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Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a
homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula
is obtained for the synchronous permittivity and permeability described by any positive function of time. As
might be expected, such a medium introduces significant spectral shifts and spatiotemporal modulation, which
are analyzed here for the linear and exponential time variations of the medium parameters. In the varying-
impedance case the solution is obtained for the fourth-order polynomial time dependence of the permittivity. In
addition to the spectral shifts and modulation this spatially homogeneous medium scatters the field introducing
causal echoes at the receiver location.
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I. INTRODUCTION

One of the most difficult and least understood topics in
science is the interaction between dynamic processes with
separate physical origins and causes. Yet, such processes are
very common in nature and engineering. For example, the
electromagnetic field interacts with an independently con-
trolled time-varying medium whenever we try to visualize or
measure an ultrafast thermal, chemical, or mechanical tran-
sition. A linear time-varying medium is also a good approxi-
mation for a nonlinear medium with a strong pumping field
and a weak probing signal. Potential applications include
novel imaging algorithms for dynamic processes in time-
varying physical systems undergoing mechanical displace-
ment, deformation, phase transition, chemical reaction �1–7�;
creation of ultrashort impulses and fast adaptive optical ele-
ments �8,9�; and investigation of transients in wired and
wireless information networks with a time-varying load �10�.

At present we are generally aware that the electromag-
netic field evolution in a time-varying medium cannot be
reduced to a sequence of snapshots corresponding to the in-
stantaneous values of the medium parameters at various
times. A plethora of very interesting and poorly understood
transient effects is expected to be present. Some of those are
cross modulation, velocity modulation, and parametric am-
plification of waves, e.g., dramatic pulse reshaping in at-
tosecond optics and exponential growth of disturbances in
networks. So far, however, we do not have any general the-
oretical picture of these phenomena and do not understand
connections between them, and therefore do not yet realize
their full technological potential. Most of the practical mod-
eling is numerical and does not allow for in-depth analysis. A
few available, mainly one-dimensional, analytical models
�11–13� are often quasistationary, perturbative, restrict the
type of the time variation of the system parameters and the
source, and have little to say about the near-field effects.
Practically nothing is known about the influence of nonauto-
nomous systems on the coherence of the field. Three-
dimensional studies �14,15� were mostly concerned with the

closed systems, such as electromagnetic cavities and
waveguides with perfectly conducting walls. In general, the
authors of nonperturbative studies agree that the time varia-
tion of the medium at a scale comparable to the time varia-
tion of the source results in a significant spatiotemporal
modulation of the field. Recently there has been some
progress in the theory of media periodically varying in time
�16�, where—as it turns out—one can apply the temporal
analog of the Bloch theorem. The analysis shows that such
time-varying media introduce band gaps in the wave-number
�momentum� domain, as opposed to the frequency-domain
�energy� band gaps produced by the spatially periodic media.

To understand the spatiotemporal modulation of the time-
domain source by the general time-varying medium, one has
to carry out a systematic theoretical analysis of the simplest
nonautonomous electromagnetic system—a homogeneous
isotropic time-varying background medium. This is the sub-
ject of the present paper, where we shall consider the realistic
vectorial three-dimensional field and arbitrary time-varying
sources. This study is intended to fill some of the gaps in our
knowledge, e.g., about the near-field behavior, polarization
effects, and few-cycle pulsed sources. In addition, it provides
valuable analytical solutions that are useful for the verifica-
tion of numerical codes. The mathematical techniques ap-
plied here are standard, albeit involved. First, using a
straightforward change of variable we obtain a completely
explicit analytical solution for the constant-impedance case,
where the time variation of the permittivity and permeability
is synchronous, but otherwise arbitrary �positive function of
time�. The more difficult time-varying impedance case is
treated using an adaptation of the method originally pro-
posed by Shvartsburg which allows one to derive an explicit
solution for a polynomial time dependence of the permittiv-
ity.

II. CONSTANT-IMPEDANCE CASE

We begin with a relatively simple problem where the per-
mittivity and permeability of the medium vary synchro-
nously, i.e.,

��t� = �0a�t�, ��t� = �0a�t� , �1�

so that the medium impedance remains constant at all times,
��t� /��t�=�0 /�0=const. Consider the Maxwell equations*n.v.budko@tudelft.nl
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− � � H�x,t� + �tD�x,t� = − J�x,t� ,

� � E�x,t� + �tB�x,t� = 0, �2�

with the corresponding constitutive relations

D�x,t� = �0a�t�E�x,t�, B�x,t� = �0a�t�H�x,t� . �3�

Our goal is to obtain an explicit solution, called the radiation
formula, which gives the fields in terms of the given source
current density J. Although the procedure is pretty standard,
it will be presented in full detail to clarify the differences
with the case of time-varying impedance discussed in the
next section. First, we rewrite the Maxwell equations as

− � � B�x,t� + �0a�t��tD�x,t� = − �0a�t�J�x,t� ,

� � D�x,t� + �0a�t��tB�x,t� = 0. �4�

Now, we introduce a new variable with the physical dimen-
sion of time,

� = �
t0

t dt�

a�t��
, �5�

where t0 is the switch-on moment of the causal source
J�x , t�, i.e., J�x , t�=0 �t� t0�. The original time t will now be
considered an implicit function t��� defined by the expres-
sion above. Taking into account that

�

�t
=

d�

dt

�

��
=

1

a�t�
�

��
, �6�

and denoting

J1�x,�� = a���J�x,�� , �7�

we rewrite the Maxwell equations in terms of the variable �
as

− � � B�x,�� + �0��D�x,�� = − �0J1�x,�� ,

� � D�x,�� + �0��B�x,�� = 0, �8�

where the known functions a��� and J�x ,�� in the right-hand
side must be understood as a(t���) and J(x , t���). The func-
tion t��� is the inverse mapping with respect to substitution
�5�. This inverse mapping exists and is one to one within an
interval �to be determined for each particular a�t��, if a�t��
�0, t0� t�� t. Up to the variable change and the right-hand
side, the Maxwell equations �8� are identical to the Maxwell
equations in vacuum and have a well-known analytical solu-
tion. One usually starts by eliminating one of the unknowns,
say B, and arriving at the following second-order vector
wave equation for D:

� � � � D�x,�� +
1

c0
2��

2D�x,�� = −
1

c0
2��J1�x,�� , �9�

where c0=1 /��0�0. From Eq. �8� we derive the compatibil-
ity relation

� · D�x,�� = − �� ·��
0

�

J1�x,���d��. �10�

Rewriting Eq. �9� as

��� · D�x,��� − �D�x,�� +
1

c0
2��

2D�x,�� = −
1

c0
2��J1�x,�� ,

�11�

and applying Eq. �10�, we arrive at

�D�x,�� −
1

c0
2��

2D�x,�� =
1

c0
2��J1�x,�� − ��� ·��

0

�

J1�x,���d��.

�12�

Performing the Laplace transform with respect to � and the
three-dimensional Fourier transform with respect to x, we
obtain the following algebraic equation in the �k ,s� domain:

− �k�2D̃�k,s� − 	0
2D̃�k,s� =

s

c0
2 J̃1�k,s� + k�k ·�

1

s
J̃1�k,s� ,

�13�

where 	0=s��0�0=s /c0. This equation can be solved as

D̃�k,s� = −
1

�k�2 + 	0
2� s

c0
2 J̃1�k,s� + k�k ·�

1

s
J̃1�k,s�	 .

�14�

Carrying out the inverse three-dimensional Fourier transform
we obtain the �x ,s�-domain solution as

D̂�x,s� = − �
x��R3

g�x − x�,s�
s

c0
2 Ĵ1�x�,s�dx�

+ ��� ·��
x��R3

g�x − x�,s�
1

s
Ĵ1�x�,s�dx�, �15�

where the scalar Green’s function is

g�x,s� =
e−	0�x�

4
�x�
. �16�

Computing the spatial derivatives and grouping the terms
according to their spatial decay factors, we get

D̂�x,s� = �
x��R3

e−	0�x−x��

4
�x − x��3
�3Q − I�

1

s
Ĵ1�x�,s�dx�

+ �
x��R3

e−	0�x−x��

4
�x − x��2
�3Q − I�

1

c0
Ĵ1�x�,s�dx�

+ �
x��R3

e−	0�x−x��

4
�x − x��
�Q − I�

s

c0
2 Ĵ1�x�,s�dx�, �17�

where Q=���·� is a dyadic tensor constructed from the unit
vector �= �x−x�� / �x−x�� and I is the Kronecker identity
tensor with components �nm=1 �n=m�, �nm=0 �n�m�. Note
that Q is algebraically a projector, i.e., Q2=Q. From the geo-
metrical point of view it projects the source vector on the
direction of observation �, i.e., it produces the “longitudi-
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nal” component of the field, whereas the complementary or-
thogonal projector I−Q satisfies �I−Q�Q=0 and projects the
source vector on the direction orthogonal to �, i.e., it gives
the “transverse” component. Thus, the far-field term in Eq.
�17� is purely transverse as expected. The inverse Laplace
transform of expressions �15� and �17� gives the
�x ,��-domain solution

E�x,�� = �
x��R3

1

4
�x − x��3
�3Q − I��

0

�r a����J�x�,���
�0a���

d��dx�

+ �
x��R3

1

4
�x − x��2
�3Q − I�

a��r�J�x�,�r�
c0�0a���

dx�

+ �
x��R3

1

4
�x − x��
�Q − I�

���a���J�x�,����=�r

c0
2�0a���

dx�,

�18�

Where we have used D�x ,��=����E�x ,�� and Eq. �7�. The
retarded � time is

�r = � −
�x − x��

c0
. �19�

The actual domain of integration while evaluating Eq. �18�
will be reduced to x��Dsrc, where Dsrc is the finite spatial
domain occupied by the source, i.e., J�x� ,���0, x��Dsrc.
To obtain the �x , t�-domain solution we now need to intro-
duce the inverse � function t���, which assigns a particular
and unique proper time t, to any given �. If the medium is
time invariant, then t���= t, ����=�0, ����=�0, reducing Eq.
�18� to the well-known free-space radiation formula �see e.g.,
�17��

E�x,t� = �
x��R3

1

4
�x − x��3
�3Q − I��

t0

tr J�x�,t��
�0

dt�dx�

+ �
x��R3

1

4
�x − x��2
�3Q − I�

J�x�,tr�
c0�0

dx�

+ �
x��R3

1

4
�x − x��
�Q − I�

��tJ�x�,t��t=tr

c0
2�0

dx�,

�20�

and the retarded time is tr= t− �x−x�� /c0. Comparing Eqs.

�18� and �20� we see that the difference between the time-
varying and the time-invariant �constant-impedance� back-
ground media is in the presence of the time weighting and in
the modulation of the source current density. It is interesting
to note that, although the formally defined velocity of light in
a time-varying medium would be also time-varying, i.e., c
=1 /���t���t�=c0 /a�t�, the radiation formula �18� features
the time delay factor �x−x�� /c0 �see Eq. �19��, containing the
usual constant speed of light in vacuum. In other words, the
propagation of light in a time-varying constant-impedance
medium may be viewed as a propagation in vacuum where
the causal time delay is measured in terms of the “universal”
� time. The actual measurements however are done in terms
of the usual t time. Hence, to translate the abstract �-domain
picture into the t-domain reality, we need to find the inverse
mapping t��� and use it in the given functions a�t� and J�x , t�
thus obtaining the functions a��� and J�x ,�� appearing in the
radiation formula �18�. Then, after performing all the neces-
sary mathematical operations with respect the � variable in
the right-hand side of Eq. �18�, we shall try to recognize the
t-domain solution.

Although, the inverse function t��� exists for any a�t��
�0, t0� t�� t, it can be found explicitly only if the integral
in Eq. �5� can be evaluated analytically and the subsequent
algebraic equation can be analytically solved for t. Consider
a linear time dependence,

a�t� = a0 + bt . �21�

Then, from Eq. �5� we find

t��� =
a0 + bt0

b
eb� −

a0

b
, �22�

a��� = �a0 + bt0�eb�. �23�

A time-harmonic source J�x , t�=I�x�cos��t� will have the
following representation in the � domain:

J�x,�� = I�x�cos��t���� = I�x�cos��
a0 + bt0

b
eb� −

a0

b
�	 .

�24�

In the far-field zone the electric field strength is proportional
to the last term in Eq. �18�. Explicitly we obtain

E�x,�� � �
x��R3

�Q − I�I�x����
�a0 + bt0�eb� cos��
a0 + bt0

b
eb� −

a0

b
�	�

�=�r

4
c0
2�0�x − x���a0 + bt0�eb�

dx�

= �
x��R3

�Q − I�I�x��beb�r cos��
a0 + bt0

b
eb�r −

a0

b
�	

4
c0
2�0�x − x��eb�

dx�

+ �
x��R3

�Q − I�I�x����a0 + bt0�e2b�r sin��
a0 + bt0

b
eb�r −

a0

b
�	

4
c0
2�0�x − x��eb�

dx�
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= �
x��R3

�Q − I�I�x��be−�b/c0��x−x�� cos��
a0 + bt0

b
eb�e−�b/c0��x−x�� −

a0

b
�	

4
c0
2�0�x − x��

dx�

+ �
x��R3

�Q − I�I�x����a0 + bt0�eb�e−2�b/c0��x−x�� sin��
a0 + bt0

b
eb�e−�b/c0��x−x�� −

a0

b
�	

4
c0
2�0�x − x��

dx�, �25�

where, using Eqs. �22� and �23�, we recognize the t-domain result as

E�x,t� � �
x��R3

�Q − I�I�x��be−�b/c0��x−x�� cos���t +
a0

b
��� − ��	

4
c0
2�0�x − x��

dx�

+ �
x��R3

�Q − I�I�x����a�t�e−�b/c0��x−x�� sin���t +
a0

b
��� − ��	

4
c0
2�0�x − x��

dx�. �26�

In this formula we have a new frequency

�� = �e−�b/c0��x−x��, �27�

showing that one of the effects due to the time-varying back-
ground is a shift of the observed frequency depending on the
distance between the source and the receiver. In particular, a
medium varying linearly with time at a rate b introduces a
frequency shift varying exponentially with distance �27�—
blueshift for negative b and redshift for the positive one. We
also notice an additional exponential distance factor in
�26�—decay for redshift and amplification for blueshift.
Tracing back to Eq. �18� we see that the latter parametric
amplification is due to the modulation of the source by the
a��� function, which produces other interesting phenomena
as well. For example, if the time variation of the current is
such that

���a���J�x,��� = 0, i.e., a���J�x,�� = const, �28�

then the far-field term in Eq. �18� disappears, meaning that
the field will die-off very rapidly with the distance from the
source, and that the time-varying current—which would nor-
mally radiate—may be effectively silenced by a suitably
time-varying homogeneous and lossless medium.

The other related but opposite phenomenon is the radia-
tion by a dc-like current. Normally, a current which remains
constant in time after it was switched on does not radiate into
the far-field zone at later times �after the initial transient due
to switch-on� neither does a charged particle moving at a
constant velocity, whereas, in a time-varying medium, a con-
stant current would produce a far-field radiation even at later
times, with magnitude proportional to the magnitude of the
current and with the time characteristics of a�t�. Indeed,

���a���J�x�� = J�x���a��� � 0. �29�

Obviously, it is the interaction of the quasistatic source and
its quasistatic field with the time-varying medium, which is
the true cause of the far-field radiation in this case. Despite

this interaction no visible secondary sources will appear in
the present constant-impedance case. An observer will per-
ceive the spatial domain Dsrc, where J�x��0, as the only
source of radiation.

All of this confirms that a time-varying medium, even a
spatially homogeneous one, may produce a significant space-
time modulation of the electromagnetic field. Although a me-
dium with constant impedance considered so far is a very
rare thing, at least one physically interesting instant of such a
medium is found in general relativity theory �GRT� �18,19�,
where a linearly expanding universe corresponds to the lin-
ear a�t� discussed above �apart for the current-modulating
factor, which is a4��� in GRT�. In particular, the application
of the present analysis to the problem of Hubble’s redshift
law shows that a linearly expanding universe produces an
exponential redshift, not a linear one as it is currently be-
lieved. In general, it may be shown, using only Eqs. �19� and
�22�, that any two temporal features of the time derivative of
the modulated current density, say the zeros or extrema of
the signal radiated by the source at times t1

src and t2
src, with an

interval �tsrc= t1
src− t2

src between them, will be detected by the
receiver at times t1

rec and t2
rec with a different interval �trec

= t1
rec− t2

rec, namely,

�trec

�tsrc = e�b/c0��xsrc−xrec�, �30�

where xsrc and xrec are the spatial locations of the source and
the receiver, respectively. This is simply a generalization of
the frequency shift law �27�. In combination with the radia-
tion formula �18� and the time-delay expression �19� this law
provides an intuitively appealing picture of the expanding
universe. First of all, there is no relative motion of the source
and receiver, as the position vectors in the final radiation
formula �18� are time independent. The speed of light also
does not change as far as the �-domain picture is concerned.
Yet, in the real t-domain world we observe the stretching of
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the time interval between certain characteristic events in the
received signal according to Eq. �30�.

Imagine two clocks, which are initially at the same loca-
tion in space and are synchronized. Suppose that each second
these clocks radiate a short impulse of light. Now, we place
one of these clocks some distance away and observe that the
interval between the impulses arriving from that clock is
longer than one second �impulses have become broader in
time too�. We are naturally inclined to think that the remote
clock started to walk slower for some reason and decide to
go and check it. To our surprise, however, upon our arrival
we find that everything is fine with this remote clock, and it
is the other one which walks slower, judging from the im-
pulses that are coming from it. We begin to suspect that there
is a redshift involved due to the relative motion of the two
clocks. Yet, when we put a ruler between them and observe
the measured distance for some time, nothing seems to hap-
pen, and the clocks appear to be at rest with respect to each
other. This, in short, is what happens in an expanding uni-
verse.

Due to its importance in cosmology, especially for under-
standing the process of inflation proposed within the big
bang theory, we shall consider here the case of exponentially
growing a�t� as well. Suppose

a�t� = a0ebt. �31�

Then, from Eq. �5�, the inverse function t��� is found to be

t��� = −
1

b
ln�e−bt0 − a0b�� . �32�

It is obvious that this inverse mapping is only defined for �
�e−bt0 / �a0b� since otherwise the physical time t would be-
come complex. Therefore, according to Eq. �19�, we may
conclude that the light impulse radiated at � will be confined
to the spatial radius

R =
c0

a0b
e−bt0 − c0� , �33�

effectively excluding any communication between points
further than R apart. Alternatively, one could speculate that
the laws of light propagation are different beyond that radius,
which is highly unlikely. Computing the ratio of time inter-
vals between the corresponding features �e.g., zeros� of the
electromagnetic signal at the source and receiver locations,
we get the following expression:

�trec

�tsrc = logs r , �34�

where

s =
e−bt0 − a0b�2

src

e−bt0 − a0b�1
src ,

r =
e−bt0 − a0b��2

src + �x − x��/c0�
e−bt0 − a0b��1

src + �x − x��/c0�
. �35�

This proves wrong the common assumption that an exponen-
tially expanding universe introduces an exponential cosmo-

logical redshift. The redshift appears also to depend on the
interval between �1

src and �2
src, i.e., it is inhomogeneous—

different frequencies will have different shifts.

III. TIME-VARYING IMPEDANCE

The problem for a general time-varying impedance with
asynchronously varying permittivity and permeability so far
resists analytical treatment. However, for a class of time-
varying impedances, where ��t� is a constant and ��t� is a
fourth-order polynomial in time, a useful analytical result
can still be obtained. The solution can even be put in a form
of a radiation formula similar to Eqs. �18� and �20� revealing
important differences with the stationary medium and the
constant-impedance cases. The technique is due to Shvarts-
burg �14�, who considered mainly the source-free one-
dimensional Maxwell equations. Here, this method is ex-
tended to arbitrary pulsed sources in three dimensions. We
denote

��t� = �0a�t� = �0u2�t�, ��t� = �0 = const. �36�

We again introduce a �slightly different� timelike variable

� = �
t0

t dt�
�a�t��

= �
t0

t dt�

u�t��
, �37�

so that the partial derivatives are related as

�

�t
=

1

u�t�
�

��
. �38�

In addition to this variable change, an unknown function is
introduced as

F�x,t� =
D�x,t�
�u�t�

. �39�

To deal with the three-dimensional vector case some prelimi-
nary work needs to be done, consisting of deriving the
�x ,��-domain compatibility relation for the F field. It can be
obtained from the �x ,��-domain Maxwell equations and
turns out to be

� · F�x,�� = −
1

�u���
�� ·��

0

�

u����J�x,���d��. �40�

Now we go back to the �x , t�-domain Maxwell equations and
eliminate H, thus obtaining the second-order vector wave
equation for D,

� � � � D�x,t� +
u2�t�

c0
2 �t

2D�x,t� = −
u2�t�

c0
2 �tJ�x,t� .

�41�

Performing both the function and the variable change and
using Eq. �40� we arrive at

ELECTROMAGNETIC RADIATION IN A TIME-VARYING … PHYSICAL REVIEW A 80, 053817 �2009�

053817-5



�F�x,�� −
1

c0
2��

2F�x,�� −
1

c0
2�1

2
u�t��t

2u�t� −
1

4
��tu�t��2	F�x,��

=
�u���

c0
2 ��J�x,�� −

1
�u���

� �� ·��
0

�

u����J�x,���d��. �42�

Now, and this is the essence of the Shvartsburg method �14�,
we shall limit the time dependence of the medium, i.e., the
class of functions u�t�, to those satisfying the nonlinear equa-
tion

1

2
u�t��t

2u�t� −
1

4
��tu�t��2 =

1

T2 , �43�

where T is a real constant with the physical dimension of
time. In that case Eq. �41� reduces to

�F�x,�� −
1

c0
2��

2F�x,�� −
1

T2c0
2F�x,��

=
�u���

c0
2 ��J�x,�� −

1
�u���

� �� ·��
0

�

u����J�x,���d��,

�44�

which can be solved analytically for any source. The func-
tions u�t� leading to this simplified equation are the solutions
of Eq. �43� and have the form

u�t� = a + bt + ct2. �45�

This polynomial function allows one to model both rising
and decaying profiles of ��t�=�0u2�t�, while the parameter
T= �c−b2 /4�−1/2 determines the temporal scale of variations.

The solution of Eq. �44� is obtained via the same path as
in the previous section. First, we transform the equation to
the �k ,s� domain and solve it there. Then, we carry out the
inverse Fourier transform and obtain the following
�x ,s�-domain solution:

F̂�x,s� = �
x��R3

e−	�x−x��

4
�x − x��3
�3Q − I�Ĵ1�x�,s�dx�

+ �
x��R3

	e−	�x−x��

4
�x − x��2
�3Q − I�Ĵ1�x�,s�dx�

+ �
x��R3

	2e−	�x−x��

4
�x − x��
QĴ1�x�,s�dx�

− �
x��R3

e−	�x−x��

4
�x − x��
1

c0
2 Ĵ2�x�,s�dx�, �46�

where the currents are the �x ,s�-domain images of

J1�x,�� =
1

�u���
�

0

�

u����J�x,���d��,

J2�x,�� = �u�����J�x,�� . �47�

The difference with Eq. �17� is mainly in the mathematical
form of the parameter 	, which is now

	 =
1

c0

�s2 + 1/T2. �48�

Obviously, for 1 /T2=0, corresponding to the infinitely slow
variation of ��t�, we recover the free-space case 	=s /c0. To
transform the result to the �x ,�� domain, we recall the fol-
lowing known Laplace transform pairs:

e−k�s2+a2
, �k � 0� → ��t − k� −

ak
�t2 − k2

J1�a�t2 − k2�

�H�t − k� , �49�

e−k�s2+a2

�s2 + a2
, �k 
 0� → J0�a�t2 − k2�H�t − k� , �50�

where H�t−k� is a unit step function located at t=k. Using
these transforms we can write the result as

F�x,�� = �
x��R3

1

4
�x − x��3
�3Q − I�J1�x�,�r�dx� −

1

c0T
�

x��R3

1

4
�x − x��2
�3Q − I��

0

�

g1�x − x�,� − ���J1�x�,���d��dx�

+
1

c0
�

x��R3

1

4
�x − x��2
�3Q − I��

0

�

g0�x − x�,� − �������
2 +

1

T2	J1�x�,���d��dx�

+
1

c0
2�

x��R3

1

4
�x − x��
Q���

2 +
1

T2	J1�x�,�r�dx� −
1

c0
3T
�

x��R3

1

4

Q�

0

�

g1�x − x�,� − �������
2 +

1

T2	J1�x�,���d��dx�

−
1

c0
2�

x��R3

1

4
�x − x��
J2�x�,�r�dx� +

1

c0
3T
�

x��R3

1

4

�

0

�

g1�x − x�,� − ���J2�x�,���d��dx�, �51�

where
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g0�x,�� = J0
 1

T
��2 −

�x�2

c0
2 �H
� −

�x�
c0
� , g1�x,�� =

J1
 1

T
��2 −

�x�2

c0
2 �

��2 −
�x�2

c0
2

H
� −
�x�
c0
� , �52�

and the retarded time is again given by Eq. �19�. Notice that this retarded time appears both explicitly in some terms in Eq. �51�
as well as implicitly in the Green’s functions as a unit step multiplier; thus, the causality in the �x ,�� domain is fully preserved.
Computing out the time derivatives,

���
2 +

1

T2	J1�x,�� = v����
0

�

u����J�x,���d�� + u1/2��J�x,�� , v��� =
1

T2u1/2 +
3��u

4u5/2 −
��

2u

2u3/2 , �53�

we can explicitly show all the terms in Eq. �51� as

E�x,�� = �
x��R3

3Q − I

4
�x − x��3
1

�����0

�r u1/2���u����
u1/2��r�

J�x�,���d��dx�

− �
x��R3

3Q − I

4
�x − x��2
1

c0�����0

�

g1�x − x�,� − ����
0

�� u1/2���u����
Tu1/2����

J�x�,���d��d��dx�

+ �
x��R3

3Q − I

4
�x − x��2
1

c0�����0

�

g0�x − x�,� − ����
0

��
u1/2���v����u����J�x�,���d��d��dx�

+ �
x��R3

3Q − I

4
�x − x��2
1

c0�����0

�

g0�x − x�,� − ���u1/2���u1/2�������J�x�,���d��dx�

+ �
x��R3

Q

4
�x − x��
1

c0
2�����0

�r

u1/2���v��r�u����J�x�,���d��dx�

− �
x��R3

Q

4


1

c0
2�����0

�

g1�x − x�,� − ����
0

�� u1/2���v����u����
c0T

J�x�,���d��d��dx�

− �
x��R3

Q

4


1

c0
2�����0

�

g1�x − x�,� − ���
u1/2���u1/2����

c0T
���J�x�,���d��dx�

+ �
x��R3

Q − I

4
�x − x��
1

c0
2����

u1/2���u1/2��r���J�x�,�r�dx�. �54�

There are some similarities here with the constant-impedance
case considered in the previous section. First of all we see
both the time weighting and the modulation of the source.
However, there are also obvious differences. The time
weighting �37� contains now the square root of a�t�. Hence,
to achieve the exponential spectral shift �27� we need u�t�
=a0+bt, i.e., a quadratic variation of ��t�,

��t� = �0�a0 + bt�2. �55�

Further, there are terms containing spatial and � convolutions
with the Green’s functions �52�. These terms represent causal
�since � integration starts only after the wave front has
reached the observation point� echoes due to the scattering of
the field on the temporal variation of the medium impedance.
Moreover, this echoes will be perceived by an observer as
arriving from the spatial domains outside the original source
domain Dsrc, where J�x , t��0. Physically, they will be pro-

duced by the gradually expanding zone of the field-medium
interaction, as follows from the arguments of the Green’s
functions �52�.

Finally, we notice some additional longitudinal contribu-
tions in the far-field zone—last four terms in Eq. �54�. Nor-
mally, the far-field contribution is purely transverse, i.e., it
contains only one term with Q− I �see Eq. �20��, whereas
here we have three additional terms with Q decaying at the
typical far-field �x−x��−1 rate. Of course, two of them are
medium-induced echoes. However, one is definitely pro-
duced by the source alone. This means that the time-varying
background could be used to propagate the longitudinal near-
field features of the source into the far field.

IV. CONCLUSIONS

We considered the effects of two types of homogeneous
time-varying background media on the electromagnetic field
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radiated by an arbitrary source. The first type is a medium
with synchronously varying permittivity and permeability,
where the impedance stays constant at all times. Such a me-
dium describes the time-varying spatially flat gravitational
background, e.g., the expanding universe, but it can also be
used as an approximation for a metamaterial with the time-
varying effective permittivity and permeability. The obtained
analytical solution shows that under a change of time vari-
able the problem is similar to the radiation in a stationary
background medium and that the spatial location and extent
of the source will be perceived by the observer as if the
medium was stationary. Yet, the scaled time variable and the
modulation of the source term produce significant changes in
the space-time evolution of the field. We have shown that a
linear variation of the medium with time produces a “cosmo-
logical” frequency shift, which is an exponential function of
the distance between the source and the observer as well as
an additional exponential factor affecting the amplitude of
the received signal. We have also derived the “logarithmic”
inhomogeneous frequency shift for a universe expanding ex-
ponentially in time.

The more down-to-earth case of the constant permeability
and time-varying permittivity appeared, in fact, to be more
difficult and was treated using the Shvartsburg method,
which involves the change of the time variable as well as the

change of the unknown. This method gives an analytical so-
lution for a limited but useful class of time-varying permit-
tivities. The obtained solution shows, in particular, that the
medium with a quadratic temporal change in permittivity
would also produce an exponential distance-dependent shift
in the observed frequency. In addition, the received signal is
shown to contain causal echoes induced by the scattering of
waves on the time variations of the impedance. The spatial
extent of the effective source perceived by the observer will
grow as the field-medium interaction zone expands, and the
field will no longer be purely transverse in the far-field zone.
The modulation of the source, which occurs in both constant
and time-varying impedance cases, may be used either for
silencing or for amplification of certain sources. Surprisingly,
we find that, in a time-varying background, a dc-like con-
stant current radiates into the far-field zone even at later
times �after the early-time transients�, whereas a specific
time-varying current does not.

ACKNOWLEDGMENTS

The author is grateful to Dr. B.-J. Kooij �Delft University
of Technology� for pointing out some useful Laplace trans-
form pairs and to Professor A. T. de Hoop �Delft University
of Technology� for many fruitful discussions.

�1� L. Melton, Nature �London� 437, 775 �2005�.
�2� D. D. Steele, T. L. Chenevert, A. R. Skovoroda, and S. Y.

Emelianov, Phys. Med. Biol. 45, 1633 �2000�.
�3� M. Bauer, J. Phys. D: Appl. Phys. 38, R253 �2005�.
�4� I. Hjelte, M. N. Piancastelli, R. F. Fink, O. Björneholm, M.

Bässler, R. Feifel, A. Giertz, H. Wang, K. Wiesner, A. Aus-
mees, C. Miron, S. L. Sorensen, and S. Svensson, Chem. Phys.
Lett. 334, 151 �2001�.

�5� A. J. Sederman, M. D. Mantle, and L. F. Gladden, J. Magn.
Reson. 161, 15, �2003�.

�6� T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, Opt. Eng.
�Bellingham� 42, 3383 �2003�.

�7� L. Guérin, E. Collet, M.-H. Lemée-Cailleau, M. Buron-Le
Cointe, H. Cailleau, A. Plech, M. Wulff, S.-Y. Koshihara, and
T. Luty, Chem. Phys. 299, 163 �2004�.

�8� D. M. Marom, D. Panasenko, P.-C. Sun, and Yeshaiahu Fain-
man, Opt. Lett. 24, 563 �1999�.

�9� A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med.
Biol. 47, 3679 �2002�.

�10� R. P. Broadwater, A. H. Khan, H. E. Shaalan, and R. E. Lee,
IEEE Trans. Power Deliv. 8, 294 �1993�.

�11� K. S. Shifrin and I. G. Zolotov, Appl. Opt. 33, 7798 �1994�.
�12� A. G. Nerukh, P. Sewell, and T. M. Benson, J. Lightwave

Technol. 22, 1408 �2004�.
�13� M. I. Bakunov and A. V. Maslov, Phys. Rev. Lett. 79, 4585

�1997�.
�14� A. B. Shvartsburg, Phys. Usp. 48, 797 �2005�.
�15� S. Aksoy and O. A. Tretyakov, J. Electromagn. Waves Appl.

16, 1535 �2002�.
�16� J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González,

Phys. Rev. A 79, 053821 �2009�.
�17� N. V. Budko, Phys. Rev. Lett. 102, 020401 �2009�.
�18� U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 �2006�.
�19� N. Budko, e-print arXiv:0904.3280.

NEIL V. BUDKO PHYSICAL REVIEW A 80, 053817 �2009�

053817-8


