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We study spontaneous emission of an atom near a nanofiber with two fiber-Bragg-grating �FBG� mirrors. We
show that the coupling between the atom and the guided modes of the nanofiber can be significantly enhanced
by the FBG cavity even when the cavity finesse is moderate. We find that, when the fiber radius is 200 nm and
the cavity finesse is about 30, up to 94% of spontaneous emission from the atom can be channeled into the
guided modes in the overdamped-cavity regime. We show numerically and analytically that vacuum Rabi
oscillations and strong coupling can occur in the FBG cavity even when the cavity finesse is moderate �about
30� and the cavity length is large �on the order of 10 cm to 1 m�, unlike the case of planar and curved
Fabry-Perot cavities.
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I. INTRODUCTION

Coupling of light to subwavelength structures and its con-
trol pose one of the greatest challenges of recent research
�1–7�. Strong coupling in a superconducting circuit at micro-
wave frequencies has been observed �2�. Chang et al. pro-
posed a technique that enables strong coherent coupling be-
tween individual emitters and guided plasmon excitations in
conducting nanostructures �3�. In the case of dielectric
waveguides, it has been shown that a significant fraction �up
to 28%� of emission from a single atom can be channeled
into a nanofiber �4–7�. Radiative decay of an atom in the
vicinity of a nanofiber has been studied in the context of a
two-level atom �8–10� as well as a realistic multilevel ce-
sium atom with a hyperfine structure of energy levels �4,5�.
The parameters for the decay of populations and cross-level
coherences of an atom near a nanofiber have been calculated
�4,5�. The cooperation of distant atoms via a nanofiber has
been discussed �11,12�. It has been shown that, due to guided
modes, a substantial cooperation can survive large inter-
atomic distances �11�, and a linear array of distant atoms can
significantly enhance the rate of spontaneous emission and
the efficiency of channeling of emission into the nanofiber
�12�.

Optical cavities are often employed to increase the inter-
action between atoms and photons �13–29�. Various cavity
quantum electrodynamic effects have been studied �13�.
There have been spectacular recent successes brought by the
merging of optical cavity systems with ultracold neutral at-
oms �15–22� as well as with electromagnetically induced
transparency physics �23–29�. It is natural to expect that the
use of a cavity can substantially enhance the channeling of
emission from an atom into a nanostructure. It is desirable to
combine the cavity technique with the nanofiber technique to
obtain a hybrid system, where the interaction is enhanced by
the transverse confinement of the field in the fiber cross-
section plane as well as the longitudinal confinement of the
field between the mirrors. Such a system has been studied

recently in the context of intracavity electromagnetically in-
duced transparency �30�. It has been shown that the presence
of a fiber-Bragg-grating �FBG� cavity with a large length �on
the order of 10 cm� and a moderate finesse �about 30� can
significantly enhance the group delay of the guided probe
field �30�.

In this paper, we study spontaneous emission of an atom
near a nanofiber with two FBG mirrors. We find that the
coupling between the atom and the guided modes can be
significantly enhanced by the FBG cavity even when the
cavity finesse is moderate. We show numerically and analyti-
cally that vacuum Rabi oscillations and strong coupling can
occur in the FBG cavity even when the cavity finesse is
moderate �about 30� and the cavity length is large �on the
order of 10 cm to 1 m�.

Before we proceed, we note that there has been a large
body of work involving fiber Bragg gratings over the past
two decades �31–36�. With careful control of the grating
writing process and appropriate choice of glass material, a
FBG resonator can have a finesse of well over 1000 and a
linewidth of a few MHz �36�.

The paper is organized as follows. In Sec. II we describe
the model of a nanofiber with two FBG mirrors. In Sec. III
we derive a basic equation for spontaneous emission of an
atom in the model. In Sec. IV we study spontaneous emis-
sion of the atom in the overdamped-cavity regime. In Sec. V
we derive a delay-differential equation for spontaneous emis-
sion and study it numerically. In Sec. VI we approximate the
delay-differential equation under the single-mode cavity con-
dition and analyze the atomic decay in various cases. Our
conclusions are given in Sec. VII.

II. MODEL

We consider spontaneous emission of a two-level atom in
the vicinity of a nanofiber with two FBG mirrors �see Fig. 1�.
The field in the guided modes of the nanofiber is reflected
back and forth between the FBG mirrors. Such a system is a
nanofiber-based cavity. The nanofiber has a cylindrical silica
core of radius a and of refractive index n1=1.45 and an
infinite vacuum clad of refractive index n2=1. In view of the
very low losses of silica in the wavelength range of interest,

*Also at Institute of Physics, Vietnamese Academy of Science and
Technology, Hanoi, Vietnam.

PHYSICAL REVIEW A 80, 053826 �2009�

1050-2947/2009/80�5�/053826�15� ©2009 The American Physical Society053826-1

http://dx.doi.org/10.1103/PhysRevA.80.053826


we neglect material absorption. We also neglect the effects of
the surface-induced potential, the surface roughness, and the
phonon heating on the atom. We use the cylindrical coordi-
nates �r ,� ,z�, with z being the axis of the fiber.

In the presence of the fiber, the electromagnetic field can
be decomposed into guided and radiation modes �37�. In or-
der to describe the field in a quantum-mechanical treatment,
we follow the continuum field quantization procedures pre-
sented in �38�. First, we temporally neglect the presence of
the FBG mirrors. Regarding the guided modes, we assume
that the single-mode condition �37� is satisfied for a finite
bandwidth around the atomic transition frequency �0. We
label each fundamental guided mode HE11 with a frequency
� in this bandwidth by an index �= �� , f , l�, where f =+,−
denotes the forward or backward propagation direction and
l=+,− denotes the counterclockwise or clockwise rotation of
polarization. In the interaction picture, the quantum expres-
sion for the electric positive-frequency component Egyd

�+� of
the field in the cavity-free guided modes is �4�

Egyd
�+� = i�

�

�����

4��0
a�e���e−i��t−f�z−l��. �1�

Here e���=e����r ,�� is the profile function of the guided
mode � in the classical problem, a� is the corresponding
photon annihilation operator, ��=� fl�0

�d� is the summation
over the guided modes, � is the longitudinal propagation
constant, and �� is the derivative of � with respect to �. The
constant � is determined by the fiber eigenvalue equation
�37�. The operators a� and a�

† satisfy the continuous-mode
bosonic commutation rules �a� ,a��

† �=	��−���	 f f�	ll�. The
explicit expression for the mode function e��� is given in
Appendix A �see also Refs. �4,37��.

Regarding the radiation modes, the longitudinal propaga-
tion constant � for each frequency � can vary continuously,
from −k to k, with k=� /c being the wave number. We label
each radiation mode by an index 
= �� ,� ,m , l�, where m
=0,�1,�2, . . . is the mode order and l=+,− is the mode
polarization. In the interaction picture, the quantum expres-
sion for the electric positive-frequency component Erad

�+� of the
field in the radiation modes is �4�

Erad
�+� = i�




� ��

4��0
a
e

�
�e−i��t−�z−m��. �2�

Here e�
�=e�
��r ,�� is the profile function of the radiation
mode 
 in the classical problem, a
 is the corresponding
photon annihilation operator, and �
=�ml�0

�d��−k
k d� is the

summation over the radiation modes. The operators a
 and
a


† satisfy the continuous-mode bosonic commutation rules
�a
 ,a
�

† �=	��−���	��−���	mm�	ll�. The explicit expression

for the mode function e�
� is given in Appendix B �see also
Refs. �4,37��.

Next, we take into account the effect of the FBG mirrors
on the mode functions. We assume that the two FBG mirrors
are identical, having the same complex reflection and trans-
mission coefficients R and T, respectively, for the guided
modes in a broad bandwidth around the atomic transition
frequency �0. In general, we have �R�2+ �T�2�1, where the
equality �inequality� occurs for lossless �lossy� gratings.
Without loss of essential physics, we assume that the grat-
ings are lossless, that is, �R�2+ �T�2=1. Let the mirrors be
separated by a distance L, from the point z=−L /2 to the
point z=L /2. The mode functions of the guided modes are
modified by the presence of the mirrors. The forms of the
cavity-modified mode functions are obtained, as usual in the
Fabry-Perot theory, by summing the geometric series result-
ing from the multiple reflections by the mirrors �39–41�. In-
side the cavity, the mode functions of the cavity-modified
guided modes are given by

ẽ��,+,l� = e��,+,l� T

1 − R2e2i�L + e��,−,l� TRei��L−2z�

1 − R2e2i�L ,

ẽ��,−,l� = e��,−,l� T

1 − R2e2i�L + e��,+,l� TRei��L+2z�

1 − R2e2i�L , �3�

and, hence, the electric positive-frequency component of the
field in the cavity-modified guided modes is

Ecavgyd
�+� = i�

�

�����

4��0
a�ẽ���e−i��t−f�z−l��. �4�

We assume that the FBG mirrors do not reflect the radia-
tion modes. This assumption is reasonable in the case where
the distance L between the FBG mirrors is large as compared
to the fiber radius a and to the wavelength 0=2� /k0, with
k0=�0 /c being the wave number of the atomic transition.
With this assumption, the mode functions of the radiation
modes are unchanged by the presence of the FBG mirrors.
Inside the cavity, the electric positive-frequency component
of the total field is given by

E�+� = Ecavgyd
�+� + Erad

�+�. �5�

We emphasize that the FBG cavity described above con-
fines only the guided modes, whose wave vectors are aligned
along the fiber axis direction z. The radiation modes are not
confined by the FBG cavity. In this sense, the physics of the
FBG cavity is similar to that of one-dimensional cavities
�41,42�, and is different from that of planar Fabry-Perot cavi-
ties �13,39,40,43�, where off-axis modes reduce the quantum
electrodynamic �QED� effect of the cavity on spontaneous
emission of the atom �40,43�. We also note that the guided
field in the FBG cavity is confined not only in the axial
direction between the mirrors but also in the fiber cross-
section plane. In this sense, the physics of the FBG cavity is
similar to that of curved Fabry-Perot cavities, which are of-
ten used in experiments on cavity QED effects �13–21�. An
advantage of a FBG cavity based on a nanofiber is that the
field in the guided modes can be confined to a small cross-
section area whose size is comparable to the light wave-
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FIG. 1. �Color online� Spontaneous emission of an atom in the
vicinity of a nanofiber with two fiber-Bragg-grating mirrors.
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length �44�. For example, for a nanofiber with radius of 200
nm, the effective mode area Aeff= ���e����2dr�2 /��e����4dr of
the fundamental guided modes with the wavelength 
=852 nm is found to be Aeff	0.65 �m2. The corresponding
mode radius is found to be reff=�Aeff /�	454 nm, which is
much smaller than the typical values of 15 to 30 �m for the
waists of the cavity modes used in the experiments on cavity
QED effects �13–21�. Another advantage of the nanofiber-
based cavity is that the cavity guided field can be transmitted
over long distances for the communication purposes.

We now describe the interaction between the atom and the
field. Let �a
 and �b
 be the upper and lower states of the
atom, respectively. The operators �= �b
�a� and �†= �a
�b�
describe the downward and upward transitions of the atom,
respectively. In the dipole and rotating-wave approximations
and in the interaction picture, the Hamiltonian for the atom–
field interaction is

Hint = − i��
�

G̃��
†a�e−i��−�0�t − i��




G
�
†a
e

−i��−�0�t

+ H.c., �6�

where the coefficients G̃� and G
 characterize the coupling
of the atom with the cavity-modified guided modes �
= �� , f , l� and the radiation modes 
= �� ,� ,m , l�, respec-
tively. Their explicit expressions are

G̃� =� ���

4��0�
�d · ẽ����r,�,z��ei�f�z+l��, �7a�

G
 =� �

4��0�
�d · e�
��r,���ei��z+m��. �7b�

Here d= �a�d̂�b
 is the matrix element of the electric dipole
moment of the atom, and r, �, and z are the cylindrical
coordinates of the position of the atom.

III. BASIC EQUATION FOR SPONTANEOUS EMISSION

We assume that the atom is initially excited and the field
is initially in the vacuum state. The wave function of the
combined atom-field system at an arbitrary time t can be
written as

��
 = Ca�a;0
 + �
�

Cb��b;1�
 + �



Cb
�b;1

 . �8�

Here Ca is the probability amplitude for the atom to remain
in the upper state �a
, and Cb� and Cb
 are the probability
amplitudes for the atom to move to the lower state �b
, emit-
ting a photon into a guided mode � and a radiation mode 
,
respectively. In the interaction picture, the Schrödinger equa-

tion i���̇
=Hint��
 yields the following equations for the
probability amplitudes:

Ċa = − �
�

G̃�e−i��−�0�tCb� − �



G
e
−i��−�0�tCb
 �9�

and

Ċb� = G̃�
� ei��−�0�tCa,

Ċb
 = G

�ei��−�0�tCa. �10�

We integrate Eqs. �10� and substitute the results into Eq. �9�.
Then, we obtain

Ċa�t� = − �
�

�G̃��2�
0

t

e−i��−�0��Ca�t − ��d�

− �



�G
�2�
0

t

e−i��−�0��Ca�t − ��d� . �11�

Since the radiation modes are not confined by the FBG
cavity, the interaction between the atom and the field in the
radiation modes is weak. In addition, the mode functions e�
�

of the radiation modes are smooth with respect to the mode
frequencies. Therefore, we can apply the Born-Markov ap-
proximation to the contribution of the radiation modes, that
is, to the terms associated with the second integral on the
right side of Eq. �11�. In this approximation, we replace
Ca�t−�� by Ca�t� and take it out from the integral. With the
assumption that the observation time t is much larger than
the atomic oscillation period 2� /�0, we extend the upper
integration limit t to +�. Furthermore, we neglect the imagi-
nary part of the result of the integration, which describes the
contribution of the radiation modes to the Lamb shift of the
atomic transition frequency. Then, we obtain

Ċa�t� = �Ċa�t��gyd −
�rad

2
Ca�t� , �12�

where the term

�Ċa�t��gyd = − �
�

�G̃��2�
0

t

e−i��−�0��Ca�t − ��d� �13�

describes spontaneous emission into guided modes and the
coefficient

�rad = 2��



�G
�2	�� − �0� �14�

is the rate of spontaneous emission into radiation modes.
In terms of the mode functions e�
� of the radiation modes,

expression �14� for �rad can be rewritten as �4,11�

�rad =
�0

2�0�
�
ml
�

−k0

k0

d��d · e��0�ml��r,���2. �15�

The rate �rad of spontaneous emission into radiation modes
has been calculated and studied in Refs. �4,5,11�.

Since the mode functions of the guided modes are modi-
fied by the FBG mirrors, they may contain narrow reso-
nances. Therefore, we need to perform a special treatment
for the contributions from the guided modes.

We introduce the notation V0=Vz and V�1
=� �Vx� iVy� /�2 for the spherical components of an arbi-
trary vector V, and the notation u0= ẑ and u�1
=� �x̂� iŷ� /�2 for the spherical basis vectors. Without loss
of essential physics, we assume that only one spherical com-
ponent dq=d of the dipole vector d, where q=−1, 0, or 1, is
nonzero.
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We use Eq. �3� to calculate Eq. �7a� and then insert the
result into Eq. �13�. We make two approximations. One is to
allow the frequency � to be negative for the convenience of
calculation. The other is that the guided-mode functions
e���=e��,f ,l� and the factor ��� are estimated at the atomic
transition frequency �0. These approximations are valid be-
cause the oscillations described by the exponential factor
e−i��−�0�� in Eq. �13� are generally very fast except for a
small region where the mode frequency � is close to the
atomic transition frequency �0. As a result, we obtain the
following equation for the contribution of the cavity-
modified guided modes to the atomic decay:

�Ċa�t��gyd = −
�gyd

2�
�

−�

�

G���d��
0

t

e−i��−�0��Ca�t − ��d� .

�16�

Here

�gyd =
�0

2�0�vg
�
fl

�d · e��0fl��2 =
�0d2

�0�vg
��e−q�2 + �eq�2�

�17�

is the rate of spontaneous emission into guided modes in the
absence of the FBG mirrors and

G��� =
1 + �R�2 + 2�R�cos � cos�2�z�

1 − �R�2 + 4�R�2�1 − �R�2�−1sin2 �
�18�

is the cavity impact �enhancement/inhibition� factor.
In Eq. �17�, we have introduced the notation �e0�

= �ez
��0,+,+�� and �e�1�= ��er

��0,+,+��� �e�
��0,+,+��� /�2 for the mag-

nitudes of the spherical components of the resonant guided-
mode functions. We have also introduced the notation vg
=1 /����0� for the group velocity of the resonant guided
field. The cavity-free rate �gyd of spontaneous emission into
guided modes has been calculated and studied in Refs
�4,5,11�.

In Eq. �18�, we have introduced the notation

� = �L + �R + �1 + q�� �19�

for the shift of the phase of the parallel-to-dipole component
of the guided field per cavity crossing with a single reflec-
tion. Here �R is the phase of the complex reflection coeffi-
cient R, that is, R= �R�ei�R. Depending on the phase shift per
cavity crossing � of the cavity guided field and the axial
position z of the atom, the cavity impact factor G��� can be
larger or smaller than one, indicating enhancement or inhibi-
tion, respectively, of spontaneous emission into guided
modes. Such enhancement and inhibition of spontaneous
emission are the Purcell effect �45�, which has been studied
widely in literature �13�.

Equation �12� with the term �Ċa�t��gyd given by Eq. �16� is
the basic equation for spontaneous emission of the atom in
the model. We will use this equation to study the emission of
the atom in different regimes.

IV. EXPONENTIAL DECAY IN THE
OVERDAMPED-CAVITY REGIME

We consider the case where the interaction between the
atom and the cavity field is weak. We assume that the cavity
resonance width � is much larger than the characteristic
atomic decay rate �, that is, ���. In addition, we assume
that the observation time t is much longer than the atomic
oscillation period 2� /�0, the cavity crossing time �L=L /vg,
and the cavity damping time �−1, but is much shorter than
the atomic decay time �−1, that is, we have �0t�2�, t��L,
�t�1, and �t�1. Under these conditions, the Fermi golden
rule, which is based on the Born-Markov approximation, is
valid �46�. We apply the Born-Markov approximation to Eq.
�16� for the contribution of the cavity-modified guided
modes to the atomic decay. In this approximation, we replace
Ca�t−�� by Ca�t�. Furthermore, we extend the upper integra-
tion limit t to +�. Then, we obtain

�Ċa�t��gyd = −
�cavgyd

2
Ca�t� . �20�

Here

�cavgyd = �gydG0 �21�

is the cavity-modified rate of spontaneous emission into
guided modes, with

G0 = G��0� =
1 + �R�2 + 2�R�cos �0 cos�2�0z�

1 − �R�2 + 4�R�2�1 − �R�2�−1sin2 �0
�22�

being the resonant-cavity impact factor. In Eq. �22�, we have
introduced the notation �0=���0� for the propagation con-
stant of the resonant guided light and the notation

�0 =���0� = �0L + �R + �1 + q�� �23�

for the resonant-light phase shift per cavity crossing with a
single reflection. In deriving Eq. �20�, we have neglected the
contribution of the guided modes to the Lamb shift of the
atomic transition frequency. Note that expression �22� for the
resonant-cavity impact factor G0 is in agreement with the
corresponding results for one-dimensional cavities �41,42�.

We insert Eq. �20� into Eq. �12�. Then, we obtain the
exponential-decay equation

Ċa�t� = −
�

2
Ca�t� , �24�

with the total atomic decay rate

� = �cavgyd + �rad = �gydG0 + �rad. �25�

Thus, in the overdamped-cavity regime, the spontaneous
emission of the atom is an exponential-decay process. Note
that the cavity impact factor G0 and, consequently, the rates
�cavgyd and � depend on the mirror reflection coefficient R.
They oscillate with varying z. They also oscillate with vary-
ing cavity length L through their dependences on the phase
shift per cavity crossing �0.

The cavity resonance condition is �0=m�, where m is an
integer number. Under this resonance condition, Eq. �22� for
the resonant-cavity impact factor G0 reduces to
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G0 =
1 + �R�2 + 2�R�cos�2�0z + m��

1 − �R�2
. �26�

The maximal value

Gmax = max�G0� =
1 + �R�
1 − �R�

�27�

of the factor G0 describes the maximal enhancement of spon-
taneous emission into guided modes. The minimal value

Gmin = min�G0� =
1 − �R�
1 + �R�

�28�

of the factor G0 describes the maximal inhibition of sponta-
neous emission into guided modes. It is interesting to note
that, under the resonance and overdamped-cavity conditions,
the maximal enhancement factor Gmax and the maximal in-
hibition factor Gmin do not depend on the cavity length L.
They depend only on the mirror reflection coefficient R.

The above results are different from the general results for
planar Fabry-Perot cavities �39,40,43�. However, they are in
agreement with the results for one-dimensional cavities
�41,42� and also with the results for very narrow planar
Fabry-Perot cavities �39�. The reason is that the FBG cavity
reflects only the fiber guided modes, which propagate along
the fiber axis, and is therefore similar to one-dimensional
cavities. It is known that the enhancement factor for a one-
dimensional cavity is, in general, larger than that for a cor-
responding planar Fabry-Perot cavity �40�. Therefore, we ex-
pect that the FBG cavity can substantially enhance the rate of
spontaneous emission into guided modes even when the fi-
nesse of the FBG cavity is moderate. Indeed, for the mirror
reflectivity �R�2=0.8 or 0.9, which correspond to the finesse
F=��R� / �1− �R�2�	14 or 30, respectively, we obtain the en-
hancement factor Gmax	18 or 38, respectively. Such values
of the enhancement factor are rather significant. For com-
parison, we note that the maximum enhancement factor for a
planar Fabry-Perot microcavity with �R�2=0.9 and L=0 /2 is
just about 3 �39,40�.

The total spontaneous emission rate � and its components
�cavgyd and �rad depend on the FBG mirror reflectivity �R�2
and the fiber radius a. In Fig. 2 we plot �, �cavgyd, and �rad as
functions of �R�2 and a in the case where the dipole of the
atom is oriented along one of the spherical basis vectors u�1.
The atom is located on the fiber surface and at the cavity
center. The length of the cavity is such that the phase shift
per cavity crossing �0 is an even multiple of �, that is, an
even-order resonance is produced. Under this resonance con-
dition, the center of the cavity corresponds to an antinode of
the parallel-to-dipole component of the quasistanding-wave
guided field formed in the cavity. The rates are normalized to
the free-space decay rate �0=�0

3d2 / �3���0c3�. Figure 2�a�
shows that the cavity-modified rate of spontaneous emission
into guided modes �cavgyd and the total spontaneous emission
rate � increase with increasing reflectivity �R�2. Meanwhile,
the rate of spontaneous emission into radiation modes
�rad does not depend on �R�2. In the absence of the cavity
��R�=0�, the rates of spontaneous emission into guided
and radiation modes are �gyd=�cavgyd��R�=0�	0.48�0 and

�rad	1.25�0, respectively, and the total spontaneous emis-
sion rate is �=���R�=0�	1.73�0. Figure 2�b� shows that the
rate of spontaneous emission into guided modes �cavgyd and
the total spontaneous emission rate � have a peak when the
fiber radius a is around 191 nm.

The efficiency of channeling of emission into guided
modes is characterized by the parameter �=�cavgyd /�. In
Fig. 3 we plot � as functions of the FBG mirror reflectivity
�R�2 and the fiber radius a for the parameters of Fig. 2. Figure
3�a� shows that the channeling efficiency � increases with
increasing reflectivity �R�2 and can achieve substantial values
when �R�2 is close to unity. Indeed, for the reflectivity
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indices of the fiber and the vacuum clad are n1=1.45 and n2=1,
respectively. The rates are normalized to the free-space decay rate
�0.
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FIG. 3. Dependences of the channeling efficiency �=�cavgyd /�
on �a� the FBG mirror reflectivity �R�2 and �b� the fiber radius a for
the parameters of Fig. 2.
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�R�2=0.8 or 0.9, we obtain �	0.87 �i.e., 87%� or 0.94 �i.e.,
94%�, respectively. Figure 3�b� shows that the channeling
efficiency � achieves a peak when the fiber radius a is
around 191 nm. It is interesting to note that, due to the FBG
cavity, the channeling efficiency � can achieve substantial
values in a relatively wide range of a. Indeed, for �R�2=0.9,
we find ��80% when a is in the range from 130 to 300 nm.

The total spontaneous emission rate � and its components
�cavgyd and �rad depend on the axial coordinate z and the
radial coordinate r of the atom. In Fig. 4 we plot �, �cavgyd,
and �rad as functions of z and r in the case where the dipole
of the atom is oriented along one of the spherical basis vec-
tors u�1. Figure 4�a� shows that the cavity-modified rate of
spontaneous emission into guided modes �cavgyd and the total
spontaneous emission rate � oscillate with varying z. The
spatial period of the oscillations is � /�0. The maxima and
minima of the rate �cavgyd or � correspond to the enhance-
ment and inhibition, respectively, caused by the FBG cavity,
and are achieved at the antinodes and nodes, respectively, of
the parallel-to-dipole component of the quasistanding-wave
guided field formed in the cavity. Meanwhile, the rate of
spontaneous emission into radiation modes �rad does not de-
pend on z and is finite. This explains the observation in Fig.
4�a� that, at the nodes of the cavity field, the total atomic
decay rate � remains finite although the component �cavgyd
becomes very small. Figure 4�b� shows that the effect of the
fiber on �, �cavgyd, and �rad is largest for the atom on the fiber
surface. It is clear that, when the atom is located at an anti-
node of the parallel-to-dipole component of the cavity
guided field and is near to the fiber surface, �cavgyd and con-
sequently � are substantially enhanced by the cavity. When
the atom is far away from the fiber �r�a�, the rate �cavgyd
reduces to zero while the rates �rad and � approach the free-
space value �0.

We plot in Fig. 5 the efficiency of channeling of emission
into guided modes �=�cavgyd /� against the axial coordinate

z and the radial coordinate r of the atom for the case of Fig.
4. Figure 5�a� shows that � oscillates with varying z, with the
period � /�0. It is interesting to note that � is substantial in
broad regions around the antinodes of the parallel-to-dipole
component of the cavity guided field and has narrow dips at
the nodes. The appearance of such features is due to the fact
that the total atomic decay rate � has two components: one is
enhanced or inhibited around the antinodes or nodes, respec-
tively, and the other is not modified by the cavity and is
substantial. Figure 5�b� shows that the channeling efficiency
� reduces with increasing atom-to-surface distance r−a and
is substantial in a broad region of r−a. Indeed, more than
50% of emission can be directed into guided modes when the
atom-to-surface distance is less than 350 nm. In addition, the
channeling efficiency � can be significant even when r−a is
large. Indeed, up to about 15% of emission can be directed
into guided modes when the atom-to-surface distance is 600
nm.
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FIG. 4. Dependences of the total spontaneous emission rate �
�solid lines� and its two components �cavgyd �dashed lines� and �rad

�dotted lines� on �a� the axial coordinate z and �b� the radial coor-
dinate r of the atom in the case where the dipole of the atom is
oriented along one of the spherical basis vectors u�1. In �a�, the
atom is located at r=a �on the fiber surface�. In �b�, the atom is
located at z=0 �at the center of the cavity�. The fiber radius is a
=200 nm. The reflectivity of the FBG mirrors is �R�2=0.9. Other
parameters are as in Fig. 2.
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FIG. 6. Dependences of the total spontaneous emission rate �
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�dotted lines� on �a� the axial coordinate z and �b� the radial coor-
dinate r of the atom in the case where the dipole of the atom is
oriented along the fiber axis z. In �a�, the atom is located at r=a �on
the fiber surface�. In �b�, the atom is located at �0z=�� /2 �one-
fourth of the guided-light wavelength from the cavity center�. The
fiber radius is a=200 nm. The reflectivity of the FBG mirrors is
�R�2=0.9. Other parameters are as in Fig. 2.
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The numerical results presented in Figs. 2–5 were ob-
tained for the case where the dipole vector d of the atom is
perpendicular to the fiber axis z. Meanwhile, the spontaneous
decay rates and their modifications caused by the FBG cavity
depend on the orientation of the atomic dipole. We plot in
Figs. 6 and 7 the spatial dependences of the decay rates �,
�cavgyd, and �rad and the channeling efficiency � for the case
where the dipole of the atom is oriented along the fiber axis
z. Comparison between Figs. 4 and 6 and between Figs. 5
and 7 shows that the decay rates and the channeling effi-
ciency are smaller for an atom with a dipole parallel to the
fiber axis than for an atom with a dipole perpendicular to the
fiber axis. In addition, we observe that the positions of
maxima �minima� in the case of Figs. 4�a� and 5�a� corre-
spond to the positions of minima �maxima� in the case of
Figs. 6�a� and 7�a�. Such opposite behaviors are due to the
differences between the phase shifts per reflection of the lon-
gitudinal �q=0� and transverse �q=�1� components of the
guided field.

V. DELAY-DIFFERENTIAL EQUATION
FOR MULTIPLE REFLECTIONS

We now examine Eq. �12� in the case where the coupling
between the atom and the cavity-modified guided modes
may be strong and, consequently, the Born-Markov approxi-
mation for the contribution of the cavity guided modes to the
atomic decay may not be valid. We follow the approach of
Refs. �41–43� and derive a delay-differential equation that
describes explicitly multiple reflections in our model.

We start from Eq. �18� for the cavity impact factor G���.
We expand the denominator of the fraction in this equation
into a Fourier series as

1

1 − �R�2 + 4�R�2�1 − �R�2�−1sin2 �

=
2

1 + �R�2 �n=0

� �R�2n

1 + 	n,0
cos�2n�� . �29�

With the help of the above formula, we expand the cavity
impact factor G��� into a series as

G��� = 2�
n=0

� �R�2n

1 + 	n,0
cos�2n�� + �

n=0

�

�R�2n+1cos��2n + 1��

+ 2�z� + cos��2n + 1�� − 2�z�� . �30�

We insert Eq. �30� into Eq. �16� and calculate the integrals
with the help of the formulas

�
−�

�

cos�2n��e−i��−�0��d� = �1 + 	n,0��e2ni�0	�� − 2n�L� ,

�
−�

�

cos��2n + 1��� 2�z�e−i��−�0��d�

= �e�2n+1�i�0e�2i�0z	�� − 2n�L − ��� , �31�

where �+= �L+2z� /vg and �−= �L−2z� /vg are the position-
dependent group delays due to the left and right mirrors,
respectively, and �L=L /vg= ��++�−� /2 is the group delay per
cavity crossing. In deriving expressions �31� we have ne-
glected the group-velocity dispersion. When insert the result
of the calculations into Eq. �12�, we obtain

Ċa�t� = −
�gyd

2 �Ca�t���t� + 2�
n=1

�

�R�2ne2ni�0

� Ca�t − 2n�L���t − 2n�L� + �
n=0

�

�R�2n+1e�2n+1�i�0

� �e2i�0zCa�t − 2n�L − �+���t − 2n�L − �+�

+ e−2i�0zCa�t − 2n�L − �−���t − 2n�L − �−���
−
�rad

2
Ca�t� . �32�

Here ��t� is the Heaviside step function, whose value is zero
for negative argument and one for positive argument.

Equation �32� is a delay-differential equation for the de-
cay of an atom near a fiber with a pair of FBG mirrors. The
first term, Ca�t���t�, does not depend on the reflection coef-
ficient R. This term describes spontaneous emission into
guided modes in the absence of the cavity. The other terms
are associated with the coefficients of the type Rn, where n
=1,2 , . . .. Such terms describe the backaction of the emitted
photon on the atom after the photon is reflected from the
mirrors n times. The quantities of the type 2n�L and 2n�L
+�� are the group delays. The factors of the type e2ni�0 and
e�2n+1�i�0e�2i�0z describe the phase shifts of the parallel-to-
dipole component of the guided field due to the propagation
along the nanofiber and the reflection from the FBG gratings.
Thus, the delay-differential equation �32� describes sponta-
neous emission of the atom in terms of multiple reflections.
Due to the effect of retardation on the atomic state, the
atomic decay may become nonexponential. We note that the
absorption of the guided field by the fiber material can be
incorporated into the theory by adding an imaginary part to
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FIG. 7. Dependences of the channeling efficiency �=�cavgyd /�
on �a� the axial coordinate z and �b� the radial coordinate r of the
atom for the parameters of Fig. 6.
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the longitudinal wave number �0, which appears in expres-
sion �23� for the phase shift per cavity crossing �0 and also
in the local phase factors e�2i�0z.

It is clear from Eq. �32� that, when t��min

�min�L ,�+ ,�−�, we have Ċa=−�� /2�Ca. Here, �=�gyd
+�rad is the total rate of spontaneous emission into both types
of modes in the absence of the cavity. The above result
means that the atom does not feel the presence of the cavity
until the time t=�min.

In the framework of the Born-Markov approximation, we
can replace the variables Ca�t−2n�L� and Ca�t−2n�L−��� in

Eq. �32� by Ca�t�. Then, Eq. �32� reduces to Ċa=−�� /2�Ca.
Here, �=�gydG0+�rad is the total rate of spontaneous emis-
sion into both types of modes in the presence of the cavity.
This result is in agreement with the results of Sec. IV on the
exponential decay of the atom in the overdamped-cavity re-
gime �see Eqs. �24� and �25��.

The delay-differential equation �32� is similar to but dif-
ferent from the corresponding equation for the case of planar
Fabry-Perot microcavities �43�. The key difference is that the
coefficients in the delay-differential equation for planar
Fabry-Perot microcavities contain �−1, �−2, and �−3 terms,
which correspond to the dipole radiation field, the induced
field, and the electrostatic field, respectively, due to the mir-
ror images �43�. Here, �=2n�0�L, 2n�0�L+�0�+, or
2n�0�L+�0�− is the retardation time. The absence of the �−1,
�−2, and �−3 terms in the expressions for the coefficients in
Eq. �32� is because the FBG cavity reflects only the guided
modes and is therefore similar to one-dimensional cavities.
Due to this reason, Eq. �32� is almost the same as the corre-
sponding equation for one-dimensional cavities �41,42�. A
difference between the two cases is that Eq. �32� contains an
additional term, namely, the term −��rad /2�Ca�t�, which de-
scribes spontaneous emission from the atom into radiation
modes. Another difference is that the cross-section area of
the cavity modes is rigorously included in the expression for
the rate �gyd of spontaneous emission into guided modes but
is phenomenologically included in the treatment of Ref. �41�
or is omitted in the treatment of Ref. �42�.

The delay-differential equation �32� for the probability
amplitude Ca of the atomic upper state �a
 can be solved
numerically �43,47� by using a subroutine developed in Ref.
�48�. We solve this equation and plot in Fig. 8 the time evo-
lution of the atomic upper-state population Pa= �Ca�2 for the
case where the FBG cavity length is L=20 cm. The atom is
located on the fiber surface �r=a� and at the cavity center
�z=0�. The cavity length is tuned to resonance with the
atomic transition frequency so that the phase shift per cavity
crossing �0 is an even or odd multiple of �, that is, the
center of the cavity corresponds to an antinode or a node,
respectively, of the parallel-to-dipole component of the cav-
ity guided field. Other parameters are as in Fig. 2. For com-
parison, the exponential decay of the atomic upper-state
population in the absence of the cavity is shown by the
dashed curves. The solid line in Fig. 8�a� shows the occur-
rence of vacuum Rabi oscillations �41–43�. Such oscillations
are due to strong coupling between the atom and the guided
field in the FBG cavity. It is interesting to note that strong
coupling and vacuum Rabi oscillations can occur even when

the cavity length is large �L=20 cm� and the finesse of the
cavity is moderate �F=��R� / �1− �R�2�	30�. There are two
reasons for this. The first reason is that the field in the guided
modes of the nanofiber is confined in a small area of the
transverse plane, that is, the guided-mode cross-section area
is small. Due to this reason, the effective cavity-mode vol-
ume can be small and, consequently, the cavity-atom cou-
pling constant can be large even when the FBG cavity length
is large. The other reason is that the FBG cavity is similar to
one-dimensional cavities. In such a cavity, the cavity damp-
ing rate reduces with increasing cavity length faster than the
strength of the coupling between the atom and the cavity.
Unlike one-dimensional cavities, planar Fabry-Perot optical
cavities have off-axis modes, which reduce the cavity QED
effects �40,43�. In addition, the radius of the cavity mode in
a planar Fabry-Perot optical cavity increases with increasing
cavity length L and with increasing mirror reflectivity �R�2
�40�. In the case of curved Fabry-Perot optical cavities, the
typical values of the mode waist are much larger the wave-
length of light. Consequently, the realization of strong cou-
pling in a planar or a curved Fabry-Perot cavity requires a
smaller cavity length and a higher finesse than in a
nanofiber-based cavity. The typical Fabry-Perot optical cavi-
ties used in experimental realizations of strong coupling have
lengths in the range from 10 to 100 �m and finesse factors
on the order of 105 �16–21�.

The solid line in Fig. 8�b� shows the decay of the atom is
almost exponential. Comparison between the solid and the
dashed lines shows that the atomic decay is slightly slowed
down by presence of the cavity. In the case of this figure, the
atom is positioned at a node of the cavity guided field and,
therefore, spontaneous emission of the atom into guided
modes is substantially inhibited. The total spontaneous emis-
sion of the atom is mainly determined by spontaneous emis-
sion into radiation modes. This decay channel is slightly
weaker than the cavity-free atomic decay.
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FIG. 8. Time evolution of the upper-state population Pa= �Ca�2
of the atom in a long FBG cavity. The length of the cavity is L
=20 cm and is tuned to resonance with the atomic transition fre-
quency so that the phase shift per cavity crossing �0 is an �a� even
or �b� odd multiple of �. The reflectivity of the FBG mirrors is
�R�2=0.9. The atom is located on the fiber surface and at the cavity
center. Other parameters are as in Fig. 2. For comparison, the ex-
ponential decay of the atomic upper-state population in the absence
of the cavity is shown by the dashed curves.
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We plot in Fig. 9 the time evolution of the atomic upper-
state population Pa= �Ca�2 for the case where the FBG cavity
length is L=2 mm. Other parameters are as in Figs. 2 and 8.
The figure shows that the atomic population decay is almost
exponential. According to Fig. 9�a�, the exponential decay of
the atom at an antinode of the cavity guided field �see the
solid curve� is substantially faster than the cavity-free atomic
decay �see the dashed curve�. According to Fig. 9�b�, the
exponential decay of the atom at a node of the cavity guided
field �see the solid curve� is slightly slower than the cavity-
free atomic decay �see the dashed curve�.

Comparison between Figs. 8�a� and 9�a� shows that
vacuum Rabi oscillations can be observed in the case of Fig.
8�a�, where the cavity length is rather large �L=20 cm�, but
not in the case of Fig. 9�a�, where the cavity length is much
shorter �L=2 mm�. Thus, vacuum Rabi oscillations cannot
occur when the cavity length is too short. This result is dif-
ferent from the common belief that the smaller cavity can
produce the stronger vacuum Rabi oscillations �13�. Such a
belief was based on the results for high-finesse microcavities.
Meanwhile, our model involves the use of a moderate-finesse
nanofiber-based cavity.

Comparison between Figs. 8�b� and 9�b� shows that the
time dependences of the atomic upper-state population Pa in
the two cases are essentially the same. Moreover, they are
almost identical to the exponential decay of the atom into
radiation modes. The reason is the following: in the two
cases, the atom is positioned at a node of the cavity guided
field and, hence, spontaneous emission into guided modes is
inhibited. Since this effect is substantial enough, the total
atomic decay process is mainly determined by the process of
spontaneous emission into radiation modes.

We plot in Fig. 10 the time evolution of the atomic upper-
state population Pa= �Ca�2 for different values of the cavity
length, in the range from 100 m to 1 mm. The length of the

cavity is tuned to exact resonance with the atomic transition
frequency so that the phase shift per cavity crossing �0 is an
even multiple of �, that is, the center of the cavity corre-
sponds to an antinode of the parallel-to-dipole component of
the cavity guided field. Since the cavity length is rather large
in the cases of Figs. 10�a�–10�c�, we take into account the
absorption of the guided light by the fiber material in the
calculations. For this purpose, we add an imaginary part of
� /2, with �=10−5 cm−1 being the typical absorption coeffi-
cient for silica, to the longitudinal wave number �0, which
appears in Eq. �32� through the phase shifts �0 and �2�0z.
However, we neglect the nonradiative atomic decay caused
by the material absorption �49,50�. The ratio of the rate
�nonrad of such a nonradiative process to the natural decay
rate �0 is given in the limit of small atom-to-surface dis-
tances r−a by the factor �I / �2��+1�2k0

3�r−a�3�, where �I is
the imaginary part of the complex permittivity � �49,50�. In
the case of silica, �I is on the order of 10−10. Therefore, the
nonradiative decay rate �nonrad of an atom with the transition
wavelength 0=852 nm of the cesium D2 line is significant
only when the distance r−a from the atom to the fiber sur-
face is on the order of or less than 0.2 Å. Such a threshold
distance is very small as compared to the light wavelength
and the fiber radius, and is even smaller than the Bohr radius.
Therefore, it is neglected in our treatment. The aim of the
choice of the value r−a=0 for the calculations of Fig. 10 as
well as Figs. 8 and 9 is to show the most dramatic effects in
the limiting case where the effects of the material absorption,
the surface-induced potential, and the surface roughness on
the atomic decay can be neglected. Our additional calcula-
tions, not shown here, confirm that the numerical results pre-
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FIG. 9. Time evolution of the upper-state population Pa= �Ca�2
of the atom in a short FBG cavity. The length of the cavity is L
=2 mm and is tuned to resonance with the atomic transition fre-
quency so that the phase shift per cavity crossing �0 is an �a� even
or �b� odd multiple of �. The reflectivity of the FBG mirrors is
�R�2=0.9. The atom is located on the fiber surface and at the cavity
center. Other parameters are as in Figs. 2 and 8. For comparison, the
exponential decay of the atomic upper-state population in the ab-
sence of the cavity is shown by the dashed curves.
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FIG. 10. Time evolution of the upper-state population Pa

= �Ca�2 of the atom in a FBG cavity with length L=100 m �a�, 10 m
�b�, 1 m �c�, 10 cm �d�, 1 cm �e�, and 1 mm �f�. The length of the
cavity is tuned to exact resonance with the atomic transition fre-
quency so that the phase shift per cavity crossing �0 is an even
multiple of �. The atom is located on the fiber surface and at the
cavity center. The reflectivity of the FBG mirrors is �R�2=0.9. Other
parameters are as in Fig. 2.

CAVITY-ENHANCED CHANNELING OF EMISSION FROM… PHYSICAL REVIEW A 80, 053826 �2009�

053826-9



sented in Figs. 8–10 remain basically unchanged when the
value zero for r−a is replaced by a few nanometers.

Figure 10�a� shows that, when the cavity length L is large
enough, the decay of the atomic upper-state population Pa is
almost exponential. Such a decay is close to the exponential
decay of the atom in the absence of the cavity. The cavity-
free atomic decay rate is �=�gyd+�rad and is approximately
equal to 1.73�0 in the case considered. We note that, in the
case of large L, we may also observe vacuum Rabi oscilla-
tions. However, such oscillations are weak, and the corre-
sponding period is large and approaches the cavity crossing
time �L.

Figures 10�c� and 10�d� show that significant vacuum
Rabi oscillations occur when the cavity length L is in a range
on the order of 10 cm to 1 m. Such lengths are rather large.
We mention again that, in the case of planar �39,40,43� and
curved �13–21� Fabry-Perot cavities, due to the substantial
magnitudes of the cavity-mode cross-section areas and the
effects of the off-axis modes, strong coupling cannot be re-
alized in long cavities. Comparison between Fig. 10�c� and
10�d� shows that a decrease in the cavity length leads to a
decrease in the vacuum Rabi period. This feature is in agree-
ment with the fact that the vacuum Rabi frequency  is
proportional to the factor 1 /��L=�vg /L �see Eq. �40��,
which characterizes the cavity-mode density or the inverse of
the cavity-mode volume.

Figure 10�f� shows that, when the cavity length L is small
enough, the decay of the atomic upper-state population Pa
returns to the exponential-decay regime, with a cavity-
modified decay rate �=�gydG0+�rad. We find �	19.33�0
	11.20� in the case of the figure.

The dependence of the time evolution of the atomic
upper-state population Pa= �Ca�2 on the distance r−a from
the atom to the fiber surface is illustrated in Fig. 11. The
figure shows clearly that vacuum Rabi oscillations can be
observed even when the distance r−a is as large as 100 nm.
The strong coupling between such a distant atom and the
guided field is due to the effect of the FBG cavity.

We conclude this section by presenting an analytical so-
lution to the delay-differential equation �32� in a particular
case where the atom is at the center of the cavity, i.e., z=0.
In this case, Eq. �32� reduces to

Ċa�t� = − �gyd�
n=1

�

�R�neni�0Ca�t − n�L���t − n�L� −
�

2
Ca�t� .

�33�

The above equation has been solved analytically in Ref. �43�.
When we follow the result of Ref. �43�, we find

Ca�t� = e−�t/2�
n=0

�

�R�neni�0en��L/2��t − n�L�

� �
k1,. . .,kn

�− �gyd�p �t − n�L�p

k1 ! k2 ! ¯ kn!
, �34�

where the inner sum is over all non-negative integers
k1 , k2 , ¯ ,kn that satisfy the condition k1+2k2+ ¯+nkn=n,
and p=k1+k2+ ¯+kn is their sum. Expression �34� describes
the time dependence of the probability amplitude Ca of the
atomic upper state �a
. The results of calculations of expres-
sion �34� are in complete agreement with the numerical so-
lutions of Eq. �33�.

VI. SINGLE-MODE CAVITY

In order to get insight into our model, we approximate the
delay-differential equation �32� under the single-mode cavity
condition. For this purpose, we follow the procedures of
Refs. �41–43�. We consider a cavity mode, whose frequency
�c is determined by the resonance condition ���c�=m�.
Here m is an integer number. We introduce the parameter

! =
���c� −���0�

�L
=

m� −�0

�L
	 �c − �0, �35�

which characterizes the detuning of the cavity-mode fre-
quency �c from the atomic transition frequency �0. It is clear
that the separation between the cavity-mode frequencies �c
is !�c	� /�L. We rewrite the delay-differential equation
�32� as

Ċa�t� = −
�gyd

2 �2�
n=1

�

e−2n�i!+�/2��LCa�t − 2n�L���t − 2n�L�

+ �− 1�m�
n=0

�

e−�2n+1��i!+�/2��L

� �e2i�0zCa�t − 2n�L − �+���t − 2n�L − �+�

+ e−2i�0zCa�t − 2n�L − �−���t − 2n�L − �−���
−
�

2
Ca�t� , �36�

where

� =
2

�L
�ln�R�� �37�

is the cavity damping rate. Since the frequency separation
between the cavity modes is !�c	� /�L, the cavity finesse is
approximately given by F=!�c /�	� / �2�ln�R���.
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FIG. 11. Time evolution of the upper-state population Pa

= �Ca�2 of the atom at different distances r−a=0 �solid line�, 50 nm
�dashed line�, and 100 nm �dotted line� from the fiber surface in a
FBG cavity. The cavity length is L=10 cm. The atom is located at
the center of the cavity. Other parameters are as in Figs. 2 and 10.
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Although Eq. �36� is valid for an arbitrary integer number
m, we choose such an integer number m for which the mode
frequency �c is closest to the atomic transition frequency �0,
that is, the detuning ! is smallest. We consider the case
where the condition �!��L�1 is satisfied. This condition
means that �!��!�c, that is, the cavity-atom detuning ! is
much smaller than the cavity-mode frequency separation
!�c. In this case, the effect of the cavity mode with the
frequency �c on spontaneous emission of the atom is domi-
nant over that of other cavity modes. Furthermore, we as-
sume that �R�	1, so we have ��L�1. In addition, we as-
sume that t��L and ��L�1. Under the above conditions, we
can replace the sums in Eq. �36� by integrals and hence
obtain

Ċa�t� = −
�gyd

�L
cos2��cz + m�/2�

� �
0

t

e−�i!+�/2��t−t��Ca�t��dt� −
�

2
Ca�t� , �38�

where �c=���c�	�0+! /vg. When we differentiate the
above equation with respect to t, we find the second-order
differential equation

C̈a + �i! +
� + �

2
�Ċa + � 2

4
+ �i! +

�

2
��

2
�Ca = 0,

�39�

where

 = 2��gyd

�L
�cos��cz + m�/2�� �40�

is the cavity-atom coupling constant. Note that Eqs. �39� and
�40� are in agreement with the results for high-finesse one-
dimensional cavities �13,41,42�. It is clear from Eq. �40� that
the cavity-atom coupling constant  is inversely propor-
tional to the factor ��L=�L /vg, which effectively character-
izes the cavity-mode volume or the inverse of the cavity-
mode density. In addition,  is proportional to the rate of
spontaneous emission into guided modes ��gyd. Since the
field in guided modes is tightly confined in the transverse
plane, that is, the guided-mode cross-section area is small,
the rate �gyd can be substantial when the atom is close to the
fiber surface �4�. Therefore,  can achieve substantial values
even when the cavity length L is large.

We analyze the case of exact cavity-atom resonance,
where !=0, that is, �c=�0 and, consequently, �c=�0. In this
case, Eq. �39� reduces to

C̈a +
� + �

2
Ċa +

 2 + ��

4
Ca = 0. �41�

The initial conditions for the spontaneous emission process

are Ca�0�=1 and Ċa�0�=−� /2. For these initial conditions,
the solution to Eq. �41� is found to be

Ca�t� = e−��+��t/4�cosh�"t/2� +
� − �

2"
sinh�"t/2�� , �42�

where

" = ��� − ��2/4 − 2. �43�

Below, we study several different regimes of the general so-
lution �42�.

First, we consider the strong-coupling �underdamped-
cavity� regime, where  is sufficiently large that the condi-
tion

2 � �, � �44�

is satisfied. In this regime, Eq. �42� yields

Ca�t� 	 e−��+��t/4 cos� t/2� . �45�

Hence, the population Pa�t�= �Ca�t��2 of the atomic upper
state �a
 is found to be

Pa�t� 	 e−��+��t/2 cos2� t/2� . �46�

The above solution describes the occurrence of vacuum Rabi
oscillations in the strong-coupling regime �41–43�.

The strong-coupling condition �44� can be rewritten as

L2� L� L1, �47�

where

L2 =
16vg�gyd

�2 cos2��0z + m�/2� ,

L1 =
vg

4�gyd

ln2�R�
cos2��0z + m�/2�

. �48�

Condition �47� says that the strong-coupling regime can be
realized only if the cavity length L is sufficiently small as
compared to L2 and is sufficiently large as compared to L1. It
is clear that condition �47� can be realized only if

L2� L1. �49�

When the atom is positioned at a node of the parallel-to-
dipole component of the cavity guided field, we have
cos��0z+m� /2�=0, which leads to L2=0, L1=�, and  =0.
In this case, condition �49� and the strong-coupling condition
�44� cannot be satisfied.

When the atom is positioned at an antinode, we have
cos��0z+m� /2�=�1, which leads to

 = 2��gyd

�L
�50�

and

L2 =
16vg�gyd

�2 ,

L1 =
vg

4�gyd
ln2�R� 	

�2vg

16F2�gyd
. �51�

In this case, condition �49� can be rewritten as

�gyd

�
�

�ln�R��
8

	
�

16F
. �52�

Condition �52� can be satisfied if the cavity-free channeling
efficiency factor �gyd /�=�gyd / ��gyd+�rad� and the cavity fi-
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nesse F are sufficiently substantial. Under condition �52�, we
can choose an appropriate cavity length L that satisfies con-
dition �49� for the strong-coupling regime at an antinode.

Since the field in guided modes of the nanofiber is con-
fined in a small area of the transverse plane, that is, the
guided-mode cross-section area is small, the channeling effi-
ciency factor �gyd /� can achieve substantial values when the
atom is close to the fiber surface �4�. In this case, condition
�52� can be satisfied for moderate values of the finesse F of
the cavity. Furthermore, the cavity-atom coupling constant  
and the upper limit value L2 can be large. Consequently, the
strong-coupling condition �44� and its equivalent form �47�
can be satisfied for large values of the cavity length L. It is
interesting to note that, in our model, the cavity damping rate
�, given by Eq. �37�, decreases faster with increasing L than
the cavity-atom coupling constant  , given by Eq. �50�. Due
to this fact, the upper limit L2 for condition �47� is deter-
mined by the requirement 2 �� but not by the requirement
2 ��. This is a common feature of one-dimensional cavi-
ties �41,42�. We emphasize again that, in the case of planar
�39,40,43� and curved �13–21� Fabry-Perot cavities, due to
the substantial magnitudes of the cavity-mode cross-section
areas and the effects of the off-axis modes, strong coupling
cannot be realized in large cavities. The typical lengths of
Fabry-Perot optical cavities used in experimental realizations
of strong coupling are in the range from 10 to 100 �m
�16–21�. Such short cavities must have high finesse in order
to achieve the strong-coupling regime.

Unlike the upper limit value L2 for the strong-coupling
condition �47�, the lower limit value L1 is determined by the
requirement 2 ��. In the case of high-finesse cavities,
where F�1, we have L1→0. However, when F is moderate,
L1 can become large. Thus, strong coupling cannot be real-
ized in a FBG cavity with a moderate finesse F if the cavity
length L is too short. In such a cavity, the cavity damping
rate � is much larger than the cavity-atom coupling constant
 .

We discuss the possibilities of strong coupling and conse-
quential vacuum Rabi oscillations in the cases of Figs. 8�a�
and 10. In the cases of these figures, the atom is positioned
at an antinode of the cavity guided field, and the mirror
reflectivity is �R�2=0.9 �the cavity finesse is F	30�. For
the parameters of these figures, we find the critical values
L2	17 m and L1	1 cm. It is clear that condition �47�
is satisfied in the case of Fig. 8�a�, where L=20 cm, and
in the cases of Figs. 10�c� and 10�d�, where the cavity length
is L=1 m and 10 cm, respectively. This explains why
vacuum Rabi oscillations are observed in the above-
mentioned figures. Furthermore, we obtain � ,� ,�� /�0
	�7.97,3.51,1.73� in the case of Fig. 8�a�, � ,� ,�� /�0
	�3.56,0.70,1.73� in the case of Fig. 10�c�, and
� ,� ,�� /�0	�11.27,7.02,1.73� in the case of Fig. 10�d�.
These parameters satisfy the strong-coupling condition �44�.
For the free-space atomic decay rate �0=5.2 MHz of the
cesium D2 line, the cavity-atom coupling constant achieves
the values  	42, 19, and 59 MHz in the cases of Figs. 8�a�,
10�c�, and 10�d�, respectively. Such values of  are compa-
rable to the values obtained in the experiments on realization
of strong coupling in high-finesse Fabry-Perot optical micro-
cavities �16–21�.

Next, we consider the overdamped-cavity regime, where
the condition

� � 2 , � �53�

is satisfied. In this regime, Eq. �42� yields

Ca�t� 	 e−�t/2 �54�

and, hence, we obtain

Pa�t� = �Ca�t��2 	 e−�t. �55�

Here

� = �gydG0 + �rad �56�

is the total decay rate of the atom, with

G0 = 1 +
 2

��gyd
= 1 +

2

�ln�R��
cos2��0z + m�/2� �57�

being the cavity impact factor for the rate of spontaneous
emission into guided modes. The maximal enhancement
factor is

Gmax = 1 +
2

�ln�R��
	 1 +

4F

�
�58�

and the minimal value of the modification factor is

Gmin = 1. �59�

We note that Eq. �58� agrees with Eq. �27� of Sec. IV in the
limit �R�→1. However, Eq. �59� is different from Eq. �28�.
The reasons is that Eq. �40� for  is not accurate enough
for the cavity-atom coupling at the nodes. More compli-
cated calculations yield a more accurate expression  2

= �2�gyd /�L��R���R�+cos�2�cz+m���, which may be negative
at the nodes. When we use this expression, we find Gmin
=1− �R��1− �R � � / �ln�R��, which is in agreement with Eq. �28�
in the framework of the approximation ln�R�2	�R�2−1.

The overdamped-cavity condition �53� can be rewritten as

L� L1, L3, �60�

where

L3 =
2vg

�
�ln�R�� 	

�vg

F�
. �61�

Condition �60� indicates that the overdamped-cavity regime,
where the spontaneous emission of the atom is an
exponential-decay process with a cavity-modified rate �, can
be realized only when the FBG cavity is sufficiently short.
When the finesse F of the cavity is moderate, L1 and L3 can
be large. For the parameters of Figs. 9 and 10, we find
L1	1 cm and L3	41 cm. Then, the overdamped-cavity
condition �53� becomes L�1 cm. It is clear that the case of
Fig. 9, where L=2 mm, and the case of Fig. 10�f�, where
L=1 mm, correspond to the overdamped-cavity regime.

Finally, we discuss the case where L�L2 , L3. In this
case, we have �� , �. Then, Eq. �42� yields Ca�t�=e−�t/2

and, hence, we find Pa�t�=e−�t. Thus, when the cavity is very
long, the upper-state population Pa of the atom reduces ex-
ponentially with the cavity-free atomic decay rate �. Such a
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decay is observed in Fig. 10�a� although the parameters for
this figure do not satisfy the conditions t��L and ��L�1,
which were used in deriving Eq. �39� from Eq. �36�.

VII. SUMMARY

We have studied spontaneous emission of an atom near a
nanofiber with two FBG mirrors. We have shown that the
coupling between the atom and the guided modes of the
nanofiber can be significantly enhanced by the FBG cavity
even when the cavity finesse is moderate. We have found
that, when the fiber radius is 200 nm and the cavity finesse is
about 30, up to 94% of spontaneous emission from the atom
can be channeled into the guided modes in the overdamped-
cavity regime.

We have derived a delay-differential equation which ex-
plicitly describes the effects of multiple reflections of the
guided field on the atom. We have analyzed this equation in
different regimes of the atomic decay. We have shown nu-
merically and analytically that vacuum Rabi oscillations and
strong coupling can occur in the FBG cavity even when the
cavity finesse is moderate �about 30� and the cavity length is
large �on the order of 10 cm to 1 m�, unlike the case of
planar and curved Fabry-Perot cavities. We have identified
two reasons for this possibility. One reason is that the field in
the guided modes of the nanofiber is confined in a small area
of the transverse plane. Due to this reason, the effective
cavity-mode volume can be small even when the FBG cavity
length is large. The other reason is that the FBG cavity is
similar to one-dimensional cavities, where there are no off-
axis modes.

APPENDIX A: MODE FUNCTIONS OF THE
FUNDAMENTAL GUIDED MODES OF A NANOFIBER

For the fundamental guided modes, the propagation con-
stant � is determined by the fiber eigenvalue equation �37�,

J0�ha�
haJ1�ha�

= −
n1

2 + n2
2

2n1
2

K1��qa�
qaK1�qa�

+
1

h2a2

− ��n1
2 − n2

2

2n1
2

K1��qa�
qaK1�qa��

2

+
�2

n1
2k2� 1

q2a2 +
1

h2a2�2�1/2

. �A1�

Here the parameters h= �n1
2k2−�2�1/2 and q= ��2−n2

2k2�1/2

characterize the fields inside and outside the fiber, respec-
tively. The notation Jn and Kn stand for the Bessel functions
of the first kind and the modified Bessel functions of the
second kind, respectively.

The mode functions of the electric parts of the fundamen-
tal guided modes �37� are given, for r�a, by

er
��� = iC

q

h

K1�qa�
J1�ha�

��1 − s�J0�hr� − �1 + s�J2�hr�� ,

e�
��� = − lC

q

h

K1�qa�
J1�ha�

��1 − s�J0�hr� + �1 + s�J2�hr�� ,

ez
��� = fC

2q

�

K1�qa�
J1�ha�

J1�hr� , �A2�

and, for r#a, by

er
��� = iC��1 − s�K0�qr� + �1 + s�K2�qr�� ,

e�
��� = − lC��1 − s�K0�qr� − �1 + s�K2�qr�� ,

ez
��� = fC

2q

�
K1�qr� . �A3�

Here the parameter s is defined as s= �1 /q2a2

+1 /h2a2� / �J1��ha� /haJ1�ha�+K1��qa� /qaK1�qa��, and the co-
efficient C is determined from the normalization condition

�
0

2�

d��
0

�

nrf
2 �e����2rdr = 1. �A4�

Here nrf�r�=n1 for r�a, and nrf�r�=n2 for r#a.

APPENDIX B: MODE FUNCTIONS OF THE RADIATION
MODES OF A NANOFIBER

For the radiation modes, we have −kn2���kn2. The
characteristic parameters for the field in the inside and out-
side of the fiber are h=�k2n1

2−�2 and q=�k2n2
2−�2, respec-

tively. The mode functions of the electric parts of the radia-
tion modes 
= ���ml� �37� are given, for r�a, by

er
�
� =

i

h2��hAJm� �hr� + im
��0

r
BJm�hr�� ,

e�
�
� =

i

h2�im
�

r
AJm�hr� − h��0BJm� �hr�� ,

ez
�
� = AJm�hr� , �B1�

and, for r#a, by

er
�
� =

i

q2 �
j=1,2

��qCjHm
�j���qr� + im

��0

r
DjHm

�j��qr�� ,

e�
�
� =

i

q2 �
j=1,2

�im
�

r
CjHm

�j��qr� − q��0DjHm
�j���qr�� ,

ez
�
� = �

j=1,2
CjHm

�j��qr� . �B2�

The coefficients Cj and Dj are related to the coefficients A
and B as �9�

Cj = �− 1� j i�q2a

4n2
2 �ALj + i�0cBVj� ,

Dj = �− 1� j−1 i�q2a

4
�i�0cAVj − BMj� , �B3�

where
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Vj =
mk�

ah2q2 �n2
2 − n1

2�Jm�ha�Hm
�j���qa� ,

Mj =
1

h
Jm� �ha�Hm

�j���qa� −
1

q
Jm�ha�Hm

�j����qa� ,

Lj =
n1

2

h
Jm� �ha�Hm

�j���qa� −
n2

2

q
Jm�ha�Hm

�j����qa� . �B4�

We specify two polarizations by choosing B= i�A and B
=−i�A for l=+ and l=−, respectively. The orthogonality of
the modes requires

�
0

2�

d��
0

�

nrf
2 �e�
�e�
�����=��, m=m�rdr = N
	ll�	�� − ��� .

�B5�

This leads to

� = �0c� n2
2�Vj�2 + �Lj�2

�Vj�2 + n2
2�Mj�2

. �B6�

The normalization constant N
 is given by

N
 =
8��

q2 �n2
2�Cj�2 +

�0

�0
�Dj�2� . �B7�
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