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Parametric down-conversion �PDC� is a technique of ubiquitous experimental significance in the production
of nonclassical, photon-number-correlated twin beams. Standard theory of PDC as a two-mode squeezing
process predicts and homodyne measurements observe a thermal photon number distribution per beam. Recent
experiments have obtained conflicting distributions. In this article, we explain the observation by an a priori
theoretical model solely based on directly accessible physical quantities. We compare our predictions with
experimental data and find excellent agreement.
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I. INTRODUCTION

The quantum characteristics of free-propagating light
pulses generated by ��2� nonlinearities are traditionally stud-
ied using homodyne detection. Unfortunately, this standard
technique implicitly restricts the observation to an effective
single spectral mode imposed by the single local oscillator.
Detectors based on avalanche photodiodes �1�, in contrast,
are sensitive on all modes generated by sources of current
experimental significance and uncover richer spectral prop-
erties. This substructure is currently usually neglected or
only treated effectively, although it impacts security proofs
of quantum key distribution �2� or the validity of the condi-
tional preparation of pulsed non-Gaussian states �3�.

Recent experiments have observed that the photon num-
ber distribution �PND� for multimode sources differs mark-
edly from the prediction of the single-mode standard model
�4�. In this article, we show that the PND is a direct conse-
quence of the internal spectral structure of PDC states. By
establishing an a priori theoretical explanation, we demon-
strate the intrinsic connection between the spectral correla-
tions of signal and idler mode and the observed PND.

Our approach explains this behavior by decomposing the
state into a set of independent two-mode squeezers �5,6�:
from the complex spectral structure composed of a mode
continuum, we derive a significantly smaller number of fun-
damental contributions that nevertheless fully capture the
physics of the source. The properties of the individual con-
tributions are well known and allow us to infer the properties
of the complete system.

In contrast to previous efforts �for instance �7,8�, but ob-
serve also the references therein�, our approach enables the
quantitative computation of photon number statistics without
assumptions or fitting of nonphysical parameters. This is im-
portant for a wide class of experiments ranging from funda-
mental to highly applied because they require a complete
understanding of the internal structure of PDC states to fully
exploit their quantum features.

II. DECOMPOSITION

A multimode type-II down-conversion process is most
conveniently studied using the interaction Hamiltonian

Ĥint�t�=�Vd3x���2�Êp
�+��x� , t�Ês

�−��x� , t�Êi
�−��x� , t�+H.c. �9�, where

the subscripts denote pump, signal, and idler, respectively,
and the tensor ��2� represents the second-order nonlinear sus-
ceptibility. By assuming a classical pump and a frequency-
independent ��2� in the spectral range of interest, it can be

shown �10� that with ĤI��t0
t dt�Ĥint�t��,

ĤI = C� � d�1d�2f��1,�2�â†��1�b̂†��2� + H.c., �1�

where â†��1� and b̂†��2� are field operators that create a
monochromatic photon with frequency �i in the signal and
idler modes a and b. f��1 ,�2� is the spectral distribution
function �SDF� of the single photon contribution and
C=C���2� ,�Ip� is a coupling constant that depends on the
strength ��2� of the nonlinear susceptibility and on the pump
intensity �9,11�. The time-propagated state is computed by

	�
=T exp��i��−1ĤI�	��t0�
, where we assume that the pulse
has completely left the crystal and the interaction is finished.
Following �10�, the time ordering T can be omitted because
the Hamiltonian approximately commutes with itself at dif-
ferent times and the corrections are therefore negligible.

To express ĤI in a more convenient form, we use the
Schmidt decomposition of f��1 ,�2�, uniquely defined by

f��1,�2� = �
n=0

N−1

��n�n
�1���1��n

�2���2� , �2�

where the Schmidt modes ��n
�1���1�
 and ��n

�2���2�
 are two
sets of orthonormal bases with respect to the L2 inner prod-
uct, and the Schmidt eigenvalues �n are real expansion coef-
ficients that satisfy �n�n=1. The salient feature of Eq. �2� is
that only a single summation index is required and not two as
for a regular change of basis. The decomposition is guaran-
teed to exist for a large class of systems under very general
assumptions �12�. For simple systems that require only a few
Schmidt modes �i.e., N is small�, the decomposition can be
numerically computed by solving a set of coupled integral
equations �13�. For systems that require a large N, it is usu-
ally easier to perform a singular value decomposition �SVD�;
see Ref. �14� and below for more details.*wm@linux-kernel.net
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We define effective single-mode field operators �some-
times also called pseudoboson operators� by

Ân
† �� d��n

�1����â†��� , �3�

and similarly for B̂n. Because the spectral distribution func-
tions are orthonormal, that is, ��i ,� j
=�ij, it is easy to verify
that the operators fulfill the canonical commutation relations

�Âj , Âk
†�= 1̂� jk and �Âj , Âk�=0. More details about this nota-

tion are provided by Ref. �15�.
By rewriting ĤI in Eq. �1� using Schmidt decomposition

�2� for f��1 ,�2� and the definition of pseudoboson operators
in Eq. �3�, we obtain

exp� 1

i�
ĤI� = exp� C

i�
�
n=0

N−1

��nÂn
†B̂n

† + H.c.� . �4�

The two-mode squeezing operator for spectral

effective single modes A, B is defined by ŜAB��n�
�exp�−�nÂ†B̂†+�n

�ÂB̂�, where �n=C��n / �i���rn exp i	n

is a complex number. Because �Âj , Âk
†�=0 for j�k, the state

after the interaction is a tensor product of independent two-
mode squeezers �16�:

	�
 = �
n=0

N−1

ŜAnBn
��n�	��t0�
 . �5�

This decomposition allows us to inspect the SDF using a
small number of elementary contributions whose properties
are well known and avoids the need to consider the compli-
cated raw correlations. Another consequence of Eq. �5� is
that the SDF is identical for all orders of photon number
contributions because creation operators that belong to dif-
ferent distribution functions are never mixed �17�.

III. COMPUTING STATISTICAL DISTRIBUTIONS

For two-mode squeezed states, the PND in each mode is
thermal, that is, for the state

	�
 = ŜAB���	00
 = �
n=0




�n	n,n
 , �6�

the distribution is given by p�n�= 	�n	2=sech2 r tanh2n r for
one output mode, that is, N=1. Consequently, the photon
number distribution of multimode state �5� is given by the
convolution of the distributions of all independent squeezers.
Assume that p�k

�n� denotes the PND of the kth squeezer with
spectral modes �k

�i�. The overall PND is then given by

p���n� = �
��n⊢N

�
m=0

N−1

p�m
��m� , �7�

where n⊢N denotes the set of all partitions of n into N parts.
The distribution p���n� is consequently the convolution of all
probability distributions p�i

�n�.
Two special cases follow directly from Eq. �7�: when only

a single effective mode contributes �N=1�, the resulting dis-

tribution exhibits thermal behavior. When the physical pro-
cess requires a very large number of effective modes
�N→
�, the resulting PND is Poissonian, because it is
known that a convolution of thermal distributions converges
to a Poissonian distribution in this limit �18�.

Computing the convolution in Eq. �7� involves summing
over numerous contributions. This is considerably simplified
by using generating functions. For coefficients p�n�, they are
given by the formal power series �18� g�
�=�np�n�
n. The
individual coefficients can be recovered via p�n�
= �1 /n!���n /�xn�	g�
�	
=0. For the thermal distribution of a
two-mode squeezer, the series converges analytically to
gk�
�=sech2 rk /1−
 tanh2 rk, where rk is the strength of the
kth squeezer. The generating function for a convolution of N
thermal distributions is �k=0

N−1gk�
� and the resulting photon
number distribution is consequently

p���n� =
1

n!
�� �n

�
n �
k=0

N−1

gk�
���

=0

. �8�

This representation allows us to compute the statistical dis-
tribution composed of many contributions with modest com-
putational effort.

Let us now turn our attention to an example illustrating
our considerations. Assume that the SDF is given by a two-
dimensional, real-valued Gaussian distribution �this is not a
restriction because the methods also work for complex, non-
Gaussian SDFs�. This approximation is commonly used
�13,19� to provide a convenient parametrization of type-II
PDC processes. Especially, it is possible to perform an ana-
lytical Schmidt decomposition �a similar approach is used,
for instance, in Ref. �19��. We use the parameters �x

2 and �y
2

to specify the spectral widths of signal and idler, while �
denotes the rotation with respect to the x axis. This form is
illustrated in Fig. 3.

Let us choose �x
2=25 and �y

2=1, which are the parameters
depicted in the inset of Fig. 3. The Schmidt number K
=1 /�n�n

2 is computed from the eigenvalues �n of the
Schmidt decomposition. It is a measure for the number of
effectively contributing spectral modes and thus of inherent
spectral correlations of the physical process �13� �notice that
we could have also considered an entanglement monotone
like the logarithmic negativity for this purpose�. For �=0,
the state exhibits no spectral correlations and a single
Schmidt mode suffices for the decomposition. By rotating
the SDF from �=0 to �=� /2, the correlations increase to
their maximal value at �=� /4 and decrease again until the
SDF becomes separable for �=� /2. This implies thermal
statistics for �=0 and �=� /2 and maximal similarity to
Poissonian statistics for �=� /4. The coupling and pump in-
tensity are, for better comparability, chosen such that n̄=1
for all PNDs. Figure 1 illustrates the arising distributions.

To quantify the difference between convoluted and Pois-
sonian or thermal distributions, we employ the variational
distance defined for two probability distributions p1 and p2
as �p1,p2

��n	p1�n�− p2�n�	. Two distributions are completely
identical if and only if �=0. Figure 2 compares the differ-
ence of the convoluted distribution to the above-mentioned
special cases for a growing Schmidt number K, that is, a
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growing number of Schmidt modes achieved by rotating the
Gaussian SDF for �=0 to �=� /4. Once again, we empha-
size that the shift toward a Poissonian distribution is inherent
in the physical process and not caused by any experimental
imperfections.

IV. COMPARISON WITH EXPERIMENTAL DATA

We have also performed a comparison of experimentally
measured photon number statistics with the predictions of

our theory. A photon-number-resolving fiber-loop detector
�1� in combination with highly efficient waveguides was
used to record the distribution. The detection method is re-
silient against loss and allows us to eliminate the correspond-
ing effects when ensemble measurements are performed.
Reference �20� shows the experimental details of state gen-
eration and �4� describes the measurement procedure. Figure
3 compares the experimentally observed distribution with the
theoretical prediction at various pump powers. As is imme-
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FIG. 1. Photon number distribution depending on the number of effectively contributing modes as given by the Schmidt number K �and
thus on the angle of the SDF� of a type-II PDC process. The x axes depict photon numbers, whereas the y axes show probabilities.
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FIG. 2. Solid line and dashed line show the distance between the
convoluted photon number distribution and Poissonian or thermal
statistics, respectively, plotted against the Schmidt number. For a
single effective mode, the distribution is exactly thermal, but the
more modes contribute, the closer it gets to a Poissonian distribu-
tion. The inset fixes �=� /4 and varies �x

2, which is drawn on a
logarithmic scale.

FIG. 3. �Color online� Comparison between experimentally
measured and theoretically obtained photon number distributions
for a multimode PDC process at various pump strengths. The bot-
tom inset shows the real part of the joint spectral intensity, while the
top inset demonstrates the parametrization of the analytical Gauss-
ian approximation of the SDF. Loss inversion and error estimation
was performed using non-negative least-squares optimization.
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diately obvious from the figure, they are in excellent agree-
ment.

To avoid the necessity of fitting any effective parameters,
we have obtained an exact numerical decomposition using
SVD techniques. After discretizing the SDF on a grid Mmn of
size 1500�1500, the matrix is decomposed as M =U�V†,
where U and V are unitaries and �=diag���1 , . . . ,��N� is a
real diagonal matrix �21�. Extensive checks that the decom-
position converges �and also converges to the proper value�
have been performed; see Ref. �14� for details.

Notice that the decomposition of the spectral distribution
does not depend on the pump intensity, which means that the
composition ��n
 of the PND is fixed for the physical pro-
cess. However, the observed mean value of the PND does
depend on the pump intensity and Fig. 3 shows a shift to-
ward larger mean photon numbers for larger pump intensities
as expected.

For higher pump powers, photon-number-resolved detec-
tion is not possible anymore. To check the theory in this
regime, we have used a set of mean photon number �n̄� mea-
surements instead. The coupling constant C as defined in Eq.
�1� can be inferred from the decomposed SDF for each n̄ for
a given pump power by a numerical optimization process

�22�. The result is shown in Fig. 4. Again, very good agree-
ment between theory and experiment is achieved.

V. CONCLUSIONS

We have shown how to decompose a multimode PDC
process into independent two-mode squeezers operating on
effective single modes and how this explains why the photon
number distribution of the process can exhibit any form
ranging from purely thermal to purely Poissonian. We have
underlined the validity of the theory by comparing the pre-
dictions to an experimentally measured photon number dis-
tribution. Additionally, we have compared theory and experi-
ment for larger pump powers.
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APPENDIX

A two-dimensional Gaussian distribution in a suitable pa-
rametrization is given by

f�x,y� =
1

���x�y

exp�− ax2 − 2bxy − cy2� ,

a��,�x,�y� = cos2 �/�2�x
2� + sin2 �/�2�y

2� ,

b��,�x,�y� = − sin 2�/�4�x
2� + sin 2�/�4�y

2� ,

c��,�x,�y� = sin2 �/�2�x
2� + cos2 �/�2�y

2� .

Without getting into details of the algebra
involved, we remark that by starting from Mehler’s
formula �24� �n=0


 Hn�x�Hn�y�� 1
2��n /n!=1 /�1−�2exp�−�2x2

−2�xy+�2y2 /1−�1� �Hn�x� denotes the Hermite polynomial
of nth order�, it is possible to bring f�x ,y� into the form
f�x ,y�=�n=0


 ��nfn
�1��x�fn

�2��y�. The coefficients �n are
given by �n= �22n−1 /ac��1+�2 /�x�y��� /2�2n where
�=−2�ac+�4ac−4b2 /2b. Since the set ��n
 contains all in-
formation required for our calculations, the exact form of
fn

�i�� · � is not of interest here, but can be found in Ref. �23�.
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