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We show that many-body effects in stabilized nanocolloidal suspensions can have a profound effect on their
optical nonlinearity. By considering the screened Coulomb repulsions between nanoparticles, we find that the
nonlinear optical behavior of these colloids can range from polynomial to exponential depending on their
composition and chemistry. The dynamics and stability properties of optical beams propagating in such non-
ideal gas environments of interacting colloidal particles are investigated. Our analysis provides a theoretical
foundation for understanding the recently observed super-Kerr nonlinear optical response of such systems.
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I. INTRODUCTION

Light-matter interactions via radiation forces play nowa-
days a crucial and central role in several areas of physics,
chemistry, and biology �1�. One such example is the rich
interdisciplinary field of optical traps or tweezers first pio-
neered by Ashkin et al. �2�. In these early works, the optical
self-focusing and four-wave mixing response of colloidal ar-
tificial nonlinear systems were also explored in a series of
experiments �3–6�. In such settings, the optical nonlinearity
is a direct outcome of the electromagnetic gradient force and
can be relatively high depending on the size and index con-
trast of the nanoparticles involved �7,8�. In general, when an
optical beam propagates through a colloidal system, the op-
tical gradient force will attract �or repel� the nanoparticles
toward �or away from� local intensity maxima. This process,
in conjunction with that of Brownian motion, always raises
the average refractive index at the beam center �5,6�, as
shown schematically in Fig. 1. Interest in this area was lately
rekindled in a number of experimental �9–11� and theoretical
�12� investigations. Interestingly, in most studies, the optical
nonlinearity of such nanocolloidal suspensions was a priori
taken to be of the Kerr type. Yet, as independently indicated
by two research groups �13,14�, this simplistic Kerr assump-
tion tends to overlook the underlying Boltzmann distribution
and can only be justified when the optical beam intensity is
well below a threshold level set by the thermal energy. In
fact, if one adopts the Boltzmann statistics, it directly follows
that the nonlinearity should instead vary exponentially with
intensity �13,14�. The exponential facet of this nonlinearity
was also suggested in earlier studies using either thermody-
namical arguments �5� or by invoking Chandrasekhar’s equa-
tion �15�. Determining the exact character of this electrostric-
tive nonlinear mechanism is of importance since it has direct
implications on optical beam dynamics in such nanosuspen-
sion systems. While the Kerr nonlinear model ignores on an
ad hoc basis Boltzmann statistics, the exponential model on
the other hand tends to overestimate the severity of the cata-
strophic beam collapse in both 1D and 2D arrangements. A

Carnahan-Starling model allowing for hard-sphere particle-
particle interactions was recently proposed in order to over-
come some of these difficulties �16,17�. Nonetheless, nonlin-
earity saturation effects resulting from this latter type of
interactions come into play at exceedingly high filling fac-
tors, in contradiction with recent experimental observations
�18�. In fact, careful Z-scan-like measurements of this non-
linearity point toward a super-Kerr response �monotonically
exceeding Kerr� for volume filling factors as low as
0.1%–1% �18�. This leads to several fundamental questions
concerning the actual mechanisms behind this process. If in-
deed the colloidal nonlinear optical response in this range is
super-Kerr, then how can this be explained without contra-
dicting Boltzmann thermodynamics?

In this paper, we investigate the nature of the optical non-
linearity in stabilized colloidal systems and provide answers
for the above-posed questions. Starting from a “nonideal
gas” equation of state and by taking into account the
screened Coulomb interactions among suspended nanopar-
ticles, we show that the nonlinear optical behavior of these

FIG. 1. �Color online� �a� Self-focusing of an optical beam in a
colloidal nanosuspension. �b� A charged nanosphere screened by a
Gouy-Chapman double layer.
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colloids can range anywhere from exponential to polynomial
depending on their filling factor, composition, and chemistry.
The thermodynamics of this problem indicate that while the
exponential optical nonlinearity is always present, it can be
modified by many-body interactions described by Mayer
cluster expansions �19�. This in turn has a profound effect on
optical beam dynamics. The stability of optical beams in
systems with positive polarizabilities is considered in both
1D and 2D configurations. Our analysis not only provides a
foundation for understanding recent experiments but may
also open up new opportunities in colloidal science and bio-
photonics.

II. NONIDEAL “GAS” EQUATION OF STATE

Before we proceed, we note that nanocolloids are typi-
cally stabilized against coagulation through repulsive elec-
trostatic or entropic forces �20�. Even though here we will
focus our attention on electrostatically stabilized colloidal
systems, we would like to stress that our analysis is general
enough to account for other forms of particle interactions. In
general, the repulsive Coulombic force between charged
nanoparticles is partly shielded due to the presence of ions in
the electrolyte solution. Within the context of Derjaguin,
Landau, Verwey, and Overbeek �DLVO� theory—an exten-
sion of the Gouy-Chapman double-layer formalism �Fig.
1�b��—the screened electrostatic interaction between two
identical suspended nanoparticles is described by �20�

U�r� =
e2Q2

4��o�r
� e�a

1 + �a
�2e−�r

r
+ W�r� , �1�

where e is the magnitude of the electron charge, Q is the
number of charges per sphere, �0 is the free space permittiv-
ity, and �r is the liquid relative permittivity. In Eq. �1�, a is
the particle radius, r is the center to center distance between
any two spheres, and W�r� represents the van der Waals at-
tractive potential. The Debye-Hückel screening length lD
=1 /� associated with the electrolyte solution is given by
�2= �e2 /�0�rkBT��i=1

M zi
2ni�. Here, kB is Boltzmann constant, T

is the absolute temperature, zi is the ionic valency, and ni� is
the ionic number concentration at the neutral state. In this
work, we consider only binary electrolytes with M =2. Note
that in aqueous solutions, ni� is a direct function of the pH
value and as such is an additional degree of freedom in con-
trolling the optical nonlinear response of the system. For all
practical purposes, this interaction energy can be treated as a
perturbation on an otherwise “ideal” gas. Using the total
Hamiltonian H=�i=1

N �p� i · p� i� / �2mp�+�i�jU�r�i−r� j� in the
grand canonical partition function of the system � and by
considering the thermodynamic limit where poV=kBT ln���,
one obtains the equation of state of such nonideal gas of
colloidal particles �20,21�. In the above discussion, U�r�i
−r� j� is the interaction potential between any two particles, po
is the “osmotic” pressure, and V is the total volume. Under
these conditions, the system can be effectively described
through a virial expansion �19�, i.e.,

po

kBT
= � + B2�T��2 + B3�T��3 + ¯ . �2�

In Eq. �2�, � is the particle density and B2 and B3 are the
second and third virial coefficients, respectively. The second
virial coefficient results from two-body interactions and is
given by

B2�T� = − 2��
0

�

�e−U�r�/kBT − 1�r2dr . �3�

On the other hand, the third virial coefficient B3�T� arises
from three-body effects and can be written as

B3�T� = − 1/�3V�� fu�r�1 − r�2�fu�r�1 − r�3�fu�r�2 − r�3�dr�1dr�2dr�3,

�4�

where fu�r�=exp�−U�r� /kBT�−1. By adopting center-of-
mass coordinates, we find that B3�T�=−1 /3	fu�r�12�fu�r�13�
fu�r�12−r�13�dr�12dr�13. This last expression can be further sim-
plified using Katsura’s Fourier transformation method �22�
�see the Appendix� or by using a transformation of coordi-
nates to two cocentral spherical coordinate systems. Equa-
tion �2� represents an equation of state for a nonideal gas of
colloidal nanoparticles and can be also written in a more
compact form po /kBT=�Z���, where Z���=1+B2�T��
+B3�T��2+¯ is the compressibility factor �20�.

III. GENERALIZED FICK’S LAW

We will now derive a generalized form of Fick’s law for
such an equation of state under equilibrium conditions and in
the absence of any external forces. From thermodynamical
considerations, the Helmholtz free energy is given by F
=−	PdV 
N, where this expression is calculated at constant
number of particles N. Using �=N /V, then for constant N,
dV=−�N /�2�d�. By substituting this latter expression back in
the Helmholtz free energy, it follows that F=	PN /�2d�
=kBTN	�Z��� /�2d� or F=kBTN	�Z��� /��d�. The chemical
potential of the system can then be obtained using

� = �F/�N
V = kBT � /�N�N� �Z���/��d�� . �5�

For constant V, � /�N= �1 /V�� /��. By combining the last
two expressions, we find that

� = kBT�� �Z���/��d� + �N/V� � /��� �Z���/��d�� .

�6�

Noting that N /V=� and by using � /��	�Z��� /��d�=Z��� /�
in Eq. �6�, we arrive at

� = kBT�� �Z���/��d� + Z���� . �7�

If we now let G���=	Z��� /�d�, then the equation for the
chemical potential reduces to �=kBT�G���+Z����. We note
that the general form of Fick’s law in the absence of any
external force is given by
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J� = − �D�/kBT� � � , �8�

where J� is the particle current density and D is the diffusion
coefficient. Substituting back the latter expression for the
chemical potential in Eq. �8�, one finds that J� =−D���G���
+�Z����. Given that �G���=�G /����, it follows that
Fick’s law takes the form J� =−D�
�Z��� /����+�Z����
=−D��Z�����+��Z���� or

J� = − D��„�Z���…� . �9�

By superimposing the external optical gradient force acting
on a nanoparticle, we finally obtain

J� = ��b
	

4
� I − D � ��Z���� . �10�

In Eq. �10�, �b is the particle’s mobility, 	 is its electric
polarizability, and I is the optical-field intensity. For Ray-
leigh nanoparticles, the electric polarizability is given by 	

=3Vp�0nb
2� m2−1

m2+2
�, where Vp=4�a3 /3 is the particle’s volume,

�0 is the free space permittivity, and the dimensionless pa-
rameter m=np /nb represents the ratio of the particle’s refrac-
tive index np to that of the host medium nb �4,5�.

IV. NONLINEAR OPTICAL RESPONSE AND BEAM
PROPAGATION EQUATIONS

Under equilibrium conditions �J� =0�, Eq. �10� can be in-
tegrated and to third order in the virial expansion we find

	

4kBT
�I − I0� = ln�f/f0� +

2B2f0

Vp
� f

f0
− 1�

+
3B3f0

2

2Vp
2 �� f

f0
�2

− 1� . �11�

In Eq. �11�, I0 is an integration constant and can represent in
general a flat background intensity at infinity—here taken to
be zero. In addition, f =Vp� is the local volume filling factor
while f0 stands for the filling factor at infinity where the
beam intensity is assumed to vanish �I0=0�. In deriving Eq.
�11�, Einstein’s relation D /�b=kBT was used. Note that in
the absence of any particle-particle interactions �B2,3=0�, the
nonlinear response of Eq. �11� �e.g., the logarithmic term�
reduces to the previously considered ideal-gas Boltzmann
distribution �13�. We remark that Eq. �11� is a generic result
in which the details of the interparticle interactions are con-
tained in the specific values of B2,3. In particular, our con-
clusions below regarding the appearance of a super-Kerr
nonlinear response are founded on Eq. �11� and so are not
tied to a specific form of interparticle interaction.

To develop the optical beam evolution equation in such
systems, we start from the Helmholtz equation �2E
+k0

2nef f
2 E=0, where statistically the effective index of the

colloidal medium is given by nef f = �1− f�nb+ fnp. By using
the slowly varying envelope approximation, i.e., E�x ,y ,z�
=
�x ,y ,z�exp�ik0nbz�, one finds that the electric field enve-
lope 
�x ,y ,z� obeys the following evolution equation �13�:

i
�


�z
+

1

2k0nb
��

2 
 + k0�np − nb�f
 +
i

2
��
 = 0. �12�

Here, k0 is the free space wave number and � is the Rayleigh
scattering cross section �13�. By introducing the following
normalizations, �=z /z0, z0

−1=k0
np−nb
f0, X=x /w, Y =y /w,
w2=z0 / �2k0nb�, 
= �4kBT / 
	
�1/2
, and by keeping in mind
that I= 


2, Eqs. �11� and �12� now take the form

i
�


��
+ 
XX + 
YY + sgn�	��
 + i

�

2k0
np − nb
Vp
�
 = 0,

�13a�

sgn�	�


2 = ln��� +
2B2f0

Vp
�� − 1� +

3B3f0
2

2Vp
2 ��2 − 1� .

�13b�

In Eq. �13�, �= f / f0 is a filling factor ratio, sgn�	�=+1 when
	�0 or np�nb, and sgn�	�=−1 for negative polarizabil-
ities, e.g., np�nb. We note that at low densities �f0→0�, the
nonlinear response of the system given by Eq. �13b� reduces
to the Boltzmann exponential distribution of an ideal gas
�13,14�. The two coupled Eqs. �13a� and �13b� describe non-
linear optical dynamics in a nonideal gas of interacting nano-
colloidal particles. This nonlinear system can be solved nu-
merically in both one-dimensional �1D� and two-dimensional
�2D� geometries in order to extract information as to the
propagation and stability properties of optical beams in such
colloidal suspensions.

V. RESULTS AND DISCUSSIONS

To appreciate the effects arising from Coulomb screening,
we plot the first two normalized virial coefficients for colloi-
dal systems typically encountered in experiments �Figs. 2�a�
and 2�b��. This is done as function of the ratio between the
particle radius and Debye screening length �a= �a / lD� for
various values of the dimensionless interaction potential
strength A=Q2�lB / lD�, where lB=e2 / �4��0�rkBT� is the so-
called Bjerrum length. For simplicity, we have also ignored
the van der Waals component in the interaction potential and
essentially we employed a linearized Gouy-Chapman
double-layer theory or a Debye-Hückel model �DH�. As
these figures indicate, for a given ratio �a / lD�, the normalized
virial coefficients increase as A increases. This should have

FIG. 2. �Color online� Plots of normalized �a� second and �b�
third virial coefficients as a function �a for different values of the
constant A �defined above in the text�.
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been anticipated given that the interaction strength is directly
proportional to A. For comparison purposes, we plot both the
nonlinear behavior calculated from DH theory and that ob-
tained from the ideal Boltzmann model for a specific set of
parameters. In this example, we assumed an aqueous solu-
tion of polystyrene nanoparticles �a=50 nm� at a pH=6 and
a filling factor f0=10−3. The average charge per particle was
taken here to be Q=20. Under these conditions, B2 /Vp
�300 and B3 /Vp

2 �7�103. For this case, Fig. 3�a� depicts
the nonlinear response of this nonideal gas of interacting
particles as a function of the normalized intensity
�
	
 /4kBT�I, as obtained from Eq. �11�. As evidenced from
Eq. �12�, the nonlinear index change is always proportional
to the filling factor f . As Fig. 3�a� indicates, in this range of
parameters, the DH curve quickly deviates from the Boltz-
mann distribution even at very low filling factors, slightly
exceeding f0—as shown in the inset of Fig. 3�a�. This behav-
ior is in contrast to that expected from the Carnahan-Starling
hard-sphere model where significant deviations from the ex-
ponential model only occur at much higher packing
factors—exceeding 5% �16�. In fact, the competition be-
tween the Boltzmann distribution and repulsive interactions
leads to an optical response that can range anywhere from
exponential to polynomial depending on their filling density,
composition, and chemistry. This result explains the artificial
Kerr response observed in Refs. �3–5�. In these experiments,
the interparticle repulsion acted in such a way so as to soften
the exponential nonlinearity and for strong interactions
and/or high enough particle concentrations the nonlinear re-
sponse curve becomes quasilinear, thus giving rise to domi-
nant Kerr effects. It is worth noting that while in �3–5� the
artificial Kerr nonlinearity was assumed to be a priori valid,
here the same model can emerge naturally from our analysis
depending on the strength of interaction between nanocolloi-
dal spheres. An experiment was recently designed to further
differentiate between the artificial Kerr regime, the exponen-
tial model, and the nonlinear response based on DH interac-
tions �18�. Good agreement between measurements and
simulations was obtained when many-body effects were
taken into account �18�. More specifically, Lee et al. �18�
compared experimental observations to simulations based on
the artificial Kerr nonlinearity component �3–5�, the expo-
nential nonlinearity, and the DH nonlinear response. In all

occasions, the DH model was found to be a better fit to the
experimental data. Interestingly, even though at high filling
densities the exponential distribution can be overshadowed
by the higher virial terms, the Kerr coefficient �to lowest
order in intensity I� is largely affected by the Boltzmann
term, e.g., �n�I�= �np−nb�f0�1+ �2B2f0 /Vp�+¯�−1

�	I /4kBT�. On the other hand, however, for negative polar-
izabilities, the exponential term dominates the saturable self-
focusing optical nonlinearity of this colloidal system, as
clearly shown in Fig. 3�b�. In this regime, the deviation be-
tween the Boltzmann and DH curves is small since the nano-
particles are in this case expelled away from the center of the
beam, thus reducing many-particle interaction effects.

We next investigate how many-body interactions may af-
fect the nonlinear dynamics of optical beams propagating in
such colloidal systems. A feature that is directly related to the
nonlinear response itself is beam stability. To explore optical
beam stability in these media, we first consider self-trapped
solutions or optical solitons of the form 
=g�X ,Y�exp�i���
and plot their power-eigenvalue diagrams where the normal-
ized power is given by P=	
g
2dXdY. Figures 4�a� and 4�b�
depict this behavior for both 1D and 2D configurations,
respectively—obtained for the same parameters used for Fig.
3. From the Vakhitov-Kolokolov criterion �21�, one can di-
rectly infer that for these specific parameters, one-
dimensional optical self-trapped channels are stable while
their 2D counterparts are unstable. This behavior is consis-
tent with the super-Kerr character of the nonlinear optical
response mentioned above. Clearly, this stability behavior
can be greatly altered depending on the parameters of the
colloidal system itself. For example, 1D solitons can be de-
stabilized if the strength of the interaction is reduced. This
can be accomplished either by reducing the initial filling fac-
tor �dilute gas� or by altering the chemistry of the solution,
thus enhancing screening effects. In that case, the nonlinear
response will approach the Boltzmann distribution, rendering
even 1D stripe solitons unstable. On the other hand, for 2D
self-trapped beams, the presence of interparticle interactions
tends to slow down the self-focusing collapse that would
have been otherwise severe in a purely exponential model.
We note that for negative polarizabilities, the self-focusing
nonlinearity is saturable and hence all soliton solutions are
stable �13�. The signature of many-body effects on beam
propagation can be used to optically extract valuable infor-
mation concerning the nature of the interaction potential by
estimating the virial coefficients. For example, Fig. 5 shows
propagation of a 2D optical beam in this same system �cor-
responding to Fig. 3� at a wavelength of �=0.532 �m. Fig-

FIG. 3. �Color online� Volume filling factor or nonlinearity vs
normalized intensity as obtained from the Debye-Hückel theory
�DH� and the Boltzmann exponential model �a� positive polarizabil-
ities and �b� negative polarizabilities. The system parameters are
given in the text. Inset in �a� provides an expanded view at low
filling factors.

FIG. 4. �Color online� Power-eigenvalue diagrams for �a� one-
dimensional stripe solitons �b� 2D solitons. The parameters used are
identical to those of Fig. 3.
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ure 5�a� depicts the dynamics of a Gaussian beam of full
width at half maximum �FWHM�=7 �m at a power level of
1 W over a distance of 1 mm of propagation �3.5 diffraction
lengths� when nonlinear Rayleigh losses are taken into ac-
count. In this environment, the beam undergoes expansion
since the power is not enough to cause self-trapping. Figure
5�b� on the other hand depicts the intensity evolution of this
beam in this same system when the charge per particle is
reduced to one half �Q=10�. In this case, the optical wave is
initially compressed because of reduced interparticle interac-
tions and forms a self-trapped state before nonlinear losses
take over. Note that in the absence of nonlinear Rayleigh
losses, the beam would have collapsed after a small propa-
gation distance because of the supercritical nature of the op-
tical nonlinearity in 2D. Thus, arrest of supercritical collapse
due to nonlinear losses is a key ingredient in understanding
how the nominally unstable 2D self-trapped solutions in Fig.
4�b� can nonetheless play a key role in the nonlinear dynam-
ics of optical beams propagating in colloidal suspensions.

VI. CONCLUSIONS

In conclusion, we have examined the effect of many-body
interactions on the optical nonlinearity of nanosuspensions.
By considering the screened Coulomb repulsions between
nanoparticles, we found that the nonlinear optical behavior
of these colloids can range from polynomial to exponential
depending on their composition and chemistry. The dynami-
cal behavior of optical beams propagating in such nonideal
gas environments of interacting particles was considered and
characterized. Furthermore, Eq. �11� is key and shows that
inclusion of a number of repulsive interactions provides a
theoretical starting point for understanding the super-Kerr
nonlinear response observed in recent experiments. Before
closing, we would like to mention that other peripheral is-
sues associated with such colloidal systems may merit fur-

ther investigation. These include effects arising from the
granular distribution of nanoparticles �that could further
soften the nonlinear response�, rheological corrections, non-
local thermal effects, as well as nonconservative forces re-
sulting from radiation pressure.

APPENDIX: CALCULATION OF B3

Here we give a brief description of Katsura’s Fourier
transform method �22� that was used for the calculations
of the third virial coefficient B3�T�. In order to do so, we
start from the expression for B3�T�, i.e., B3�T�
=−1 /3	fu�r�12�fu�r�13�fu�r�12−r�13�dr�12dr�13. If the potential en-
ergy between any two particles depends only on their relative
positions �as it is in our case� and by using the substitution
��i=r�i−r�1, we obtain

B3�T� = − 1/3� fu�
��2
�fu�
��3
�fu�
��3 − ��2
�d��2��3. �A1�

The Fourier transform of fu�
��
� can be written as ��k���
= �2��−3/2	fu�
��
�exp�−ik�� ·���d��, where k�� is a conjugate vec-
tor in the Fourier space. If we denote �= 
��
 and k�= 
k��
, then
one can write the above expression in the spherical coordi-
nate system �� ,� ,�� as

��k�� = �2��−3/2�
0

� �
0

� �
0

2�

fu���

�exp�− ik�� cos�����2 sin���d�d�d� , �A2�

where in the last equation, k�� were chosen to coincide with
the z� axis of the spherical coordinate system �� ,� ,��. This
choice is allowed since the function fu�
��
� depends only on
the magnitude of ��. The last integral can be further simplified
to obtain

���� =� 2

�
�

0

�

�fu���
sin�k���

k�

d� . �A3�

Similar expression can also be derived for the inverse trans-
form. Substituting in Eq. �A1� and after some mathematical
manipulations, it can be shown that

B3 =
− �2��3/2

3
�

0

�

4�k�
2�3�k��dk�. �A4�

Equations �A3� and �A4� can then be used together to obtain
numerical values of the third virial coefficient B3. Note that
by using this technique, the calculations are reduced to only
two-dimensional integral �Eqs. �A3� and �A4�� instead of the
six dimensional of Eq. �A1�.
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