �24�, we see two intrinsic, incoherent path-
ways �−��→ �+�� and �−��→ �2��, through which population
is transferred from state �−�� to �+�� and �2��. We can imag-
ine that once the two incoherent pathways are absent, it is
impossible to have laser gain. It has been shown that the
�−��→ �+�� pathway provides the dressed-state inversion for
the two-level dressed-state one- and two-photon lasers
�44–47� or necessary excited-state population for a three-
level inversionless laser �16�. On the other hand, the
�−��→ �+�� is the necessary channel for the gain and noise
reduction in a Raman laser �17�. The present scheme com-
bines the benefits of these two types of systems. This pro-
vides necessary population recycling for the laser gain. The
present system can operate with 
	++

� �� 
	−−
� � and it can also

run without inversion 
	++
� �� 
	−−

� � in the presence of the
dressed-state EIT. These two intrinsic incoherent channels
are crucial for quantum correlations. Through the two inco-
herent pathways together with the coherent transitions

�2��→
�d

�+�� and �+��→
A

�−��,

the electron is recycled. Such a recycling forms a deep in-
trinsic feedback �49–53� when the system is operated well
above threshold. As a result, the sum mode A has subshot
noise, which corresponds to two-mode continuous variable
entanglement as shown below.

III. STEADY-STATE INTENSITIES
AND QUANTUM CORRELATIONS

In this section, following the standard techniques �17� and
using the relations between the original modes a1,2 and com-
bination modes A ,B, we discuss the two-mode oscillations
and quantum correlations of the original modes a1,2. We de-
rive the Langevin equations from the master equation by
means of the generalized P representation of Drummond and
Gardiner �54�. The atomic variables are described by collec-
tive operators 	kl=

1
N��=1

N 	kl
�, k , l= � ,2. Since the individual

atoms are uncorrelated and the atomic dipole moments are
randomly orientated, this leads to 	ij	kl=

1
N� jk	il and

��,�=1
N g�g��

N2 = g2

N , where g�=gei��
has been used. The master

equation �24� can be expanded to obtain a partial differential
equation containing derivatives of infinite order in the atomic
number. Adopting standard scaling, we can neglect deriva-
tives of higher than second order in the limit of many atoms
�16,51�. We choose the normal ordering A†, 	+2, 	+−, 	2−,
	++, 	22, 	−−, 	−2, 	−+, 	2+, A and define the correspondence
between the c numbers and operators as �↔A ���↔A†�,
v1↔	2+ �v1

†↔	+2�, v2↔	−+ �v2
†↔	+−�, v3↔	−2

�v3
†↔	2−�, zl↔	ll. The set of equations for the c numbers

are derived as

�̇ = −
1

2

� − igANv2 + F�, �27�

v̇1 = − �1v1 + i�d�z+ − z2� + igA�v3
† + Fv1

, �28�

v̇2 = − �2v2 + igA��z+ − z−� − i�dv3 + Fv2
, �29�

v̇3 = − �3v3 + igA�v1
† − i�dv2 + Fv3

, �30�

ż− = − ��1 + �2�z− + �1z+ + igA��v2
† − ��v2� + Fz−

, �31�

ż2 = �2z− + �2z+ + i�d�v1
† − v1� + Fz2

. �32�

where gA=g cos2 �. Populations follow the closure relation
z−+z++z2=1. The parameters in Eqs. �27�–�32� are
�1= 1

2 ��1+�2�+ 1
4�p, �2= 1

2 ��1+�2+�1+�2�+�p, and �3

= 1
2 ��1+�2�+ 1

4�p. Fx�t� are the noise forces. The noise cor-
relations can be easily obtained from generalized Einstein
relations �33�.

We assume that the atomic variables change much more
rapidly than the cavity fields ��31,�32�
�. Then we can
eliminate adiabatically the atomic variables. From Eqs.
�27�–�32�, we obtain the linear gain for the laser intensity

I�=g2
A†A� as

G =
C cos4 ��q3 + q2�3��d

2
�31

q1�d
4 + �q1�2�3 + q3�1��d

2 + q3�1�2�3

, �33�

where C= 2g2N

�31

has been defined as the cooperativity param-
eter and the other parameters are q1=�1+2�1+2�2,
q2=�1+�2−�1, and q3=�1�2+�1�2+�2�2. It is not hard
to find the linear gain G�
, which means the system oper-
ates above threshold. Neglecting the noise and setting deriva-
tives to zero in the evolution Eqs. �27�–�32�, we obtain the
stable intensity 
I� for sum mode A. The mode B is below
threshold and is in vacuum state. Using the mode transform
relations �15�, we obtain for two original modes a1,2
the respective intensities 
I1�=g2
a1

†a1�= 
I�cos2 � and

I2�=g2
a2

†a2�= 
I�sin2 �.
In general, the entanglement properties of the two-mode

cavity field a1,2 can be expressed by two Einstein-Podolsky-
Rosen �EPR�-like operators

u = x1 + x2,v = p1 − p2, �34�

where

xl =
1
�2

�ale
−i�l + al

†ei�l� ,
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pl =
1

i�2
�ale

−i�l − al
†ei�l�,l = 1,2. �35�

According to the criterion proposed by Duan et al. �55�, an
entangled state is created if the sum of the quantum fluctua-
tions of operators u and v satisfies the inequality

M = 
�
u�2� + 
�
v�2� � 2. �36�

From now on, we focus on the case of
�31

�41
=

�32

�42
=1. Then, the

operators u and v are expressed by the combination modes A
and B as

u = Ae−i��1−�31� + A†ei��1−�31�,

v = i�Be−i��1+�41� − B†ei��1+�41�� , �37�

which are associated with the amplitude quadrature of mode
A and the phase quadrature of mode B. Since the relative
mode B is in the vacuum state, the variance of quadrature v
is in the vacuum-noise level �35–40�, 
�
v�2�=1. As is well
known, if the laser operates far above threshold, the fluctua-
tions in the amplitude are negligibly small compared to the
amplitude itself. The variance of the operator u is related to
the Mandel factor Q by the relation


�
u�2� = 1 + Q , �38�

where Q= 
:�
A†A�2:�

A†A� . Here, 1 stands for the shot noise level

and the Mandel Q is the normally ordered normalized vari-
ance of the sum mode intensity and measures the derivations
from Poissonian statistics. Using the Q factor, we obtain the
normally ordered part of the output fluctuation spectrum

S��� = 2�
0

�

d� cos����

:i�t + ��,i�t�:�


i�t��
= Q
2


�
� �2

�2 + �2 ,

�39�

where i�t�=
A†�t�A�t� corresponds to the output photon flux
�intensity� operator and � is proportional to the differential
gain. It is known that S���=0 corresponds to shot noise,
−1�S����0 to sub-Poissonian photon statistics, and
S���=−1 to Fock state. The output spectrum for the variance
sum of EPR-like operators is obtained as

M��� = 2 + S��� , �40�

which indicates that if sub-Poissonian statistics is present,
the two cavity fields are entangled, i.e., M����2. Corre-
spondingly, for the respective modes, the normally ordered
parts of the output fluctuation spectra are expressed as
Sl���= 1

2S���. Quadrature squeezing in the respective modes
occurs when sub-Poissonian statistics in the sum mode is
existent.

In the numerical calculation, Rabi frequencies, detunings,
and decay rates are scaled in units of �32. The intensities

I1�= 
I2� are in units of �32

2 . In Fig. 3, we plot the zero-
frequency output spectra �a� and the respective intensities of
the two cavity modes �b� as functions of normalized detuning
�=


31

�1
for different Rabi frequencies ��32=�42�, �32=1.0

�dotted line�, �32=2.0 �dashed line�, and �32=3.0 �solid
line�. The other parameters are chosen as C=500, �31=4.0. It

is seen from Fig. 3�a� that for a wide range of parameters, the
entanglement criterion is satisfied �M �2� and the respective
intensities are large. Both the variances and the intensities
are strongly dependent on the Rabi frequency �32. As �32 is
small, the laser intensities are also relatively small. However,
the range of � for entanglement is relatively wide. As �32
increases, the laser intensities rise. However, the range of �
for entanglement becomes relatively narrow. It should also
be noted that �32 cannot take too large value. This is be-
cause, as is seen from Eq. �33�, this will give rise to strong
saturation so that the linear gain is less than the cavity loss.
As a consequence, there will be no laser output. In particular,
when �32=3.0, the zero-frequency output spectrum takes the
minimal value M�0��1.45 at �=1.42 and the intensities
have the largest values 
I1�= 
I2��179 in units of �32

2 . At the
same time, we have the output spectra S�0��−0.55 and
Sl�0��−0.275, which corresponds to squeezing of 55% in
the sum mode A and squeezing of 27.5% in the sum mode
a1,2. It shows that the two cavity modes, each of which has
subshot noise, are in an entangled state. In Fig. 4, the zero-
frequency output spectra and the intensities are plotted for
different cooperativity parameters C=200 �dotted line�,
C=500 �dashed line�, and C=800 �solid line�. The other pa-
rameters are chosen as �32=2.0 and �31=4.0. Generally, in-
creasing the cooperativity parameter will lead to an increase
in the laser intensities and a widening of � for entanglement.
In particular, for the cooperativity parameter C=800, the out-
put spectrum has the minimal value M�0��1.52 and the in-
tensities have the largest values 
I1�= 
I2��166 in units
of �32

2 . Correspondingly, we have the output spectra
S�0��−0.48 and Sl�0��−0.24, which corresponds to
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FIG. 3. �Color online� �a� The zero-frequency output spectrum
M�0� and �b� the steady intensities 
I1�= 
I2� vs the normalized de-
tuning � for different Rabi frequencies �32=1.0 �dotted lines�,
�32=2.0 �dashed lines�, and �32=3.0 �solid lines�. The other pa-
rameters are chosen as C=500 and �31=4.0.
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squeezing of 48% for the sum mode A and squeezing of 24%
for the respective modes a1,2. In a word, for a large range of
parameters, two cavity fields that operate well-above thresh-
old and display sub-Poissonian statistics are in an entangled
state.

As for the mechanism of the entanglement, the following
three factors are important. �i� Quantum beat. This is created
due to coherent depopulation of the coherent superposition
state �d��. This depopulation leads to the consequence that
the difference mode B is decoupled and is kept in the
vacuum state. This brings us to a three-level system, where
both the effective driving field �1 and the sum mode A are
coupled to the �1��− �c�� transition and the effective
driving field �2 is coupled to the �2��− �c�� transition. �ii�
Dressed state EIT. This is formed due to the dressing by the
pair of the applied fields �31 and �41, equivalently, by �1. In
terms of the split levels, the sum mode A is tuned resonant
with the high Rabi frequency transition �−��− �+�� and the
effective driving field �2 is tuned resonant with �2��− �+��.
The double resonances are in an EIT configuration. This
greatly suppresses the absorption and is favorable for the
light amplification. Two intrinsic incoherent channels are
sufficient for the population transfer for the laser gain. �iii�
Intrinsic feedback. In the dressed picture, we see the
electron recyclings

�−��→
�1

�+��→
�2

�2��→
�d

�+��→
A

�−��

and

�−��→
�2

�2��→
�d

�+��→
A

�−��.

When the laser fields are relatively strong, one has a deep
feedback, which regularizes the laser electrons. This is the
very mechanism for quantum noise reduction as shown pre-
viously �16–21,44–48�. Finally, the noise squeezing in the
sum mode A and the vacuum state of the difference mode B
correspond to the two-mode continuous variable entangle-
ment.

IV. REALISTIC CONSIDERATIONS

So far, we have presented our scheme by considering the
ideal case. For the experimental realization, some realistic
factors should be taken into account. In fact, a great number
of the level structures are suitable for the present scheme, as
used recently in the mixing experiments based on EIT, such
as alkali metal atoms �56–59�, atomic hydrogen �60–63�, and
atomic 208Pb �64�.

First, in order to avoid the Doppler broadening, we can
employ an ensemble of cold atoms. For the media of cold
atoms, the Doppler broadening is substantially smaller than
the natural linewidths and quantum coherent effects can be
well preserved, as in experiments involving EIT �7,65–67�
and lasing without population inversion �68�.

Second, the nonresonant hyperfine interactions of applied
fields with adjacent transitions should be taken into account,
especially when these fields are off resonant with the atomic
transitions under consideration. The nonresonant interactions
will give rise to a shift of the resonance center by the order
of the atomic decay rates. This was demonstrated experimen-
tally in Ref. �7� and was analyzed theoretically in Ref. �69�.
As an example, we consider the 87Rb atom for the
present scheme. We use the states �1�= �5S1/2 ,F=1�,
�2�= �5S1/2 ,F=2�, �3�= �5P1/2 ,F�=2�, and �4�= �5P3/2 ,F�=2�.
The transitions from the ground states to the two excited
states are well separated from each other by the D1 line
�794.8 nm� and the D2 line �780.0 nm�. The ground states are
separated from each other by 6.8347 GHz. We note that the
excited state �3� has an adjacent level �5P1/2 ,F�=1�. The
transitions �1,2�→ �3� undergo ac Stark shifts that are caused
by nonresonant couplings of states �5P1/2 ,F�=1� and �1,2�.
As a result, the centers of the �1,2�→ �3� resonances are
shifted. Similarly, the transition �1�→ �4� experiences a shift
caused by the nonresonant transition between the adjacent
lower state �5P3/2 ,F�=1� and the ground state �1�; the tran-
sition �2�→ �4� has a shift due to the nonresonant couplings
of the two adjacent states �5P3/2 ,F�=1� and �5P3/2 ,F�=3� to
the ground state �2�. In comparison, the influence of the cou-
pling of the adjacent lower state �5P3/2 ,F�=1� and �2� is
negligibly small �70�. By ��̄kl, we denote the shifts of vari-
ous transitions �k�→ �l� �k=3,4 ; l=1,2� under consideration
and then we have the effective detunings 
kl� =
kl−��̄kl,
�1�=�1−��̄31, and �2�=�2−��̄41. In order to satisfy the two-
photon resonance conditions, we can tune the applied fields
such that 
3l� =
4l� , l=1,2. This also guarantees the condition
for the four-photon resonance 
�=
31� −
32� +
42� −
41� =0. At
the same time, we tune the cavity fields such �1,2� =
31� +�
that they are resonant with Rabi sidebands.

Essentially, the nonresonant couplings to the adjacent lev-
els belong to the dispersive interaction, hence population
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FIG. 4. �Color online� �a� The zero-frequency output spectrum
M�0� and �b� the steady intensities 
I1�= 
I2� vs the normalized de-
tuning � for different cooperativity parameters C=200 �dotted
lines�, C=500 �dashed lines�, and C=800 �solid lines�. The other
parameters are chosen as �32=2.0 and �31=4.0.
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transfer to the adjacent levels is negligible. This only gives
rise to extra phase damping, i.e., we have additional relax-
ations for the atomic flip operators 	kl �k , l= � ,2 ;k� l�. The
extra phase damping can be simulated by �33�

La��̃ = �1L22�̃ + �2L−−�̃ , �41�

where Lkk�̃ have the same form as Llk�̃ in Eq. �4� except for
the substitution of 	kk

� for 	lk
�. After adding this term to La�̃

in Eq. �25�, the decay rates in the set of Eqs. �27�–�32� are
changed by adding

�1

2 to �1, adding
�2

2 and �2, and adding
1
2 ��1+�2� to �3. Usually, the additional damping rates are
much smaller than the atomic decay rates. In Fig. 5, we plot
the spectra and intensities of the two cavity modes for dif-
ferent rates �1,2=0 �solid lines�, �1,2=0.05 �dotted lines�,
�1,2=0.10 �dashed lines�, and �1,2=0.20 �dotted-dashed
lines�. The other parameters are chosen as �32=3.0,
C=500, and �31=4.0. This figure clearly shows that the spec-
tra do not significantly change for a wide range of laser in-
tensities. This corresponds to a regime of −1.0���1.5,
where the driving fields are in the resonant or near-resonant
interactions with the atoms. In this regime, one has bright
beams of squeezed and entangled light.

Third, in order to preserve the coherent depopulation in
the presence of finite linewidths of applied fields, one should
use the two pairs of correlated beams. Although the laser
linewidths are usually much smaller than the atomic decay
rates, they have significant influence on the quantum coher-
ent effects. However, when a pair of fluctuating beams is
highly correlated with each other, they have a defined phase

relation, i.e., the diffusion coefficient of the relative phase
vanishes. Such correlations can be realized by using electro-
optical modulators, as in the experiments on phase-
dependent EIT �25�. This has also in principle been demon-
strated in the correlated spontaneous emission lasers
�35–41�. In what follows, we describe the influence of the
linewidths in details. The Rabi frequencies have fluctuating
phases �kl�t� �k=3,4 ; l=1,2�, which are characterized by the
random force d

dt�kl=�kl�t� with zero averages and the white-
noise correlations


�kl�t�� = 0, �42�


�kl�t��k�l��t��� = Dklk�l���t − t�� , �43�

where Dklkl are the linewidths of the applied fields �kl and
Dklk�l��

1
2 �Dklkl+Dk�l�k�l�� are the cross-correlated linewidths

�k�k� or l� l��. In a three-level CPT system, the coherence
between the two ground states can be preserved by using the
cross correlations �71�. For the present scheme, when we
establish D3l4l=D3l3l=D4l4l=Dl �l=1,2�, the coherent de-
population is no longer spoiled by the laser linewidths.

Although the coherent depopulation effect is preserved
due to the cross correlations, the fluctuating phases give rise
to the extra phase damping term �33,71,72�

La��̃ = D1L22�̃ + D2L−−�̃ , �44�

which is added to La�̃ in Eq. �25�. Due to the additional
term, the decay rates in the set of Eqs. �27�–�32� are changed
by adding

D1

2 to �1, adding
D2

2 to �2, and adding 1
2 �D1+D2� to

�3. In our numerical calculations, the linewidths are scaled in
units of �32. Usually, the laser linewidth is much smaller than
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FIG. 5. �Color online� �a� The zero-frequency output spectrum
M�0� and �b� the steady intensities 
I1�= 
I2� vs the normalized de-
tuning � for the rates �1,2=0 �solid lines�, �1,2=0.05 �dotted lines�,
�1,2=0.10 �dashed lines�, and �1,2=0.20 �dotted-dashed lines�. The
other parameters are chosen as �32=3.0, C=500, and �31=4.0.
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the atomic decay rates. In Fig. 6, we plot the spectra �upper
row� and intensities �lower row� of the two cavity modes for
�a� �1,2=0 and �b� �1,2=0.20 and linewidths D1,2=0 �solid
lines�, D1,2=0.05 �dotted lines�, D1,2=0.10 �dashed lines�,
and D1,2=0.20 �dotted-dashed lines�. The other parameters
are chosen the same as in Fig. 5. What is shown in Fig. 6�a�
is the effect of the linewidths in the absence of the nonreso-
nant interactions and the combined effects of both the non-
resonant interactions and the laser linewidths are given in
Fig. 6�b�. It is seen that, even when the two negative factors
are included, the correlations are kept without significant
change for relatively large values of laser intensities. This
just occurs in the regime, −1.0���1.5, where the driving
fields are resonantly or near-resonantly coupled to the atoms.
When the laser intensities are small, the influence of the two
limited factors becomes serious. This appears in the far off-
resonance region. It is obvious that resonant or near-resonant
coherent driving is advantageous for the generation of bright
sources of squeezed and entangled lights.

V. CONCLUSION

In conclusion, we have shown the coherent effects of mul-
tiphoton resonances on laser oscillation and quantum corre-
lations in a double � system. When four applied fields in-
duce the coherent depopulation, i.e., vanishing population of
a coherent superposition state of the two excited states �the
counterpart of CPT�, a pair of cavity fields is driven into the
quantum beat. By using two of four coherent fields to dress
the coupled levels �i.e., creates the dressed states�, we have
the phase-dependent EIT interaction of the other two applied
fields and the pair of cavity fields with the dressed atoms. By
this mechanism, the pair of cavity fields runs well above
threshold and has subshot noise and is in an entangled state.
The dressed-state phase-dependent EIT provides an efficient
mechanism for obtaining entangled light from a laser device.
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