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We study the ability of beams with complex phase dislocations to guide and steer signal beams in self-
focusing nonlinear media. In particular, we report on the experimental demonstration of signal deflection by
beams carrying step-screw phase dislocation in the form of a fractional vortex dipole. We show how the beam
deflection can be ruled by the geometry and orientation of the dipole.
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I. INTRODUCTION

Propagation of optical beams in nonlinear media �NLM�
has been a subject of continuing interest for more than 4
decades due to the possibility for creation of reconfigurable
waveguides through the intensity-dependent refractive index
change �1,2�. Such optically induced waveguides can guide
weak signal beams and pulses �3,4�, which motivates the
investigation of novel techniques for manipulation of the
transverse beam dynamics and correspondingly opens possi-
bilities for realization of waveguides with complex geom-
etries.

Optical beams can be spatially manipulated by introduc-
ing chirp to their transverse phase profiles �5–7�. Therefore,
the implementation of steering schemes utilizing beams with
complex spatial phase profile, in the form of phase singulari-
ties �8�, appears especially attractive. An example of such a
beam is an optical vortex with its helical phase profile de-
scribed by exp�im�� multiplier, where � is the azimuthal
coordinate and m is the vortex topological charge. Due to the
presence of a point phase singularity in the beam center, the
optical vortices are associated with intrinsic energy flow and
orbital angular momentum �9�. Propagation of optical vorti-
ces in nonlinear media has received great attention with their
ability to form bright or dark optical vortex solitons �OVSs�
in self-focusing and self-defocusing nonlinear media, respec-
tively �2,10,11�.

In a self-defocusing medium, OVSs can guide signal
beams in their core �12–14�. Therefore by controlling the
position of an optical vortex core, one can effectively steer a
signal beam. The transverse velocity of an OVS has a radial
and an angular component arising from the transverse phase
and intensity gradients, respectively �15,16�. Two practical
ways to control the vortex position have their origin in the
Guoy phase shift on both sides of a background beam waist
�16,17� and in the interaction of ordered structures of OVSs
�18� controlled by their topological charges.

Though the OVS is a stationary and stable nonlinear state
in self-defocusing media, other schemes implementing non-
stationary �moving� two-dimensional dark solitons have also
shown great abilities for manipulation of signal beams. The
possibility to branch a single input probe beam into ordered
structures of sub-beams by quasi-two-dimensional dark spa-
tial solitons has been demonstrated numerically in �19�.

Other branching and steering schemes have also been real-
ized by employing the inherent dynamics of ring dark soli-
tary waves �20–22� or the decay of higher-order vortices
�23�. Finally, dark beams containing mixed step-screw phase
dislocation �i.e., � semispirals separated by a one-
dimensional �1D� phase step� have shown important poten-
tial for signal beam steering due to their defined spatial ve-
locity, controlled through geometrical parameters �24–26�.

Despite the large activities on beam steering in defocusing
nonlinear materials, manipulation of signals by beams with
complex phase structure in self-focusing nonlinear media re-
mains unexplored. This is somewhat surprising since self-
focusing materials are more common in nature. However, the
implementation of beams with phase singularities for beam
steering in self-focusing media has been hindered by the in-
trinsic azimuthal and modulational instabilities. Due to such
instabilities, the OVS experiences breakup into a number of
fundamental solitons that fly away from the vortex center
�28–31�.

In this work, we show that such instabilities are not a
limiting factor for beam steering when beams with mixed
phase dislocations are utilized. We demonstrate experimen-
tally and describe theoretically the ability of such beams,
also called fractional vortex dipoles, to steer signals in a
self-focusing nonlinear medium. In particular, we employ the
self-focusing photorefractive nonlinearity in a biased stron-
tium barium niobate �SBN� crystal and demonstrate bright
signal beam deflection that can be controlled by the
geometrical parameters of the fractional vortex dipole.

II. BASIC CONCEPT

A fractional vortex dipole or mixed step-screw phase dis-
location consists of a one-dimensional phase step of a finite
length, which ends, by necessity, with a pair of phase semi-
spirals with opposite helicities �24,25� �Fig. 1 �left��. In con-
trast to an optical vortex, the phase gradient of the spiral
phase caps can be noninteger, or fractional, that reflects to
the notation of a fractional vortex dipole. Here, we consider
a fractional vortex dipole with a step-screw �SS� phase dis-
location �26�. The phase profile of such a dipole is depicted
in Fig. 1 �left� and described by
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where �=0 for 	x	�b; �=1 and �=−1 or 1 for x�b and
x	−b, respectively. �� stands for the magnitude of the
phase jump at the origin, 2b is the dipole length, and x and y
are the transverse coordinates. While the particular phase
structure of SS fractional vortex dipole has a discontinuity of
the derivative of the phase at positions x= 
b, other types of
phase profile without such discontinuity can also be defined
�26�. However, the particular phase definition does not
change qualitatively their propagation dynamics. Experimen-
tally, the only controllable way to produce such fractional
vortex dipole is by a computer-generated hologram �CGH�
�Fig. 1 �right��.

Beams containing fractional vortex dipoles are inherently
restless. Their linear propagation exhibits a transverse veloc-
ity V�, depending on both the length 2b and the magnitude
of the phase jump ��. The transverse motion of the beam is
due to the phase gradients perpendicular to the one-
dimensional phase step. While, at the initial evolution stage
�0–0.1 Rayleigh diffraction lengths�, the phase semispirals
are strongly reshaping �26�, at longer propagations, V� re-
mains nearly constant �26,27�.

In self-focusing nonlinear media, a bright trailing peak is
formed next to phase dislocation in the course of propaga-
tion. However, its transverse motion is bounded to the dy-
namics of the phase dislocation. Due to the nonlinear index
change, this peak will induce an optical waveguide which
direction and curvature can be controlled by the orientation
of the phase singularity. In a photorefractive crystal, one can
expect that if written at a photosensitive wavelength, such a
waveguide will be able to guide and steer more powerful
signal beams at nonphotosensitive wavelengths �32�.

III. EXPERIMENTAL RESULTS AND NUMERICAL
SIMULATIONS

To demonstrate this concept, in our experiments we use a
continuous-wave frequency-doubled Nd:YVO4 laser at a
wavelength of 532 nm. The schematic of the experimental
setup is shown in Fig. 2. A fractional vortex dipole of
110 �m length and ��=� is generated by a binary CGH
�see Fig. 1 �right�� fabricated photolithographically with a
grating period of 30 �m. The first-order diffracted beam car-
rying the phase dislocation is imaged and demagnified by an

inverse telescope L1−L2 to 35 �m at the front face of a 20
mm long SBN photorefractive crystal �Fig. 2�. The polariza-
tion of the laser beam is parallel to the crystalline c axis, thus
the beam experiences a strong photorefractive nonlinearity
due to the high electro-optic coefficient r33 in the SBN. The
crystal is biased by an externally applied electric field �E0

1000 V /m�. The front or the back face of the crystal is
imaged with a lens L3 onto a charge-coupled device �CCD�
camera, both moving on a common translation stage �see
Fig. 2�. Special attention is paid to the alignment of the CGH
in order to maintain unchanged position of the central part of
the encoded SS dislocation with respect to the illuminating
beam. The hologram was also rotated stepwise by 90°
around its center. Thanks to the relatively long �tens of sec-
onds� response time of the self-focusing photorefractive non-
linearity, we could use the same laser beam as a signal beam.
For this purpose, the CGH is quickly shifted horizontally
�represented by the arrow at the bottom of the CGH in Fig.
2� in order to illuminate the homogeneous side portion of the
binary structure, consisting of parallel stripes only. Without
any other change in the alignment, the distribution of the
guided signal beam is recorded on the CCD camera no later
than 2 s after writing of the induced waveguide. Additionally,
we have also assured that even at twice longer sensing pe-
riod, the Gaussian signal beam is not able to noticeably af-
fect the induced waveguide.

To numerically simulate the beam propagation inside the
biased photorefractive SBN crystal �dc field applied along
the x direction, being parallel to the crystalline c axis�, we
modeled the following equations �33,34�:

i
�Aj

�z
+

1

2
� �2

�x2 +
�2

�y2�Aj − ��Esc + E0�Aj = 0, �2�

where Aj is the jth component of the slowly varying optical-
field amplitude and �= 1

2 �2� /
�2x0
2n0

4reff is a material nonlin-
ear parameter accounting for the corresponding term of the
electro-optic tensor �reff=r33 for SBN�. ��0 accounts for the
self-focusing nonlinear response of the crystal. Esc is the
space-charge field related to the electrostatic potential
��Esc=−�� /�x�. E0 is the external field applied along the c
axis perpendicular to the propagation direction. All trans-
verse coordinates are expressed in units of the beam width

FIG. 1. Phase profile of the step-screw mixed phase dislocation
�left� and structure of the corresponding computer-generated holo-
gram �right�.

FIG. 2. Experimental setup. B: Gaussian background beam illu-
minating the CGH. D: diaphragm selecting the first-order diffracted
beam with the fractional vortex dipole. L1 and L2: lenses forming
an inverted telescope; SBN: biased photorefractive crystal with
marked orientation of the c axis. Horizontal arrow: beam’s polar-
ization. L3 and CCD: imaging lens and charge-coupled device cam-
era moving on a common translation stage to image the input or
output facet of the crystal. The four virtual output channels are
sketched in the plane of the CCD array.
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x0, whereas the propagation coordinate z is expressed in units
of the Rayleigh diffraction length LDiff= �2� /
�n0x0

2. The
electrostatic potential � is modeled by the equation �33,34�

�2� + �� � ln�1 + I� = E0
�

�x
ln�1 + I� , �3�

where I= 	A1	2+ 	A2	2 is the total light intensity normalized to
the dark irradiance of the SBN crystal. The last term in Eq.
�3� accounts for the drift of the charge carriers. In the above
notations, the refractive index of the medium is modulated
via the Pockels effect according to the relation n2=n0

2

+n0
4r33�� /�x, assuming that the incident beams are polar-

ized along x direction �c crystalline axis�. All material pa-
rameters taken in the numerical simulations correspond to
the typical values of SBN crystals �35,36� �r33=180 pm /V
and n0=2.3�. For our experimental conditions, x0=17 �m
and �=4.3.10−4 m /V.

The slowly varying electric-field amplitude of the beam
carrying the fractional vortex dipole is assumed to be tanh-
shaped and of the form

A1�x,y,z = 0� = B�x,y�tanh�r�,��x,y��exp�i��x,y�� , �4�

where the effective radial coordinate r�,� is given by

r�,� = ���x + �b�2 + y2�1/2 �5�

and the super-Gaussian background beam is

B�x,y� = B0 exp�− ���x2 + y2�/w2�14
 , �6�

where w is chosen to be more than 10 times larger than the
deflection of the bright self-focusing peak at the exit of the
nonlinear crystal. The input signal beam is assumed to be
Gaussian-shaped and equal in width to the background car-
rying the fractional vortex. Additionally, its amplitude A20 is
chosen to be much lower than this of the beam carrying the
dark beam �	A20	� 	A10	�. Since in the experiment both
beams are delivered with the same polarization from the
same laser source �at a shifted CGH�, negligible influence of
the second �“probe”� beam on the medium nonlinearity is
ensured by a quick shift of the CGH and short �	2s� inter-
action with the crystal prior the respective experimental
frame is recorded.

Figure 3 presents experimental �left� and numerically
simulated �right� profiles �	A1	2� of the pump beam at the exit
of the SBN crystal. In the simulation, some 16% of the total
computational area are shown. The experiment and the nu-
merical simulations are in good qualitative agreement. One
can clearly see that the deflection of the fractional vortex

dipole causes the formation of a bright peak that is self-
focused in the course of its nonlinear evolution. As a result,
curved optically induced waveguide is written in the crystal.
In Fig. 4, we show surface plots of the experimentally re-
corded power-density distributions of the guided signal beam
for different orientations of the CGH. Here the transverse
Cartesian coordinates � and � are used in order to avoid
confusion with the adopted notations in which the one-
dimensional part of the dislocation is along the x axis and the
vortex dipole is moving parallel to the y axis. As seen in Fig.
4, four virtual output channels can be clearly distinguished.
They are marked with L �left�, R �right�, U �up�, and D
�down�. In the upper left frame L, the carrier drift coincides
with the deflection direction and therefore contributes posi-
tively to the guiding efficiency. In the remaining three
frames, however, there is a cross-talk signal guided along the
crystalline c axis.

Figure 5�a� shows the orientations of the CGHs for ad-
dressing the respective output channels and Fig. 5�b� pre-
sents a composite image of all four deflected beams. Accord-
ing to our notation, in Table I we summarize the estimated
guiding efficiencies for each channel. The guiding efficiency
EG is defined as the probe beam intensity 	A2	2 directed at the
exit of the nonlinear medium �z=zNL=2.5LDiff� to the respec-
tive channel, integrated in time �within the integration win-

TheoryExperiment

FIG. 3. �Color online� Experimental �left� and numerically
simulated �right� pump beam profiles �	A1	2� at the exit of the SBN
crystal for deflection to the upper channel U in Fig. 2. ��=� and
2b=35 �m.

FIG. 4. Experimental results. Surface plots of the deflected sig-
nal beams at the exit of the SBN crystal for four different orienta-
tions of the CGH.

FIG. 5. �a� Sketch of the orientation of the CGH for addressing
the four virtual output channels. �b� Composite image of all four
deflected beams. The virtual output channels �100�80 pix� are
marked with L �left�, R �right�, U �up�, and D �down�.
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dow �T of the CCD camera� and in space �within the virtual
output channel cross section�, divided by the same quantity
at the entrance of the NLM �z=0; when the lens L3 and the
CCD are shifted to image the crystal’s input facet�, inte-
grated over the whole CCD-camera array

EG =
��SR,U,D,L

��T	A2�z = zNL�	2d�d�d�

��SCCD
��T	A2�z = 0�	2d�dS

. �7�

Here, d�� �−50 pix,50 pix�, d�� �−40 pix,40 pix�, and
SCCD=768�512 pix2. The results in Table I show reason-
able efficiency in the main channel, with contrast between
the signal in the addressed and the remaining channels higher
than 6.7, 5.4, 3.2, and 1.7 for the U, L, D, and R channels,
respectively. The highest guiding efficiency �49%� was esti-
mated when the probe beam deflection is along the crystal-
line c axis, whereas the deflection in the opposite direction
has the lowest efficiency of 30%. While these data corre-
spond to the particular parameters of the experiment, in gen-
eral, the transverse velocity of the beam V� depends on both
the dislocation length 2b and the magnitude of the phase
jump ��. Therefore, by optimizing these geometrical pa-
rameters, one can further enhance the beam deflection over a
particular crystal length.

Typical numerical results obtained for the intensity 	A2	2
of the probe wave by solving Eqs. �2� and �3� are shown in
Fig. 6. The distance CGH to NLM, needed in the experiment
to filter the first diffraction order after the CGH, is modeled
by linear beam propagation of z=7.5LDiff, while the nonlin-
ear propagation length inside the SBN crystal is over
2.5LDiff.

The numerical results agree qualitatively well with our
experiments. Quantitatively, the photorefractive anisotropy
and the beam modulational instability are gradually stronger
pronounced in the numerical results as compared to the ex-
perimental data. Similar to the experiment, the clearest de-
flection, with the highest contrast between the channels, was
obtained in the case when the beam steering direction coin-
cides with the direction of the carrier drift along with the
crystalline c axis �see plot L in Fig. 6�. Nevertheless, second
peak self-focusing at a smaller growth rate is clearly visible.
When the direction of the beam steering is reversed �see plot
R in Fig. 6�, the signal guided to the opposite right channel
still dominates. However, it appears split and with a weaker

growth rate in the simulations. This is only in a qualitative
agreement with the experimental observation shown in Fig. 4
�R�. When steering the waveguide perpendicular to the crys-
talline c axis, the beam in the experimental frames �Fig. 4
�U ,D�� is somewhat disturbed along the c axis and opposite
to the deflection direction. This is much stronger expressed
in the numerical results in which the dominating peaks are
actually located along the c axis. Increasing the numerical
propagation distance, the bright peaks continue to self-focus
and the guided probe beam becomes stronger deflected and
focused �in channel L� or splitted �in the other channels�. In
the experiment, lengthening the interaction time of the frac-
tional vortex dipole with the crystal results in stronger self-
focusing of the bright peak and in a stronger confinement of
the guided probe beam at the exit of the crystal without
noticeable beam breakup. Beyond the crystal, of course, the
beams diffract stronger. In agreement with earlier results ob-
tained in self-defocusing Kerr NLM �25,27�, the numerical
data confirmed that the transverse velocity V� of the frac-
tional vortex dipole �as well as V� of the bright peaks� de-
pend inversely proportional to the dislocation length 2b,
whereas the modulational instability increases with 2b.

IV. CONCLUSION

In conclusion, we reported on the first experimental dem-
onstration of signal beam deflection by steering fractional
vortex dipole with a mixed phase dislocation of a finite
length in a self-focusing nonlinear medium. We observed
high contrast between the signals guided to four desired out-
put channels obtained with rotation of the encoded phase
dislocation. Such rotation is easily achievable through the
use of a programmable spatial light modulator and therefore
the proposed steering scheme appears promising for realiza-
tion of all-optical beam deflection. Furthermore, the
observed

TABLE I. Efficiency of guiding to the four virtual output chan-
nels, as marked in Fig. 5�b�.

Addressed channel

Guiding
efficiency

in
channel

U L D R

U 47% 7% 5% 2%

L 9% 49% 3% 6%

D 3% 12% 38% 4%

R 7% 18% 4% 30%

FIG. 6. Calculated intensity distributions �	A2	2� of the deflected
probe beams at the exit of the crystal for ��=� and 2b=35 �m.
For better visibility, plot L is scaled by a factor of 2.
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fractional vortex dipole dynamics provides important links to
other physical systems, including Bose-Einstein condensates
and superconductivity, where similar entities can also exist.
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