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In this paper, the non-Markovian dissipative dynamics of the phase-damped Jaynes-Cummings model in the
presence of a classical homogeneous gravitational field will be analyzed. The model consists of a moving
two-level atom simultaneously exposed to the gravitational field and a single-mode traveling radiation field in
the presence of a non-Markovian phase damping mechanism. First, the non-Markovian master equation for the
reduced density operator of the system in terms of a Hamiltonian describing the atom-field interaction in the
presence of a homogeneous gravitational field will be presented. Then, the superoperator technique will be
generalized and an exact solution of the non-Markovian master equation will be obtained. Assuming that
initially the radiation field is prepared in a Glauber coherent state and the two-level atom is in the excited state,
the influence of gravity on the temporal evolution of collapses and revivals of the atomic population inversion,
atomic dipole squeezing, and photon counting statistics of the radiation field in the presence of the non-
Markovian phase damped will be investigated.
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I. INTRODUCTION

Non-Markovian effects have received special attention in
the past years, mainly in optics and radiation-matter interac-
tion subjects, either in predicting novel effects or due to the
necessity to go beyond the Markovian approximation in ex-
periments involving femtosecond processes. Among the ex-
perimental papers, the recent ones can be cited. Tchenio et al.
prepared a Non-Markovian atomic excitation process, with
adjustable memory time, using correlated laser pulses and
they verified that under strong-field conditions, the atoms are
not able to keep memory of the field phase and amplitude
over a time interval larger than the coherence time �1�. Con-
sidering femtosecond experiments, non-Markovian behavior
appears in the optical dephasing of molecules in solution,
since the dynamics of the thermalized environment may oc-
cur on the same time scale of the system �2–6�. Concerning
the theoretical approach, Lewenstein et al. predicted the sup-
pression of spontaneous emission related to the decay of cav-
ity atoms in the presence of a strong driving field, thus modi-
fying the spectrum of resonance fluorescence �7�. Villaeys et
al. studied the non-Markovian effects in the atomic absorp-
tion band shape for the transient and steady-state regimes;
they concluded that in the steady state, the appearances of
the non-Markovian effects are washed out and therefore they
cannot be probed, but in the transient regime, these effects
are perceptible �8�. In this same line, Gangopadhyay and Ray
constructed a non-Markovian master equation by considering
density matrices with small delay time �9�. Over the last 40
years, many theoretical investigations have been addressed
toward the understanding of quantum dynamics of the inter-
acting atom-field system in a high-Q cavity. The interest to-
ward this research area was mainly spurred by the large
amount of experiments, revealing the appearance of intrigu-
ing features of quantum radiation-matter interaction �10�.

Both theoretical and experimental activities have concen-
trated on trying to understand simple nontrivial models of
quantum optics involving a single atom, regarded as a few
effective energy levels, and one or more near resonant modes
of the quantized electromagnetic field. The prototype of such
systems, proposed by the Jaynes-Cummings model �JCM� in
1963 �11�, describes a two-level atom resonantly interacting
with a single-mode quantized field. It has proved to be a
theoretical laboratory of great relevance to many topics in
atomic physics and quantum optics, as well as in the ion
traps, cavity QED, and quantum information processing �12�.
When the rotating wave approximation �RWA� is made, the
model becomes exactly solvable and its dynamical features
can be analytically brought to light revealing remarkable
properties �13�. In the standard JCM, the interaction between
a constant electric field and a stationary �motionless� two-
level atom is considered. With the development in the tech-
nologies of laser cooling and atom trapping, the interaction
between a moving atom and the field has attracted much
attention �14–23�.

Experimentally, atomic beams with very low velocities
are generated in laser cooling and atomic interferometry
�24�. It is obvious that for atoms moving with a velocity of a
few millimeters or centimeters per second for a time period
of several milliseconds or more, the influence of Earth’s ac-
celeration becomes important and cannot be neglected �25�.
A semiclassical description of a two-level atom interacting
with a running laser wave in a gravitational field has been
studied �26,27�. However, the semiclassical treatment does
not permit us to study the pure quantum effects occurring in
the course of atom-radiation interaction. Recently, within a
quantum treatment of the internal and external dynamics of
the atom, we have presented �28� a theoretical scheme based
on an SU�2� dynamical algebraic structure to investigate the
influence of a classical homogeneous gravitational field on
the quantum nondemolition measurement of atomic momen-
tum in the dispersive JCM. Also, the effects of the gravita-
tional field on quantum statistical properties of the lossless*majid471702@yahoo.com
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�29� as well as the phase-damped JCMs �30� were investi-
gated. We reach to the point that the gravitational field seri-
ously suppresses nonclassical properties of both the cavity
field and the moving atom. Also, the effects of the gravita-
tional field on the dynamical evolution of the cavity-field
entropy and the creation of the Schrödinger-cat state in the
Jaynes-Cummings model �31� are examined.

On the other hand, over the last 2 decades, much attention
has been focused on the properties of the dissipative variants
of the JCM. The theoretical efforts have been stimulated by
experimental progress in cavity QED. Besides the experi-
mental drive, there also exists a theoretical motivation to
include relevant damping mechanism to JCM because its dy-
namics becomes more interesting. A number of authors have
treated the JCM with dissipation by the use of analytic ap-
proximations �32,33� and numerical calculations �34–38�.
The solution in the presence of dissipation is not only of
theoretical interest but also important from a practical point
of view since dissipation would be always present in any
experimental realization of the model. However, the dissipa-
tion treated in the above studies is modeled by coupling to an
external reservoir including energy dissipation. As is well
known, in a dissipative quantum system, the system loses
energy by creating a bath quantum. In this kind of damping,
the interaction Hamiltonian between bath and system does
not commute with the system Hamiltonian. In general, this
leads to a thermalization of the system with a certain time
constant. There are, however, other kinds of environmental
coupling to the system, which do not involve energy ex-
change. In the so-called phase damping �39�, the interaction
Hamiltonian commutes with that of system and in the dy-
namics, only the phase of system state is changed in the
course of interaction. Similar to standard energy damping,
the off-diagonal elements of the density matrix in energy
basis decay at a given rate. The phase damping can well
describe some unaccounted decay of coherences in a single-
mode micromaser �40�. It has also been shown that phase
damping seriously reduces the fidelity of the received qubit
in quantum computers due to the induced decoherence �41�.
The phase damping in the JCM with one quantized field
mode has been studied �42�. The influence of phase damping
on nonclassical properties of the multiquanta two-mode JCM
has also been studied �43�. It has been found that the phase
damping suppresses nonclassical effects of the cavity field in
the JCM. However, all of the foregoing studies have been
done only under the condition that the influence of the gravi-
tational field is not taken into account.

In this paper, the non-Markovian dissipative dynamics of
the phase-damped Jaynes-Cummings model in the presence
of a classical homogeneous gravitational field will be ana-
lyzed. The model consists of a moving two-level atom simul-
taneously exposed to the gravitational field and a single-
mode traveling radiation field in a high quality
electromagnetic cavity in the presence of a non-Markovian
phase damping mechanism. In Sec. II, the non-Markovian
master equation for the reduced density operator of the sys-
tem in terms of a Hamiltonian describing the atom-radiation
interaction in the presence of a gravitational field will be
presented. This Hamiltonian has been obtained based on a
SU�2� dynamical algebraic structure in the interaction pic-

ture. In Sec. III, an exact solution of the JCM with the phase
damping in the presence of a gravitational field will be ob-
tained, by which the dynamical evolution of the system is
investigated. In Sec. IV, influence of gravity on both the
cavity field and the atomic properties in the presence of the
non-Markovian phase damped will be studied. Considering
the field to be initially in a coherent state and the two-level
atom in the excited state, the temporal evolution of the
atomic inversion, atomic dipole squeezing, and photon
counting statistics will be explored. Finally, our conclusions
will be summarized in Sec. V.

II. NON-MARKOVIAN MASTER EQUATION FOR THE
PHASE-DAMPED JCM IN THE PRESENCE OF A

GRAVITATIONAL FIELD

The equation of motion for the density operator of the
atom-radiation system and reservoir, �̂sr�t�, in the
Schrödinger picture is given by �30�

� �̂sr�t�
�t

= − i�Ĥ̃T, �̂sr�t���� = 1� , �1�

where

Ĥ̃T = Ĥs + Ĥr + V̂sr, �2�

with the Hamiltonian of the reservoir

Ĥr = �
i

�ib̂i
†b̂i, �3�

and with the Hamiltonian of the interaction between the sys-
tem and reservoir

V̂sr = Ĥs�
j=1

3

F̂j , �4�

where

F̂1 = �
i

�ib̂i, F̂2 = �
i

�ib̂i
†, F̂3 = Ĥs�

i

�i
2

2�i
, �5�

where b̂i and b̂i
† are the boson annihilation and creation op-

erators for the reservoir and �i is the coupling constant. The

Hamiltonian Ĥs in Eq. �2� for the atom-radiation system in
the presence of a classical gravity field with the atomic mo-
tion along the position vector x�̂ and in the RWA is given by
��=1�,

Ĥs =
p̂2

2M
− Mg� · x�̂ + �c�â†â +

1

2
� +

1

2
�eg�̂z + �

��exp�− iq� · x�̂�â†�̂− + exp�iq� · x�̂��̂+â� , �6�

where â and â† denote, respectively, the annihilation and
creation operators of a single-mode traveling wave with fre-
quency �c, q� is the wave vector of the running wave, and �̂�

denote the raising and lowering operators of the two-level
atom with electronic levels �e	 , �g	 and Bohr transition fre-
quency �eg. The atom-field coupling is given by the param-
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eter �, p�̂ and, x�̂ denote, respectively, the momentum and
position operators of the atomic center-of-mass motion, and
g is Earth’s gravitational acceleration. It has been shown �30�
that based on an SU�2� algebraic structure, as the dynamical
symmetry group of the model, in the interaction picture,
Hamiltonian �6� takes the following form:

Ĥ̃s
I = �c�â†â +

Ŝ0

2
� +

1

2
	̂�p�̂ ,g� ,t�Ŝ0

+ ��̂�t�
K̂Ŝ− + �̂��t�
K̂Ŝ+� , �7�

where the operators

Ŝ0 =
1

2
��e	�e� − �g	�g��, Ŝ+ = â�e	�g�

1


K̂
, Ŝ− =

1


K̂
�g	�e�â†,

�8�

with the following commutation relations:

�Ŝ0, Ŝ�� = � Ŝ�, �Ŝ−, Ŝ+� = − 2Ŝ0, �9�

are the generators of the SU�2� algebra, the operator K̂
= â†â+ �e	�e� is a constant of motion which represents the
total number of excitations of the atom-radiation, �̂�t� is an
effective coupling coefficient

�̂�t� = � exp� it

2
	̂�p�̂ ,t,g�� +

�q2

M
�� , �10�

and the operator

	̂�p�̂ ,t,g�� = �c − ��eg +
q� · p�̂

M
+ q� · g�t +

q2

2M
� �11�

has been introduced as the Doppler shift detuning at time t
�30�. By using and following the same procedure as in Refs.
�30,44�, we obtain the non-Markovian master equation for
the reduced density operator of the system with neglecting
2
i d

d� �J���������2� ��=0 and the lamb shift term

� �̂s�t�
�t

= − i�Ĥ̃s
I, �̂s�t�� − ��Ĥs

I,�Ĥs
I, �̂s�t���

− ��Ĥs
I,�Ĥs

I,�Ĥs
I,�Ĥs

I, �̂s�t����� , �12�

where Ĥ̃s
I is given by Eq. �7�. In Eq. �12�, � and � are the

damping and the non-Markovian parameters, respectively,
which depend on the temperature T,

� = 2
T lim�→0� J���������2

�
� , �13�

and

� = 2
T��
0



d�J���
������2

�3 , �14�

where J��� and ���� are the spectral density of the reservoir
and the coupling coefficient, respectively, and � is the
Cauchy principal part of the integration �44�.

III. DYNAMICAL EVOLUTION OF THE
NON-MARKOVIAN PHASE-DAMPED JCM IN THE

PRESENCE OF CLASSICAL GRAVITY

In Sec. II, we reached to the non-Markovian master equa-
tion for the reduced density operator of the atom-radiation
system in the presence of a classical homogeneous gravita-
tional field. In this section, we now start to find the exact
solution for the density operator �̂s�t� of the non-Markovian
master Eq. �12� with the Hamiltonian �7�. For this purpose,
the approach presented in Refs. �44–46� is applied. The for-
mal solution is given by

�̂s�t� = exp�R̂t�exp�Ŝt�exp�T̂t��̂s�0� , �15�

exp�R̂t� = exp�R̂1t�exp�R̂2t�exp�R̂3t� , �16�

exp�T̂t� = exp�T̂1t�exp�T̂2t� , �17�

where �̂s�0� is the density operator of the initial atom-field

system. The auxiliary superoperators R̂1 , R̂2 , R̂3 , Ŝ and T̂1 , T̂1
are defined through their action on the density operator such
that

exp�R̂1t��̂s�0� � �
k=0


�2�t�k

k!
�Ĥ̃s

I�k�̂s�0��Ĥ̃s
I�k, �18�

exp�R̂2t��̂s�0� � �
l=0


�− 3��t�l

l!
�Ĥ̃s

I�2l�̂s�0��Ĥ̃s
I�2l, �19�

exp�R̂3t��̂s�0� � �
m=0


�− ��t�m

m!
�Ĥ̃s

I�m�̂s�0��Ĥ̃s
I�2m, �20�

exp�Ŝt��̂s�0� � exp�− iĤ̃s
It��̂s�0�exp�iĤ̃s

It� , �21�

exp�T̂1t��̂s�0� � exp�− ��Ĥ̃s
I�2t��̂s�0�exp�− ��Ĥ̃s

I�2t� ,

�22�

exp�T̂2t��̂s�0� � exp�− ���Ĥ̃s
I�4t��̂s�0�exp�− ���Ĥ̃s

I�4t� .

�23�

It is assumed that initially the radiation field is in a coher-
ent superposition of the Fock states, the atom is in the ex-
cited state �e	, and the state vector for the center-of-mass
degree of freedom is ��c.m�0�	=�d3p��p���p�	. Therefore, the
initial density operator of the atom-radiation system reads as

�̂s�0� = �̂ field�0� � �̂atom�0� � �̂c.m�0�

= �̂ field�0� � �̂c.m�0� 0

0 0
� , �24�

where

�̂ field�0� = �
n

�
m

wn�0�wm�0��n	�m� , �25�
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�̂c.m�0� =� d3p� d3p����p�����p���p�	�p��� , �26�

with wn�0�= exp�−���2/2��n


n!
. The Hamiltonian �7� can be ex-

pressed as a sum of two terms which commute with each
other, that is,

Ĥ̃s
I = Ĥ1 + Ĥ2, �Ĥ1,Ĥ2� = 0 �27�

where

Ĥ1 = �c�â†â +
Ŝ0

2
� , �28�

Ĥ2 =
1

2
	̂�p�̂ ,g� ,t�Ŝ0 + ��̂�t�
K̂Ŝ− + �̂��t�
K̂Ŝ+� . �29�

In the two-dimensional atomic basis, we have

Ĥ1 = �c�n̂ +
1

2
0

0 n̂ −
1

2
� , �30�

Ĥ2 = �
	�p� ,g� ,t�

4
���t�â

��t�â† −
	�p� ,g� ,t�

4
� . �31�

Also, the square of the Hamiltonian �7� can be expressed as
a sum of two operators: one of them is diagonal, in the form

�Ĥ̃s
I�2 = Â1 + Â2, �32�

where

Â1 = Ĥ1
2 + Ĥ2

2 = ��c
2�n̂ +

1

2
�2

+ �2�n̂ + 1� + �	�p� ,g� ,t�
4

�2

0

0 �c
2�n̂ −

1

2
�2

+ �2n̂ + �	�p� ,g� ,t�
4

�2� �33�

and

Â2 = 2Ĥ1Ĥ2 = 2�c��n̂ +
1

2
��	�p� ,g� ,t�

4
� �n̂ +

1

2
����t�â

�n̂ −
1

2
���t�â† − �n̂ −

1

2
��	�p� ,g� ,t�

4
� � . �34�

It is easily proved that �Â1 , Â2�=0. Similarly, the square of

the �Ĥ̃s
I�2 can be expressed as a sum of two operators: one of

them is diagonal, in the form

�Ĥ̃s
I�4 = Â3 + Â4, �35�

where

Â3 = Â1
2 + Â2

2 = �Â3�11 0

0 �Â3�22

� , �36�

with

�A3�11 = �c
2�n̂ +

1

2
�2

+ �2�n̂ + 1� + �	�p� ,g� ,t�
4

�2�2

+ 4�c
2�n̂ +

1

2
��	�p� ,g� ,t�

4
� + 4�c

2�2�n̂ +
1

2
�2

�n̂ + 1� ,

�37�

�A3�22 = �c
2�n̂ −

1

2
�2

+ �2n̂ + �	�p� ,g� ,t�
4

�2�2

+ 4�c
2�n̂ +

1

2
�

��	�p� ,g� ,t�
4

� + 4�c
2�2�n̂ −

1

2
�2

n̂ , �38�

and

Â4 = 2Â1Â2 = �Â4�11 �Â4�12

�Â4�21 �Â4�22

� , �39�

with

�Â4�11 = �c
2�n̂ +

1

2
�2

+ �2�n̂ + 1� + �	�p� ,g� ,t�
4

�2�
�4�c�n̂ +

1

2
��	�p� ,g� ,t�

4
� , �40�

M. MOHAMMADI PHYSICAL REVIEW A 80, 053823 �2009�

053823-4



�Â4�12 = �c
2�n̂ +

1

2
�2

+ �2�n̂ + 1� + �	�p� ,g� ,t�
4

�2�
�4�c�n̂ +

1

2
���â , �41�

�Â4�21 = �c
2�n̂ −

1

2
�2

+ �2n̂ + �	�p� ,g� ,t�
4

�2�4�c�n̂ −
1

2
��â†,

�42�

�Â4�22 = − �c
2�n̂ −

1

2
�2

+ �2n̂ + �	�p� ,g� ,t�
4

�2�4�c�n̂ −
1

2
�

��	�p� ,g� ,t�
4

� . �43�

It is easily proved that �Â3 , Â4�=0. Taking into account the
initial condition �24�, the auxiliary density operator �̂2�t� is
defined as

�̂2�t� = exp�Ŝt�exp�T̂t��̂s�0�

= exp�− iĤ2t�exp�− �Â2t�exp�− ��Â4t��̂1�t�

�exp�− ��Â4t�exp�− �Â2t�exp�iĤ2t� , �44�

where the operator �̂1�t� is defined by

�̂1�t� = ���t�	���t�� � �e	�e� , �45�

with

���t�	 = exp�− ��1 + ��t��c
2�n̂ +

1

2
�2

+ �2�n̂ + 1�

+ 	�p� ,g� ,t�
4

�2��exp�− 4���c
2�n̂ +

1

2
�2�2�n̂ + 1�

+ �	�p� ,g� ,t�
4

�2��wn�0�exp�− in�ct��n	 . �46�

From Eqs. �30� and �33�, we have, respectively,

exp�− iĤ1t�

= �exp− i�ct�n̂ +
1

2
�� 0

0 exp− i�ct�n̂ −
1

2
�� � ,

�47�

exp�− �Â1t� = �Â1�11�n̂,t� 0

0 �Â1�22�n̂,t�
� , �48�

where

�Â1�11�n̂,t� = exp�− �t�c
2�n̂ +

1

2
�2

+ �2�n̂ + 1�

+ �	�p� ,g� ,t�
4

�2�� , �49�

�Â1�22�n̂,t� = exp�− �t�c
2�n̂ −

1

2
�2

+ �2n̂ + �	�p� ,g� ,t�
4

�2�� .

�50�

Also, we can write

exp�− �Â2t� =  ê1�n̂,t� ê2�n̂,t�â
ê3�n̂,t�â† ê4�n̂,t�

� , �51�

exp�− ��Â4t� =  ê1��n̂,t� ê2��n̂,t�â
ê3��n̂,t�â† ê4��n̂,t�

� , �52�

where

ê1�n̂,t� = cosh��t
ĉ1�n̂,t�� − �c	�p� ,g� ,t�

2
�

��n̂ +
1

2
� sinh��t
ĉ1�n̂,t��


ĉ1�n̂,t�
, �53�

ê2�n̂,t� = − 2�c��n̂ −
1

2
� sinh��t
ĉ1�n̂ − 1,t��


ĉ1�n̂ − 1,t�
, �54�

ê3�n̂,t� = − 2�c��n̂ −
1

2
� sinh��t
ĉ2�n̂,t��


ĉ2�n̂,t�
, �55�

ê4�n̂,t� = cosh��t
ĉ2�n̂,t�� − �c�	�p� ,g� ,t�
2

�
��n̂ −

1

2
� sinh��t
ĉ2�n̂,t��


ĉ2�n̂,t�
, �56�

with

ĉ1�n̂,t� = �c
2�	�p� ,g� ,t�

2
�2�n̂ +

1

2
�2

+ �2�	�p� ,g� ,t�
2

�2

�n̂ + 1�

��n̂ +
1

2
�2

, �57�

ĉ2�n̂,t� = �c
2�	�p� ,g� ,t�

2
�2�n̂ −

1

2
�2

+ �2�	�p� ,g� ,t�
2

�2

�n̂�n̂ −
1

2
�2

, �58�

and

ê1��n̂,t� = cosh���t
ĉ1��n̂,t��

− 2�c	�p� ,g� ,t�

2
��n̂ +

1

2
�

�L̂1�n̂,t�
sinh���t
ĉ1��n̂,t��


ĉ1��n̂,t�
, �59�
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ê2��n̂,t� = − 2�c��n̂ −
1

2
�L̂2�n̂,t�

sinh���t
ĉ1��n̂ − 1,t��


ĉ1��n̂ − 1,t�
,

�60�

ê3��n̂,t� = − 2�c��n̂ −
1

2
�L̂2�n̂,t�

sinh���t
ĉ2��n̂,t��


ĉ2��n̂,t�
,

�61�

ê4��n̂,t� = cosh���t
ĉ2��n̂,t�� − �c	�p� ,g� ,t�
2

�
��n̂ −

1

2
�L̂2�n̂,t�

sinh���t
ĉ2��n̂,t��

ĉ2��n̂,t�

, �62�

with

ĉ1��n̂,t� = �c
2�	�p� ,g� ,t�

2
�2�n̂ +

1

2
�2

L̂1
2�n̂,t�

+ L̂1�n̂,t�L̂2�n̂,t��n̂ + 1��n̂ +
1

2
�2

, �63�

ĉ2��n̂,t� = �c
2�	�p� ,g� ,t�

2
�2�n̂ −

1

2
�2

L̂2
2

��n̂,t� + L̂2�n̂,t�L̂1�n̂,t�n̂�n̂ −
1

2
�2

, �64�

where

L̂1�n̂,t� = �c
2�n̂ +

1

2
�2

+ �2�n̂ + 1� + �	�p� ,g� ,t�
2

�2

, �65�

L̂2�n̂,t� = �c
2�n̂ −

1

2
�2

+ �2n̂ + �	�p� ,g� ,t�
2

�2

. �66�

Similarly, the operator exp�−iĤ2t� in the two-dimensional
atomic basis can be stated as

exp�− iĤ2t� =  d̂1�n̂,t� d̂2�n̂,t�â

d̂3�n̂,t�â† d̂4�n̂,t�
� , �67�

where

d̂1�n̂,t� = cos�t�	�p� ,g� ,t�
4

�2

+ �2�n̂ + 1���
− 	�p� ,g� ,t�

4
� sin�t�	�p� ,g� ,t�

4
�2

+ �2�n̂ + 1���

�	�p� ,g� ,t�

4
�2

+ �2�n̂ + 1�
,

�68�

d̂2�n̂,t� = − i�

sin�t�	�p� ,g� ,t�
4

�2

+ �2�n̂ + 1���

	�p� ,g� ,t�

4
�2

+ �2�n̂ + 1�
, �69�

d̂3�n̂,t� = − i�

sin�t�	�p� ,g� ,t�
4

�2

+ �2n̂��

	�p� ,g� ,t�

4
�2

+ �2n̂

, �70�

d̂4�n̂,t� = cos�t�	�p� ,g� ,t�
4

�2

+ �2n̂��
− 	�p� ,g� ,t�

4
� sin�t�	�p� ,g� ,t�

4
�2

+ �2n̂��

	�p� ,g� ,t�

4
�2

+ �2n̂

.

�71�

Then, from Eqs. �51� and �67�, it follows that

exp�− iĤ2t�exp�− �Â2t� =  f̂1�n̂,t� f̂2�n̂,t�â

f̂3�n̂,t�â† f̂4�n̂,t�
� , �72�

where

f̂1�n̂,t� = ê1�n̂,t�d̂1�n̂,t� + ê2�n̂,t�d̂2�n̂,t� , �73�

f̂2�n̂,t� = ê2�n̂,t�d̂1�n̂,t� + ê1�n̂,t�d̂2�n̂,t� , �74�

f̂3�n̂,t� = ê3�n̂,t�d̂4�n̂,t� + ê4�n̂,t�d̂3�n̂,t� , �75�

f̂4�n̂,t� = ê4�n̂,t�d̂4�n̂,t� + ê3�n̂,t�d̂3�n̂,t� . �76�

Also, from Eqs. �52� and �60�, we have

exp�− iĤ2t�exp�− �Â2t�exp�− ��Â4t�

=  Ĵ1�n̂,t� Ĵ2�n̂,t�â

Ĵ3�n̂,t�â† Ĵ4�n̂,t�
� , �77�

where

Ĵ1�n̂,t� = f̂1�n̂,t�ê1��n̂,t� + f̂2�n̂,t�ê2��n̂,t� , �78�

Ĵ2�n̂,t� = f̂2�n̂,t�ê1��n̂,t� + f̂1�n̂,t�ê2��n̂,t� , �79�

Ĵ3�n̂,t� = f̂3�n̂,t�ê4��n̂,t� + f̂4�n̂,t�ê3��n̂,t� , �80�

Ĵ4�n̂,t� = f̂4�n̂,t�ê4��n̂,t� + f̂3�n̂,t�ê3��n̂,t� . �81�

Substituting Eqs. �45� and �77� into Eq. �44�, an explicit
expression for the operator �̂2�t� can be obtained as follows:

��̂2�t��i,j = ��i�t�	�� j�t��, �i, j = 1,2� , �82�

with

��1�t�	 = Ĵ1�n̂,t����t�	, ��2�t�	 = Ĵ3�n̂,t����t�	 , �83�
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where ���t�	 is given by Eq. �46�. Now, we obtain the action

of the operator exp�R̂t�=exp�R̂1t�exp�R̂2t�exp�R̂3t� on the
operator �̂2�t�,

�̂3�t� = �
i=0


�− ��t�i

i!
Ĥi�̂2�t�Ĥ2i, �84�

�̂4�t� = �
j=0


�− 3��t� j

j!
Ĥ2j�̂3�t�Ĥj , �85�

�̂s�t� = �
k=0


�2�t�k

k!
Ĥk�̂4�t�Ĥk, �86�

where

Ĥk = �
l=0

k
k!

l ! �k − l�!
Ĥ1

k−lĤ2
l , �87�

which can be explicitly expressed as follows:

Ĥk = � ĝ+
k�n̂,t�

���t�
û−

k�n̂,t�


�	�p� ,g� ,t�

4
�2

+ �2�n̂ + 1�

â

��t�
v̂−

k�n̂,t�


�	�p� ,g� ,t�

4
�2

+ �2�n̂ + 1�

â†

ĝ−
k�n̂,t� � , �88�

where

ĝ+
k�n̂,t� = û+

k�n̂,t� +
	�p� ,g� ,t�

4
û−

k�n̂,t� , �89�

ĝ−
k�n̂,t� = v̂+

k�n̂,t� −
	�p� ,g� ,t�

4
v̂−

k�n̂,t� , �90�

û�
k �n̂,t� =

1

2
�r̂+

k�n̂,t� � r̂−
k�n̂,t�� ,

v̂�
k �n̂,t� =

1

2
�ŝ+

k�n̂,t� � ŝ−
k�n̂,t�� , �91�

with

r̂��n̂,t� = �c�n̂ +
1

2
� �
�	�p� ,g� ,t�

4
�2

+ �2�n̂ + 1� ,

�92�

ŝ��n̂,t� = �c�n̂ −
1

2
� �
�	�p� ,g� ,t�

4
�2

+ �2n̂ . �93�

Finally, by substituting Eqs. �85� and �87� into Eq. �86�, we
obtain the exact solution of the non-Markovian master Eq.
�12� for the phase-damped JCM in the presence of a classical
homogeneous gravity field

�̂s�t� = ��̂s�11�t� ��̂s�12�t�
��̂s�21�t� ��̂s�22�t�

� , �94�

where

��̂s�11�t� = �
k=0


�2�t�k

k!
�ĝ+

k�n̂,t���̂4�11�t�ĝ+
k�n̂,t� + âv̂−�

k�n̂,t�

���̂4�21�t�ĝ+
k�n̂,t� + ĝ+

k�n̂,t���̂4�12�t�v̂−�
k�n̂,t�â†

+ âv̂−�
k�n̂,t���̂4�22�t�v̂−�

k�n̂,t�â†����p���2, �95�

��̂s�22�t� = �
k=0


�2�t�k

k!
�v̂−�

k�n̂,t�â†��̂4�11�t�âv̂−�
k�n̂,t� + ĝ−

k�n̂,t�

���̂4�21�t�âv̂+�
k�n̂,t� + v̂−�

k�n̂,t�â†��̂4�12�t�ĝ−
k�n̂,t�

+ ĝ−
k�n̂,t���̂4�22�t�ĝ−

k�n̂,t�����p���2, �96�

��̂s�12�t� = ��̂s�21�t�† = �
k=0


�2�t�k

k!
�v̂−�

k�n̂,t�â†��̂4�11�t�ĝ+
k�n̂,t�

+ ĝ−
k�n̂,t���̂4�21�t�âĝ+

k�n̂,t� + v̂−�
k�n̂,t�â†��̂4�12�t�

��t�v̂−�
k�n̂,t�â† + ĝ−

k�n̂,t���̂4�22�t�v̂−�
k�n̂,t�â†����p���2,

�97�

with

v̂−�
k�n̂,t� =

�


�	�p� ,g� ,t�

4
�2

+ �2n̂

v̂−
k�n̂,t� , �98�

where
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��̂4�11�t� = �
j=0


�− 3��t� j

j!
�ĝ+

2j�n̂,t���̂3�11�t�ĝ+
j �n̂,t� + âv̂−�

2j�n̂,t�

���̂3�21�t�ĝ+
j �n̂,t� + ĝ+

2j�n̂,t���̂3�12�t�v̂−�
j�n̂,t�â†

+ âv̂−�
2j�n̂,t���̂3�22�t�v̂−�

j�n̂,t�â†� , �99�

��̂4�22�t� = �
j=0


�− 3��t� j

j!
�v̂−�

2j�n̂,t�â†��̂3�11�t�âv̂−�
j�n̂,t�

+ ĝ−
2j�n̂,t���̂3�21�t�âv̂+�

j�n̂,t�

+ v̂−�
2j�n̂,t�â†��̂3�12�t�ĝ−

j �n̂,t� + ĝ−
2j�n̂,t�

���̂3�22�t�ĝ−
j �n̂,t�� , �100�

��̂4�12�t� = ��̂4�21�t�†

= �
j=0


�− 3��t� j

j!
�v̂−�

2j�n̂,t�â†��̂3�11�t�ĝ+
j �n̂,t� + ĝ−

2j�n̂,t�

���̂3�21�t�âĝ+
j �n̂,t� + v̂−�

2j�n̂,t�â†��̂3�12�t�

��t�v̂−�
j�n̂,t�â† + ĝ−

2j�n̂,t���̂3�22�t�v̂−�
j�n̂,t�â†� , �101�

with

��̂3�11�t� = �
i=0


�− ��t�i

i!
�ĝ+

i �n̂,t���̂2�11�t�ĝ+
2i�n̂,t� + âv̂−�

i�n̂,t�

���̂2�21�t�ĝ+
2i�n̂,t� + ĝ+

i �n̂,t���̂2�12�t�v̂−�
2i�n̂,t�â†

+ âv̂−�
i�n̂,t���̂2�22�t�v̂−�

2i�n̂,t�â†� , �102�

��̂3�22�t� = �
i=0


�− ��t�i

i!
�v̂−�

i�n̂,t�â†��̂2�11�t�âv̂−�
2i�n̂,t� + ĝ−

i �n̂,t�

���̂2�21�t�âv̂+�
2i�n̂,t� + v̂−�

i�n̂,t�â†��̂2�12�t�ĝ−
2i�n̂,t�

+ ĝ−
i �n̂,t���̂2�22�t�ĝ−

2i�n̂,t�� , �103�

��̂3�12�t� = ��̂4�21�t�†

= �
i=0


�− ��t�i

i!
�v̂−�

i�n̂,t�â†��̂2�11�t�ĝ+
2i�n̂,t� + ĝ−

i �n̂,t�

���̂2�21�t�âĝ+
2i�n̂,t� + v̂−�

i�n̂,t�â†��̂2�12�t�

��t�v̂−�
2i�n̂,t�â† + ĝ−

i �n̂,t���̂2�22�t�v̂−�
2i�n̂,t�â†� ,

�104�

where we have defined ��̂2�t��i,j , �i , j=1,2� in Eq. �82�.
Making use of the solution given by Eq. �94�, one can

evaluate the mean values of operators of interest. In the next
section, it will be used to investigate various dynamical

properties of the non-Markovian phase-damped JCM in the
presence of a homogeneous gravitational field.

IV. DYNAMICAL PROPERTIES

Information in the quantum information �47� is coded into
simple quantum objects, usually two-level systems called
quantum bits �qubits�. In ion traps �48�, the bits are single
ions coding information in internal degrees of freedom. The
bits are coupled by the combined effect of laser light and
Coulomb interaction between the ions. In cavity QED ex-
periments, the bit is atom or single photon stored in a cavity
�48�. In this section, influence of gravity on the quantum
statistical properties of the atom �qubit� and the quantized
radiation field in the presence of the non-Markovian phase
damping will be studied �49�. Recent experiment processes
�1–6� confirm the importance of non-Markovian effects since
the dynamical characteristic times of the system become of
the same time scale as the reservoir. In this paper, by consid-
ering the damping parameter �=1�104 rad /s �30�, the rel-
evant time scale introduced by the damping is ��=�−1

�10−4 s. The relevant time scale introduced by the gravita-
tional influence is �a=1 /
q� ·g� . For an optical laser with �q� �
�107 m−1 and Earth’s acceleration �g� �=9.8 m /s2, �a is
about 10−4 s �28�. Therefore, since the dynamical character-
istic times of the system become of the same time scale as
the reservoir, non-Markovian effects become important.
Also, in the recent experiment work �50� where setups of
optical cavity quantum electrodynamics �CQED� to probe
quantum statistics of an atom laser with 87Rb atom, the pa-
rameters are �� ,	 ,��=2
�10.4,30,1.4� MHz, with the con-
dition ���0=�2 /	 in present experiments. The cavity relax-
ation denotes by �. In this paper, the parameters �� ,	 ,�� are
�106 ,1.8�106 ,1.4�106� rad /s, respectively �28,30�, and
the above condition as ���0=�2 /	 is satisfied. Therefore,
this model may be applied to study in the light of the recent
achievements of optical CQED.

A. Atomic population inversion

The atomic population inversion is expressed by the
expression

W�t� = ��̂3�t�	 = Tratom��̂atom�t��̂3�t�� , �105�

where

�̂atom�t� = Trfield��̂s�t�� . �106�

Equation �105� can be rewritten as follows:

W�t� =� d3p �
i=e,g

�i��̂atom�t��̂3�t��i	

=� d3p�
n=0



��n� � ��e��̂s�t��e	 − �g��̂s�t��g	� � �n	� .

�107�

Therefore, by using Eqs. �94� and �107�, we obtain
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W�t� =� d3p��
n=0



��n���̂s�11�t��n	 − �n���̂s�22�t��n	�� , �108�

where ��̂s�11�t� and ��̂s�11�t� are given by Eqs. �95� and �96�,
respectively.

In Fig. 1, we have plotted the atomic population inversion
as a function of the scaled time �t for three different values
of the parameter q� ·g� . In this figure and all the subsequent
figures, we set q=107 m−1, M =10−26 kg, g=9.8 m /s2,
�rec= �q2

2M =0.5�106 rad /s, �=1�106 rad /s, �=2, 	=1.8

�106 rad /s, ��p��=
1


2
�0

exp�
−p2

�0
2

�, �0=1, �=1�104 rad /s,

and �=2�103 rad /s �26–31�. In Fig. 1�a�, we consider
small gravitational influence in the presence of the non-
Markovian phase damping. This means very small q� ·g� , i.e.,
the momentum transfer from the laser beam to the atom, is
only slightly altered by the gravitational acceleration because
the latter is very small or nearly perpendicular to the laser
beam. In Figs. 1�b� and 1�c�, we consider the gravitational
influence in the presence of the non-Markovian phase damp-
ing for q� ·g� =0.5�107 s−2 and q� ·g� =1.5�107 s−2, respec-
tively. By comparing Figs. 1�a�–1�c�, we can see the influ-
ence of gravity on the time evolution of the atomic
population inversion when there is the non-Markovian phase
damping. As it is seen from Fig. 1�a� for the atomic popula-
tion inversion, the Rabi-like oscillations can be identified.
With the increasing value of the parameter q� ·g� �see Figs.
1�b� and 1�c��, the Rabi oscillations of the atomic population
inversion disappear.

B. Atomic dipole squeezing

To analyze the quantum fluctuations of the atomic dipole
variables and examine their squeezing, we consider the two
slowly varying Hermitian quadrature operators

�̂1 =
1

2
��̂+ exp�− i�egt� + �̂− exp�i�egt�� �109�

and

�̂2 =
1

2i
��̂+ exp�− i�egt� − �̂− exp�i�egt�� . �110�

In fact, �̂1 and �̂2 correspond to the dispersive and absorp-
tive components of the amplitude of the atomic polarization
�51�, respectively. They obey the commutation relation
��̂1 , �̂2�= i

2 �̂3. Correspondingly, the Heisenberg uncertainty
relation is

�	�̂1�2�	�̂2�2 �
1

16
���̂3	�2, �111�

where �	�̂i�2= ��̂i
2	− ��̂i	2 is the variance in the component

�̂i�i=1,2� of the atomic dipole.
The fluctuations in the component �̂i�i=1,2� are said to

be squeezed �i.e., dipole squeezing� if the variance in �̂i sat-
isfies the condition

�	�̂i�2 �
1

4
���̂3	�, �i = 1 or 2� . �112�

Since �̂i
2= 1

4 , this condition may be written as

Fi = 1 – 4��̂i	2 − ���̂3	� � 0, �i = 1 or 2� . �113�

The expectation values of the atomic operators �̂+ and �̂− are
given by

��̂��t�	 = Tratom��̂atom�t��̂��t�� . �114�
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FIG. 2. Time evolution of the atomic dipole squeezing vs the scaled time �t with the same corresponding data used in Fig. 1 for �a�
q� ·g� =0, �b� q� ·g� =0.5�107 s−2, and �c� q� ·g� =1.5�107 s−2.
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FIG. 1. Time evolution of the atomic population inversion vs the scaled time �t. Here, we have set q=107 m−1, M =10−26 kg, g
=9.8 m /s2, �rec=.5�106 rad /s, �=1�106 rad /s, �=0, �=2, 	=1.8�106 rad /s, �=1�104 rad /s, and �=2�103 rad /s for �a� q� ·g�
=0, �b� q� ·g� =0.5�107 s−2, and �c� q� ·g� =1.5�107 s−2.
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Therefore, by using Eqs. �94� and �106�, we obtain

��̂−�t�	 =� d3p�n���̂s�12�t��n	 = ��̂+�t�	�, �115�

where ��̂s�12�t� is given by Eq. �97�.
The time evolution of F1�t� corresponding to the squeez-

ing of �̂1 has been shown in Fig. 2 for three values of the
parameter q� ·g� in the presence of the non-Markovian phase
damping. As it is seen, with the increasing value of the pa-
rameter q� ·g� , the dipole squeezing is completely removed.

C. Photon counting statistics

Now, the influence of gravity on the sub-Poissonian sta-
tistics of the radiation field will be investigated. For this
purpose, we calculate the Mandel parameter defined by �52�

Q�t� =
��n�t�2	 − �n�t�	2�

�n�t�	
− 1. �116�

For Q�0 �Q�0�, the statistics is sub-Poissonian �super-
Poissonian�; Q=0 stands for Poissonian statistics. Since
�n�t�	=�n=0

 nP�n , t� and �n�t�2	=�n=0
 n2P�n , t�, we have

Q�t� = ���
n=0



n2P�n,t�� − �
n=0



nP�n,t��2�
��

n=0



nP�n,t��−1� − 1, �117�

where the probability of finding n photons in the radiation
field is found to be

P�n,t� = �n��̂ field�t��n	 = �n�Tratom �̂s�t��n	 , �118�

and by using Eq. �94� we have

P�n,t� =� d3p��n���̂s�11�t��n	 + �n���̂s�22�t��n	� . �119�

Therefore, by using Eqs. �117� and �119�, we obtain

Q�t� = ����
n=0



n2� d3p��n���̂s�11�t��n	 + �n���̂s�22�t��n	���
− ��

n=0



n� d3p��n���̂s�11�t��n	 + �n���̂s�22�t��n	���2�
���

n=0



n� d3p��n���̂s�11�t��n	 + �n���̂s�22�t�

��n	���−1� − 1. �120�

The numerical results for three values of the parameter
q� ·g� are shown in Fig. 3. As it is seen, in the presence of
non-Markovian phase damping, the cavity-field exhibits al-
ternately sub-Poissonian and super-Poissonian statistics
when the influence of the gravitational field is negligible.
With increasing q� ·g� , the sub-Poissonian characteristic is sup-
pressed and the cavity-field exhibits super-Poissonian statis-
tics. After some time, the Mandel parameter Q is stabilized at
an asymptotic zero value; the larger the parameter q� ·g� is the
more rapidly Q�t� reaches the asymptotic value zero.

V. SUMMARY AND CONCLUSIONS

In this paper, the non-Markovian dissipative dynamics of
the phase-damped Jaynes-Cummings model in the presence
of a classical homogeneous gravitational field have been ana-
lyzed. The model consists of a moving two-level atom simul-
taneously exposed to the gravitational field and a single-
mode traveling radiation field in the presence of a non-
Markovian phase-damping mechanism. First, the non-
Markovian master equation for the reduced density operator
of the system in terms of a Hamiltonian describing the atom-
field interaction in the presence of a homogeneous gravita-
tional field has been presented. Then, the superoperator tech-
nique is generalized and an exact solution of the non-
Markovian master equation is obtained. Assuming that
initially the radiation field is prepared in a Glauber coherent
state and the two-level atom is in the excited state, influence
of gravity on the temporal evolution of collapses and revivals
of the atomic population inversion, atomic dipole squeezing,
and photon counting statistics of the radiation field in the
presence of the non-Markovian phase damping have been
investigated. The results are summarized as follows. With the
increasing values of gravity-dependent parameter q� ·g� in the
presence of the non-Markovian parameter � and the damping
parameter �, �1� the Rabi-like oscillations in the atomic
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FIG. 3. Time evolution of the Mandel parameter Q�t� vs the scaled time �t with the same corresponding data used in Fig. 1 for �a�
q� ·g� =0, �b� q� ·g� =0.5�107 s−2, and �c� q� ·g� =1.5�107 s−2.
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population inversion disappear, �2� the atomic dipole squeez-
ing is completely removed, and �3� the sub-Poissonian be-
havior of the cavity field is suppressed and it exhibits super-
Poissonian statistics and after some time, the Mandel
parameter Q is stabilized at an asymptotic zero value. In
particular, we have shown that the gravitational field sup-
presses nonclassical effects in the non-Markovian phase-
damped JCM. Indeed, in the model under consideration, the
non-Markovian parameter �, the damping parameter �,
which depends on the environment temperature and the
gravity-dependent parameter q� ·g� seriously reduce the quan-
tum coherence. The approach adopted here may be applied to
study various dissipative systems such as quantum comput-

ers and light of the recent achievements of optical cavity
QED. Therefore, based on this model, the gravity in the pres-
ence of the non-Markovian phase damping suppresses the
nonclassical effects in the received qubit of the quantum
computers and in the light of the recent achievements of
optical cavity QED. Work on three-level atom interacting
with quantized radiation field in a gravitational field is in
progress.

ACKNOWLEDGMENT

The author wishes to thank The Office of Research of the
Islamic Azad University–Shahreza Branch for their support.

�1� P. Tchénio, A. Débarre, J.-C. Keller, and J.-L. Le Gouët, Phys.
Rev. Lett. 62, 415 �1989�.

�2� E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Phys. Rev.
Lett. 66, 2464 �1991�.

�3� C. H. Brito Cruz, R. L. Fork, W. H. Knox, and C. V. Shank,
Chem. Phys. Lett. 132, 341 �1986�.

�4� P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R.
L. Fork, and C. V. Shank, Phys. Rev. Lett. 63, 505 �1989�.

�5� J. Y. Bigot, M. T. Portella, R. W. Schoenlein, C. J. Bardeen, A.
Migus, and C. V. Shank, Phys. Rev. Lett. 66, 1138 �1991�.

�6� W. Vogel, D. G. Welsch, and B. Wilhelmi, Chem. Phys. Lett.
153, 376 �1988�.

�7� M. Lewenstein, T. W. Mossberg, and R. J. Glauber, Phys. Rev.
Lett. 59, 775 �1987�.

�8� A. A. Villaeys, J. C. Vallet, and S. H. Lin, Phys. Rev. A 43,
5030 �1991�.

�9� G. Gangopadhyay and D. S. Ray, Phys. Rev. A 46, 1507
�1992�.

�10� S. Haroche, Fundamental Systems in Quantum Optics �North
Holland, Amsterdam, 1992�; H. Walther, Advances in Atomic,
Molecular and Optical Physics �Academic Press, New York,
1994�, Vol. 32, p. 379; M. Brune, F. Schmidt-Kaler, A. Maali,
J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys.
Rev. Lett. 76, 1800 �1996�.

�11� E. T. Jaynes and F. Cummings, Proc. IEEE 51, 89 �1963�.
�12� W. Vogel and R. L. de Matos Filho, Phys. Rev. A 52, 4214

�1995�; J. Steinbach, J. Twamley, and P. L. Knight, ibid. 56,
4815 �1997�; V. Buzek, G. Drobny, M. S. Kim, G. Adam, and
P. L. Knight, ibid. 56, 2352 �1997�.

�13� B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195 �1993�.
�14� R. R. Schlicher, Opt. Commun. 70, 97 �1989�.
�15� A. Joshi and S. V. Lawande, Phys. Rev. A 42, 1752 �1990�.
�16� A. Joshi and S. V. Lawande, Int. J. Mod. Phys. B 6, 3539

�1992�.
�17� V. Bartzis, Physica A 180, 428 �1992�.
�18� B. Deb and S. Sen, Phys. Rev. A 56, 2470 �1997�.
�19� G. M. Meyer, M. O. Scully, and H. Walther, Phys. Rev. A 56,

4142 �1997�.
�20� M.-F. Fang, Physica A 259, 193 �1998�.
�21� A. Joshi, Phys. Rev. A 58, 4662 �1998�.
�22� X.-P. Liao and M.-F. Fang, Physica A 332, 176 �2004�.
�23� A. Joshi and M. Xiao, Opt. Commun. 232, 273 �2004�.

�24� C. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 143
�1994�.

�25� A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw,
and P. S. Jessen, Phys. Rev. Lett. 74, 1542 �1995�.

�26� C. Lammerzahl and C. J. Borde, Phys. Lett. A 203, 59 �1995�.
�27� K. P. Marzlin and J. Audretsch, Phys. Rev. A 53, 1004 �1996�.
�28� M. Mohammadi, M. H. Naderi, and M. Soltanolkotabi, J. Phys.

A 39, 11065 �2006�.
�29� M. Mohammadi, M. H. Naderi, and M. Soltanolkotabi, J. Phys.

A: Math. Theor. 40, 1377 �2007�.
�30� M. Mohammadi, M. H. Naderi, and M. Soltanolkotabi, Int. J.

Theor. Phys. 47, 983 �2008�; M. H. Naderi, Can. J. Phys. 85,
1071 �2007�.

�31� M. Mohammadi, M. H. Naderi, and M. Soltanolkotabi, Eur.
Phys. J. D 47, 295 �2008�.

�32� S. M. Barnett and P. L. Knight, Phys. Rev. A 33, 2444 �1986�.
�33� R. R. Puri and G. S. Agarwal, Phys. Rev. A 35, 3433 �1987�.
�34� T. Quang, P. L. Knight, and V. Buzek, Phys. Rev. A 44, 6092

�1991�.
�35� J. Eiselt and H. Risken, Phys. Rev. A 43, 346 �1991�.
�36� M. J. Werner and H. Risken, Phys. Rev. A 44, 4623 �1991�.
�37� J. Gea-Banacloche, Phys. Rev. A 47, 2221 �1993�.
�38� B. G. Englert, M. Naraschewski, and A. Schenzle, Phys. Rev.

A 50, 2667 �1994�.
�39� C. W. Gardiner, Quantum Noise �Springer, Berlin, 1991�; D. F.

Walls and G. J. Milburn, Quantum Optics �Springer, Berlin,
1994�.

�40� H.-P. Breuer, U. Dorner, and F. Petruccione, Comput. Phys.
Commun. 132, 30 �2000�.

�41� I. L. Chuang and Y. Yamamoto, Phys. Rev. A 55, 114 �1997�.
�42� L. M. Kuang, X. Chen, G. H. Chen, and M. L. Ge, Phys. Rev.

A 56, 3139 �1997�.
�43� H. A. Hessian and H. Ritsch, J. Phys. B 35, 4619 �2002�; H.

Ritsch and H. A. Hessian, Acta Phys. Slov. 53, 61 �2003�.
�44� L. M. Kuang and X. Chen, J. Phys. A 27, L633 �1994�.
�45� H. Moya-Cessa, V. Buzek, M. S. Kim, and P. L. Knight, Phys.

Rev. A 48, 3900 �1993�.
�46� X. Chen and L. M. Kuang, Phys. Lett. A 191, 18 �1994�.
�47� The Physics of Quantum Information, edited by D. Bouw-

meester, A. Ekert, and A. Zeilinger �Springer-Verlag, Berlin,
2000�.

�48� D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E.

NON-MARKOVIAN ANALYSIS OF THE PHASE-DAMPED… PHYSICAL REVIEW A 80, 053823 �2009�

053823-11



King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol.
103, 259 �1998�.

�49� Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 �1995�.
�50� T. Bourdel, T. Donner, S. Ritter, A. Öttl, M. Köhl, and T.

Esslinger, Phys. Rev. A 73, 043602 �2006�.
�51� J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon,

Phys. Rev. Lett. 44, 1323 �1980�; N. B. Narozhny, J. J.
Sanchez-Mondragon, and J. H. Eberly, Phys. Rev. A 23, 236
�1981�; H. I. Yoo, J. J. Sanchez-Mondragon, and J. H. Eberly,
J. Phys. A 14, 1383 �1981�.

�52� L. Mandel, Opt. Lett. 4, 205 �1979�; Phys. Scr. T T12, 34
�1986�.

M. MOHAMMADI PHYSICAL REVIEW A 80, 053823 �2009�

053823-12


