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We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark
stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing
effect both in the case of a single soliton input and in the regime where dispersive shock waves develop
�multisoliton regime�. Such conclusions are supported by the linear stability analysis and numerical simulation
of the propagation.
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I. INTRODUCTION

Solitons confined in one dimension �1+1D� are generally
unstable against periodic modulations in an extra dimension
�1+2D� �1�. In particular, for the case of defocusing or re-
pulsive Kerr-like �cubic� nonlinearities where the dynamics
is governed by the equations of the nonlinear Schrödinger
�NLS� type in two transverse dimensions, 1+1D solitons are
of the dark type �2�. In this case, even if 1+1D dark solitons
are stable against perturbations sharing the same dimension-
ality �3�, the transverse instability in 1+2D determines
breaking of dark stripes into a snakelike shape and subse-
quent decay into vortexlike structures �4–7�, which is the
reason why the mechanism is commonly known as snake
instability. Snakelike breaking occurs also for bright solitons
and other types of nonlinear response and has been the object
of recent interest �8,9�. Here we are interested in assessing
the impact of a nonlocal Kerr response over the transverse
snake instability of dark stripes.

A soliton has, by definition, an invariant profile due to
perfect balance between nonlinearity and diffraction, and
perturbations grow on top of that over a characteristic length
scale determined by the inverse growth rate of the instability.
Potentially, however, snake instabilities can also affect the
propagation of a dark beam in the dynamical regime for
which the nonlinearity overcompensates for diffraction. Par-
ticularly interesting, in this respect, is the strong nonlinear
�or weakly dispersive� regime, where an initially smooth
beam undergoes the formation of a dispersive shock wave
�DSW�, also known as undular bore �see, e.g., Refs.
�10–16��. In a DSW an infinite gradient �catastrophe�, which
develops owing to the initially dominant nonlinearity, is
regularized by dispersion �diffraction�, which determines the
onset of fast oscillations. These oscillations are basically
trains of dark solitons �13,16� that fill a region which ex-
pands beyond the wave-breaking point, i.e., namely, a shock
fan, which is the true signature of the DSW. Such phenom-
enon, observed sporadically in the past �17,18�, has attracted
recently a great deal of attention in the area of Bose-Einstein

condensation �19–21� and nonlinear optics �22–25�. In par-
ticular, experiments in both fields demonstrate that DSW can
occur from a dark input �19,25�. However, such results sug-
gest that two different scenarios can occur, the first of which
showing DSW to be unaffected by transverse instabilities
�25� in contrast with an unstable situation where ultimate
decay into vortices occurs �7,19,21�.

In this respect, an important ingredient might be the non-
locality of the nonlinear response. In fact, since a nonlocal
nonlinearity is known to induce suppression of modulational
instabilities �23,29� and transverse instabilities of bright soli-
tons �30�, the same effect could be envisaged for dark inputs.
Therefore it is important to investigate the onset of snake
instabilities of dark soliton stripes and their DSW in nonlocal
media. In this paper we pursue this goal by carrying out the
analysis in the framework of a sufficiently general differen-
tial model constituted by a NLS coupled to a diffusive equa-
tion �23,26�.

Concerning the link with previous results, we point out
that suppression of transverse instabilities of a dark soliton
stripe has been analyzed in the past, though in connection
with other mechanisms such as saturation of nonlinearities,
coupling to other modes or bright solitons �vector solitons�,
or incoherency of the propagating field �5,31�. Vice versa
transverse instabilities of DSW are nearly unexplored. Inves-
tigation of instabilities of shock waves has been proposed
theoretically in the framework of the Burger equation with
small viscosity �32�. Conversely, when the dynamics is ruled
by weak dispersion �versus dissipation�, only numerical stud-
ies are possible since transverse instabilities develop over a
strongly dynamic nonperiodic evolution. In this context, our
results show that an effective suppression of transverse insta-
bilities of DSW generated by dark stripes is indeed possible
in 1+2D.

The paper is organized as follows. In Sec. II we briefly
discuss the model and its solitary waves of the dark type. In
Sec. III we discuss the results of the linear stability analysis
for a single soliton, while in Sec. IV we investigate the non-
linear stage of the instability showing vortex formation over
long distances. Finally in Sec. V, we study numerically the
onset of transverse instabilities for DSW.*stefano.trillo@unife.it
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II. NONLOCAL MODEL AND SOLITARY SOLUTIONS

We investigate how nonlocality affects snake instabilities
in the framework of the following dimensionless model,
which couples the nonlinear wave equation in the paraxial
regime for the normalized field u�x ,y ,z� to a diffusive equa-
tion which rules the refractive index change n=n�x ,y�,

i
�u

�Z
+

1

2
��

2 u − nu = 0, �1�

n − �2��
2 n = �u�2, �2�

where � is a free external parameter which measures the
degree of nonlocality. The local limit is obviously recovered
for �=0, for which Eqs. �1� and �2� reduce to the standard
integrable NLS equation. The model has been shown to de-
scribe satisfactorily the behavior of thermal nonlinearities in
liquid solutions �23,25�, as well as the dynamics in plasma
�26�, and has been used as a toy model for investigating
different aspects of nonlocality �27,28,30�

Dark solitons

Dark soliton solutions �strictly speaking solitary waves�
of Eqs. �1� and �2� have been investigated in Ref. �28�. Here
we briefly recall the main results. 1+1D solutions are sought
for in the form u�x ,z�=U�X�exp�i�Z�, n�x ,Z�=N�X�, X=x
−vZ being the coordinate in the moving frame at velocity v.
Here U and N are complex and real functions, respectively,
which obey the coupled equations,

� 1
2�X

2 − iv�X − � − N�U = 0, �3�

N − �2�X
2N = �U�2. �4�

Without loss of generality we assume the plane-wave back-
ground of the soliton to have unit amplitude, i.e., �U�X
= ����=N�X= ���=1, which fixes the propagation con-
stant to be �=−1. For fixed �, with such boundary condi-
tions, solitons are characterized by a single internal param-
eter, namely, their velocity v. The soliton family can be
constructed by solving Eqs. �3� and �4� numerically by
means of the relaxation method, starting �for any fixed value
of velocity v� from the explicit solution of the local NLS
equation ��=0� U�X�=�1−v2 tanh��1−v2X�+ iv, and iterat-
ing over the parameter �2. An example of solution obtained
for v=0.6 and �2=5 is reported in Fig. 1, along with the
corresponding local solution of the same velocity. As shown
the soliton has a nonlinear phase profile with a net phase
jump smaller than that of the local soliton. Both the modulus
and the phase tend in a nonmonotonic fashion to their
asymptotic values, characteristic of plane-wave background.
In particular for large � they both relax to the asymptotic
values with damped oscillations. This is due to the fact that
the eigenvalues of the linearization of Eq. �1� around the
fixed points �plane waves� are constituted by two complex
conjugate pairs, with positive �unstable manifold� and nega-
tive �stable manifold� real parts. For fixed �, solitons exist
below a critical maximal velocity vmax �0� �v��vmax�, at
which the real parts of the eigenvalues vanish. We found this

upper bound to the velocity to be described by the formula
vmax

2 = �4�−1� /4�2, which is valid for sufficiently large �
��2�1 /4�. Therefore nonlocal solitons exist for a more lim-
ited range of velocity compared with the local case. More-
over for any given velocity in the domain of existence the
minimum intensity is larger than the corresponding local
quantity. In other words local solitons are darker �their mini-
mum intensity is closer to zero� than their nonlocal counter-
part with the same velocity.

Finally, it is important to emphasize that nonlocal dark
solitons turn out to be stable against perturbations in the
same coordinate of confinement X because the normalized
momentum P is always a decreasing function of velocity,
i.e., �P /�v�0 �3�.

III. LINEAR STABILITY ANALYSIS

We proceed to analyze the stability of dark solitons
against transverse perturbations by using the following an-
satz:

u = �U�X� + a�X,y,Z��exp�i�Z� ,

n = N�X� + b�X,y,Z� . �5�

The perturbations a ,b �a�U ,b�N� obey the linearized
equations

�i�z + 1
2 ��X

2 + �y
2� − iv�X − ��a − �Na + Ub� = 0,

�1 − �2��X
2 + �y

2��b = Ua� + U�a . �6�

Then we write the perturbations in terms of sideband pairs
with transverse wave number �q as

a = a+�X�exp�iqy + i�Z� + a−�X�exp�− iqy − i��Z� ,

b = b+�X�exp�iqy� + b−�X�exp�− iqy� , �7�

where the additional constraint b−=b+
� must be imposed for

the index perturbation to be real. By inserting Eqs. �7� in
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FIG. 1. �Color online� Example of dark soliton solution obtained
numerically from Eqs. �3� and �4� for v=0.6 and �2=5 �blue solid
line�, compared with the corresponding solution of the local case
�2=0 �red dotted line�: �a� modulus of the field; �b� phase of the
field; and �c� refractive index change N�X� across the soliton.
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Eqs. �6� and defining the diffusion linear operator Ld�1
+�2q2−�2�X

2 and its inverse Ld
−1, we obtain from the second

equation in Eqs. �6�,

b+ = Ld
−1�Ua� + U�a� . �8�

By substituting this expression into the first equation in Eqs.
�6� and defining the linear differential operator

L0 �
1

2
�X

2 − � −
q2

2
− N�X� ,

as well as the unknown array �sideband amplitudes� a
= �a+a−

��T, we obtain the following canonical eigenvalue
problem:

Aa = �a , �9�

where the matrix A reads as

A = �L0 − iv�X − ULd
−1U� − ULd

−1U

U�Ld
−1U� − L0 − iv�X + U�Ld

−1U
	 .

We solve the eigenvalue problem �Eq. �9�� numerically by
introducing a suitable discretization of the operators L0, Ld
along the X axis. Instability occurs for negative imaginary
eigenvalues, entailing a perturbation that grows exponen-
tially with rate g=−Im���. The eigenfunctions �not shown�
that correspond to unstable eigenvalues have even symmetry,
which associated with the odd symmetry of the soliton leads
to a snake type of instability. The dependence of the snake
instability gain g on the wave number q is displayed in Fig.
2 for different values of � both in the stationary �v=0, still
black solitons� and nonstationary �v=0.4, moving solitons�
cases. As shown, when nonlocality becomes progressively
more effective �i.e., when � is increased�, a substantial sup-
pression of the instability is observed. In fact, both the peak
gain gmax=max�g�q�� and the cutoff wave number qc �below
which g�0� decrease as � grows larger. The dependence of

peak gain gmax and cutoff wave number qc on the nonlocal
parameter �, for three different representative velocities v
=0,0.2,0.4, is summarized in Fig. 3.

In order to verify that the snake instability is effectively
suppressed during propagation of a dark stripe, we resort to
numerical integration of Eqs. �1� and �2� by split-step
method. We use initial data u0=u�x ,y ,z=0�=U�x�+	�x ,y�,
	�x ,y� denoting henceforth a noise term ��	�x ,y��� �U�x���
with random �normally distributed� modulus and phase. The
results of the simulations, comparing the local ��=0� and the
nonlocal ��=1� cases, for three different values of velocity
are reported in Fig. 4. In the local case, one observes the
onset of snake instabilities for any value of velocity �the
instability is weaker for larger velocities�, as clearly shown
in Figs. 4�a�–4�c�. However, in the nonlocal case, as shown
in Figs. 4�d�–4�f�, the instability is effectively suppressed
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FIG. 2. �Color online� Snake instability gain g computed nu-
merically vs transverse wave number q for different values of non-
locality �2: �a� stationary cases v=0 and �b� v=0.4.
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FIG. 3. �Color online� Overall reduction of the snake instability:
peak gain gmax and cutoff �maximal� wave number qc vs �2 for
three different velocities.

FIG. 4. �Color online� Results of numerical simulations based
on Eqs. �1� and �2�: intensity distribution over the output transverse
plane at propagation distance Z=10 for different values of � and v.
Top row, local case �=0: �a� v=0; �b� v=0.2; and �c� v=0.4. Bot-
tom row, nonlocal case �=1: �d� v=0; �e� v=0.2; and �f� v=0.4.
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and the stripe symmetry of the input is preserved.
It is worth emphasizing that we find a similar stable be-

havior �results not shown� also for bound states formed by
two soliton stripes �28�. However, in this case, it is improper
to talk about the stabilizing role of nonlocality, since these
states do not survive in the limit of local nonlinearities, being
peculiar to the nonlocal response.

IV. VORTEX SOLITONS AND THEIR GENERATION

Having shown that nonlocal dark stripes remain stable
over characteristic distances where their local counterparts
break down, one might wonder about propagation over much
longer distances �even though these can be hardly reached in
practical experiments�. More specifically it is natural to ask
whether the weak residual instability determines a decay sce-
nario qualitatively similar to the local one, where an unstable
dark stripe leads to the generation of vortex solitons �4,5�. In
order to investigate this point, we have first searched for
vortex solutions of the nonlocal model and then explored
whether they are generated through the long-range instability
of the dark stripe.

Stationary vortex solitons are characterized by a field
u�r ,
 ,z�=U�r�exp�im
+ i�z�, where the topological charge
m fixes the azimuthal dependence �helicity of the phase� and
r=�x2+y2 is the radial variable. The associated index
n�r ,
�=N�r� has only radial dependence since it depends on
intensity. U and N obey the following equations:

�1

2

�r

2 +
1

r
�r − m2� − �	U − NU = 0, �10�

N − �2
�r
2 +

1

r
�r�N = �U�2, �11�

which can be solved numerically by the relaxation method.
An example of the radial profile of such solutions, obtained
for a fixed value of nonlocality �=1 and different helicities
m=1,2 ,3, is displayed in Fig. 5. As shown, the nonlocal
profiles are qualitatively similar to the corresponding local
vortex solitons, except for the fact the index change does not
vanish in r=0 �where the field instead vanishes� because of
the averaging due to the nonlocality.

In order to show that these vortex solitons are stable
modes of the system and appear spontaneously due to the
residual instability of the dark stripe, we have extended the
simulations of Fig. 4 to much longer distances. A typical
result, obtained for �=1, is reported in Fig. 6. As shown in
Fig. 6�a�, at sufficiently long distances, the soliton breaks
down into an irregular sequence of dark spots. A closer look
to two adjacent spots �see the insets of Figs. 6�b� and 6�c��
reveals that they are indeed vortex pairs with opposite charge
�helicity�. The radial profile of the spontaneously generated
vortex modes, though affected by the noise, is closely remi-
niscent of the solutions of Eqs. �10� and �11�, as clearly
shown in Fig. 6�d�.

The results shown in Fig. 6 allow us to conclude that the
residual instability leads to a scenario dominated by sponta-
neous formation of vortex pairs, similarly to the local case.

In this case, however, much longer distances are needed to
observe the phenomenon because of the substantial weaken-
ing of the instability due to the nonlocality.

V. INSTABILITIES OF DISPERSIVE SHOCK WAVES

When the intensity becomes much higher than that needed
to support a soliton, nonlinearity overcompensates for dif-
fraction and eventually leads a smooth input to develop an
infinite gradient �catastrophe� which is regularized by dif-
fraction, forming a DSW. In the case of a hyperbolic tangent
input the catastrophe occurs in the beam center, and post-
shock oscillations emerge, in the dynamics governed by the
local 1+1D NLS, in the form of a soliton train, with pairs of
dark solitons emerging at progressively larger angles �trans-
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FIG. 5. �Color online� Radial intensity profiles �red solid line� of
nonlocal vortex solutions and relative index profile �green dotted-
dashed line� for different topological charges m=1,2 ,3 and �=1.
For comparison we report also the local intensity profile �blue
dashed line�.

FIG. 6. �Color online� Results of numerical simulations based
on Eqs. �1� and �2� of long term evolution of an input stationary
dark soliton stripe. �a� Intensity distribution over the output trans-
verse plane at Z=80. �b� and �c� Insets showing a portion of the
transverse plain including two adjacent vortex solitons: �b� intensity
distribution and �c� phase distribution, showing opposite helicity.
�d� Noisy intensity profile along x �blue solid line� of the upper
vortex in �b� as seen at fixed y=5 compared with the theoretical
profile �red dashed line� of the vortex mode as obtained from Eqs.
�10� and �11�. Here �=1.
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verse velocity� around a central immobile soliton. A qualita-
tively similar scenario takes place in the nonlocal case �25�.
Here we investigate the stability of such DSW structures
against transverse perturbations in 1+2D. The highly dy-
namical nonperiodic character of the 1+1D evolution does
not allow to extend the linear stability analysis carried out
for single solitons, and hence we resort to numerical simula-
tions. In particular, we restrict ourselves to input conditions
u0=u�x ,y ,z=0�=��U�x�+	�x ,y��, where U�x� is the 1+1D
�either local or nonlocal� soliton and ��1 is the factor which
measures overcompensation �i.e., deviation from soliton
case�. However, in order to make evident that, here, we op-
erate in the weakly dispersive limit, we introduce the scaling
commonly adopted in the theory of DSW �25�, casting Eqs.
�1� and �2� in the semiclassical form,

i

��

�z
+


2

2
��

2 � − n̂� = 0, �12�

n̂ − �2��
2 n̂ = ���2, �13�

which is obtained from Eqs. �1� and �2� with the positions
z=Z /
, n̂=n
2, and �=
u, where 
=1 /��1. Such scaling
allows us to keep the input fixed to u0=U�x�+	�x ,y� and
increase the nonlinearity by decreasing 
. In the following
we present specific examples obtained for 
=0.05 using
split-step method with a typical transverse grid of 2048
�256 points �x�y� over the range of interest. Note that, in
order to employ periodic boundary conditions along the con-
finement coordinate x, the calculations are carried out over a
window much larger than that shown in the figures below,
containing two solitons with opposite phase and sufficiently
far from each other, so to ensure negligible interaction.

The formation of a DSW occurring in the local limit �
=0 from a black soliton initial shape �U�x�=tanh�x�, corre-
sponding to v=0� is illustrated in Fig. 7. For reference we
display in Figs. 7�a�–7�c� the ideal DSW obtained by inte-
grating Eqs. �12� and �13� in the absence of noise. We recall
that the occurrence of wave breaking can be described in
terms of hydrodynamical variables h= ���2 �water height or
density of an equivalent fluid� and V=
x �velocity of the
water or the equivalent fluid�, which obey the hyperbolic
equations �see, e.g., Refs. �20,22,23,25��,

hz + �hu�x = 0, �14�

uz + uux + hx = 0, �15�

obtained at leading order by applying the transformation �
=�h exp�i
 /
� to Eqs. �12� and �13� in the local limit. In the
case shown the gradient catastrophe occurs at the point of
vanishing intensity x=0. The catastrophe becomes manifest
at finite distance �z=zs�0.75� as a vertical front in the ve-
locity V accompanied by a cusp in the intensity �density�
�25�. Beyond such wave-breaking point, diffraction along the
x coordinate regularizes the infinite gradient, and a DSW
becomes apparent as a fan �see Fig. 7�a��, which is progres-
sively filled with transverse oscillations taking the form of
narrow gray soliton filaments. Asymptotically �z
1 /
�, the
number of emerging solitons is 2�−1 for �=
−1 integer, and

the velocities of symmetric pairs tend to accumulate toward
linear velocity �dx /dz�=1 �16�. In the absence of noise the
solitons in the fan emerge onto the transverse plane as
stripes, as shown in Fig. 7�b�. However, such scenario
changes radically when noise is introduced, as illustrated in
Figs. 7�d�–7�f�. Transverse instabilities growing from noise
cause indeed the soliton stripes to break �see Fig. 7�e��. Soli-
tons with larger darkness �i.e., dip of intensity closer to zero�
break down at shorter distances, consistently with the fact
that the gain decreases for larger velocity, as can be inferred
by comparing the gain curves in Figs. 2�a� and 2�b�. The
onset of the instability makes the shock fan, once seen on the
plane y=0, irregularly filled with erratic filaments which
change velocity in unpredictable manner, as clear from Fig.
7�d�. The instability not only results into a strongly irregular
train along x �compare Figs. 7�c� and 7�f�� but also into the
fact that such train looks different when seen at different
elevations �i.e., planes y=const�. Importantly, however, in a
nonlocal medium, the stabilizing effect of the nonlocality on
dark solitons allows us to envisage the stable formation of a
regular DSW. This is demonstrated in Fig. 8, which is ob-
tained by integrating Eqs. �12� and �13� with �=1, 
=0.05,
and input U�x� corresponding to the exact nonlocal soliton
shape �quite similar results, not shown for brevity, are ob-
tained with hyperbolic tangent input�. First, as shown in Fig.
8�a�, the wave-breaking scenario and the shock fan look
qualitatively similar to that of the local case without noise,
except for an increased shock distance zs �already pointed out
in Ref. �25�� and an adiabatic change of the width of solitons
in the train. In this case, the details of the 1+1D evolutions
could be described by means of Whitham modulation theory,
whose application does not require integrability of the gov-

(b)

(a)

(c)

(d)

(f)

(e)

FIG. 7. �Color online� DSW ruled by the local 1+2D NLS
equation, contrasting the ideal noiseless case �a�–�c� with the evo-
lution in the presence of noise �d�–�f�. �a�–�d� Shock fan at y=0;
�b�–�e� output transverse plane; and �c�–�f� output intensity profile
�solid line� at y=0 superimposed to the input �dashed line�. Here

=0.05 and the soliton stripe input is U�x�=tanh�x�.
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erning equations. While this is clearly beyond the scope of
this work, our goal here is to emphasize that the output trans-
verse pattern of intensity exhibits no transverse break up �see
Fig. 8�b�� in spite of the noisy input. Conversely, the DSW
develops in such a way that soliton filaments in the fan re-
main invariant stripes along y. Once seen at a fixed elevation
y the DSW looks as a soliton train which maintains close
similarity to the train that one obtains when the propagation
is strictly 1+1D �25�. In summary, the comparison of Figs. 7
and 8 allows us to conclude that the nonlocality can play a
crucial role, enabling effective suppression of snake instabili-
ties and observation of effective 1+1D DSW in a 1+2D
setting. The effectiveness of such suppression mechanism is
witnessed also by the fact that we observe the same scenario
if we increase the initial noise level substantially �i.e., one
order of magnitude� with respect to the local case reported in
Figs. 7�d�–7�f�. Such suppression is effective also for ��1
�results not shown� and becomes more and more pronounced
as � increases.

Finally, we have extended the numerical calculations in
order to investigate the case of a dark input with nonzero
minimum intensity. First, we point out that, in this case, the
wave-breaking scenario that leads to the appearance of the
DSW changes qualitatively, as illustrated in Fig. 9 in the
local case. We employ an input wave form corresponding to
a gray soliton U�x�=�1−v2 tanh��1−v2x�+ iv of the inte-
grable NLS equation. In this case, as shown in Fig. 9�a�, a

central black still soliton no longer appears. Conversely two
distinct fans develop, which correspond to two nonsymmet-
ric soliton trains which split up on propagation, having net
velocities of opposite sign �see Fig. 9�b��. The two fans origi-
nate from regularization of two distinct shocks which de-
velop trough gradient catastrophes at points x=xs, located
asymmetrically on the right �xs�0� and left �xs�0� of the
input intensity dip �in x=0�, respectively. These shocks de-
velop at slightly different distances zs, as one can predict
from numerical solutions of the hydrodynamic limit �Eqs.
�14� and �15�� �33�. Snapshots of the field at distance zs
=1.52 corresponding to the formation of the right shock at
xs�0 are shown in Figs. 9�c� and 9�d�, while the left shock
occurs at a slightly longer distance. In particular Figs. 9�c�
and 9�d� compare the density h= ���2 and velocity u=
x of
the equivalent fluid, as obtained by integration of reduced
hyperbolic �Eqs. �14� and �15�� and the full model �Eqs. �12�
and �13��, respectively. As shown, the agreement is remark-
ably good up to the distance considered, beyond which the
dynamics ruled by the full model deviates qualitatively start-
ing to exhibit the soliton train features illustrated in Figs.
9�a� and 9�b�. It is worth pointing out that the asymmetry
between the right and left shocks is due to the soliton phase
�implicitly considered in the initial condition U�x��, which is
responsible for the initial profile of fluid velocity �i.e., the
derivative of the phase with respect to x� reported in Fig.
9�d� as a dotted line. If such phase is suppressed, the two
shocks turn out to be symmetrically located in x around the
origin and develop at the same distance.

As shown in Fig. 10, we find that the 1+1D scenario
illustrated before changes once the propagation occurs in 1

FIG. 8. �Color online� As in Fig. 5, showing stabilization of a
DSW against transverse instability in the nonlocal regime. Results
from numerical integration of Eqs. �12� and �13� with �=1 and 

=0.05. �a� Shock fan at y=0; �b� output �z=8� transverse plane; �c�
output intensity profile �blue thin solid line�; and refractive index
change n�x� �red thick solid line� at y=0 superimposed to the input
�dashed line�.

FIG. 9. �Color online� DSW dynamics in a local medium ��
=0� arising from a gray soliton shape u0=�1−v2 tanh��1−v2x�
+ iv, with v=0.5. �a� and �b� Results from numerical integration of
Eqs. �12� and �13� in 1+1D, with 
=0.05: �a� the twin shock fan in
the x-z plane. The dashed line indicates the natural velocity of the
input in the limit 
=1 for which the input itself is a one soliton; �b�
output intensity in the soliton trains �solid line� compared with the
input intensity �dotted-dashed line�. �c� and �d� Comparison of the
results from Eqs. �12� and �13� �solid line; blue� with those obtained
in the hydrodynamic limit from Eqs. �14� and �15� �thick dashed
line; red�: �c� equivalent fluid density h= ���2 vs x; �d� equivalent
fluid velocity u=
x vs x.
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+2D, similarly to the case of black soliton input. In fact, in
1+2D, the two DSW fans exhibit transverse breakup �Fig.
10�b�� due to the onset of the instability from noise. As a
result, once the dynamics is seen on a plane y=const, the
solitons in the fans show erratic changes of velocity, as can
be seen in Fig. 10�a�. Note that the instability develops from
the most unstable soliton stripes �i.e., the inner ones� in the
two fans. When seen at given distance z and transverse loca-
tion y, the soliton trains appear irregular in x, as displayed in
Fig. 10�c�. Moreover the pattern shown in Fig. 10�c� changes
from plane to plane y=const.

Importantly, however, when nonlocality becomes effec-
tive the twin shock fan is stabilized. A typical example, cor-
responding to the internal parameter value v=0.5, already
employed in the local case �Figs. 9 and 10�, is illustrated in
Fig. 11. In this case the input U�x� corresponds to the exact
soliton shape obtained with 
=1 for the external parameters
�=1 and v=0.5. In spite of a noise level much higher than
the corresponding one in the local case, the DSW does not
break up, showing that the suppression of the instability is
effective also in this case. Similar results are obtained for
different values of soliton velocity v, allowing us to conclude
that the suppression of the instability due to nonlocal effect is
a general phenomenon that permits to observe true 1+1D
�stripe� DSW dynamics also in 1+2D under different initial
conditions.

VI. CONCLUSIONS

In summary we have shown that nonlocality plays a ben-
eficial role in the propagation of dark stripes, allowing for a
substantial suppression of transverse �snake� instabilities for
both a single soliton and dispersive shock waves character-
ized by the emergence of multiple dark soliton stripes. The
residual weak instability leads, over long distances, to decay
into vortex pairs, as numerical simulations of the nonlocal
model seem to indicate.

We point out that the nonlocal mechanism of suppression
investigated in this paper could cooperate under suitable con-
ditions, with other mechanisms previously investigated �31�.
Moreover, stabilization due to nonlocality of dark stripes is
expected also with focusing nonlinearities when the signs of
second derivatives in the transverse plane are opposite �hy-
perbolic case�.
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FIG. 10. �Color online� As in Fig. 9 in 1+2D, showing the onset
of the instability growing from noise. �a� Shock fan at y=0; �b�
output transverse plane; �c� and output intensity profile at y=0
�solid line� compared with the input �dashed line�.

FIG. 11. �Color online� Stabilized DSW in the nonlocal case
with �=1. Results from numerical integration of Eqs. �12� and �13�
with 
=0.05 and input shape characteristic of the nonlocal soliton
U�x� corresponding to v=0.5.
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