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We consider a Bose-Einstein condensate, which is characterized by long-range and anisotropic dipole-dipole
interactions and vanishing s-wave scattering length, in a double-well potential. The properties of this system
are investigated as functions of the height of the barrier that splits the harmonic trap into two halves, the
number of particles �or dipole-dipole strength� and the aspect ratio �, which is defined as the ratio between the
axial and longitudinal trapping frequencies �z and ��. The phase diagram is determined by analyzing the
stationary mean-field solutions. Three distinct regions are found: a region where the energetically lowest lying
stationary solution is symmetric, a region where the energetically lowest lying stationary solution is located
asymmetrically in one of the wells, and a region where the system is mechanically unstable. For sufficiently
large aspect ratio � and sufficiently high barrier height, the system consists of two connected quasi-two-
dimensional sheets with density profiles whose maxima are located either at �=0 or away from �=0. The
stability of the stationary solutions is investigated by analyzing the Bogoliubov–de Gennes excitation spectrum
and the dynamical response to small perturbations. These studies reveal unique oscillation frequencies and
distinct collapse mechanisms. The results derived within the mean-field framework are complemented by an
analysis based on a two-mode model.
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I. INTRODUCTION

Dipolar Bose-Einstein condensates �BECs� have recently
attracted a lot of attention both theoretically and experimen-
tally �1,2�. The experimental realization of a Cr BEC just a
few years ago constitutes an important milestone �3�. Com-
pared to alkali atoms, Cr has a comparatively large magnetic
dipole moment of 6�B, which leads to an enhancement of the
dipole-dipole interactions by a factor of 36 compared to al-
kali atoms. The anisotropy of the dipole-dipole interactions
has been observed experimentally by analyzing time of flight
expansion images of Cr BECs released from a cylindrically
symmetric external confining potential �4�. If combined with
theoretical calculations, the time of flight images reveal the
initial density distribution of the dipolar gas and depend, e.g.,
on whether the magnetic dipole moments are aligned along
the axial or longitudinal confining directions, respectively.
Furthermore, by taking advantage of the tunability of the
s-wave scattering length near a magnetic Fano-Feshbach
resonance, the relative importance of the dipole-dipole inter-
actions can be changed �5–7�, paving the way for a variety of
interesting experimental studies. Dipolar BECs are character-
ized by intriguing collapse mechanisms �6–17�, unique exci-
tation spectra �15,18,19�, and vortex structures �20–24�. In
addition, dipolar gases loaded into optical lattices may allow
for the realization of new phases �25–27�.

Although the dipole-dipole interactions in alkali gases are
too weak to result in observable effects in most experiments,
it is believed that they play a decisive role in the formation
of spin textures in 87Rb condensates �28,29�, in the dynamics
of Bloch oscillations of 39K BECs loaded into an optical
lattice �30�, and in 7Li BECs �31�. Furthermore, BECs and
degenerate Fermi gases that consist of polar molecules may
be realized in the near future �32–34�. This prospect adds an
intriguing twist since the interactions between two polar

molecules can be tuned by an external electric field �35�.
This opens the possibility to enter the strongly correlated
regime, and thus to realize a variety of condensed matter
analogs �25,36,37�.

This paper considers an aligned dipolar BEC in a double-
well geometry. Double-well potentials play an important role
in chemical and condensed matter physics, among other ar-
eas. In the context of cold atom physics, s-wave dominated
alkali systems in a double well have, e.g., been used to study
Josephson-type oscillations �38–46�. The density oscillations
of the Bose gas can be interpreted as corresponding to the
charge current that characterizes “standard” condensed mat-
ter Josephson junctions. Related to this, the macroscopic
quantum self-trapping of atoms in one of the wells has been
demonstrated experimentally and has been interpreted within
a two-mode model that can be derived from the Gross-
Pitaevskii �GP� equation �44,45�. The double-well system
has also been used to experimentally study spin-squeezing
�47�. In this context, the left and the right wells of the system
serve as the two arms of an interferometer �48�. The number
difference and relative phase of the double-well system are
conjugate variables, whose combined measurements has re-
vealed that the system is entangled �47�.

Here, we investigate the behaviors of aligned dipoles un-
der cylindrically symmetric harmonic confinement with a re-
pulsive Gaussian potential centered at z=0. We limit our-
selves to situations where the dipoles are aligned along one
of the symmetry axis of the external harmonic confining po-
tential. This restriction reduces the parameter space and also
significantly reduces the numerical efforts. Arguably, it may
be the conceptually simplest case. We are particularly inter-
ested in determining the phase or stability diagram for both
cigar-shaped and pancake-shaped harmonic confinement.
The boundaries of these phase diagrams are governed by the
nontrivial interplay of the dipole-dipole interactions, the en-
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ergy due to the external harmonic confinement, the energy
due to the Gaussian potential, and the kinetic energy. The
interplay of these energy contributions leads to density pro-
files unique to anisotropic interactions. In agreement with
Ref. �49�, we observe Josephson oscillations as well as mac-
roscopic quantum self-trapping of the system for appropri-
ately chosen parameters. We characterize the transition be-
tween these two regimes by analyzing the excitation
spectrum and the real time response of the system to a small
perturbation. Our study of two neighboring pancake-shaped
dipolar gases can be viewed as a first step toward under-
standing a multilayer system of dipolar pancakes. For a
single pancake, an angular roton instability has been pre-
dicted to occur �15�. For a layer of two-dimensional dipolar
BECs, a new length scale is given by the interlayer distance
and the roton instability has been predicted to be enhanced
compared to the single layer case �50�. Other multilayer
studies can be found in Refs. �51,52�.

The remainder of this paper is organized as follows. Sec-
tion II introduces the mean-field GP equation and discusses
how we determine the stationary and time-dependent solu-
tions. The Bogoliubov–de Gennes equations that are em-
ployed to determine the excitation spectrum of the dipolar
gas are introduced. Section III reviews the two-mode model
that provides an intuitive understanding of the time-
independent and time-dependent GP solutions in the small �
regime. Section IV presents our stationary solutions. We dis-
cuss the phase diagram as functions of the number of par-
ticles �or equivalently, the mean-field strength�, the aspect
ratio and, in selected cases, the barrier height. Section V
presents our time-dependent studies. We investigate certain
dynamically stable regimes and deduce distinct collapse
mechanisms from the response of the system to a small per-
turbation. In addition, selected Bogoliubov–de Gennes
eigenmodes are discussed. Lastly, Sec. VI summarizes our
main findings and discusses possible future studies.

II. MEAN-FIELD DESCRIPTION OF DIPOLAR BECS

Section II A introduces the time-dependent mean-field GP
equation for a dipolar BEC and discusses the numerical tech-
niques employed to determine stationary and time-dependent
solutions. Section II B reviews the Bogoliubov–de Gennes
equations for the dipolar BEC.

A. Gross-Pitaevskii equation

The time-dependent GP equation for a dipolar BEC con-
sisting of N identical point dipoles is given by �9,10,53�

i�
���r�,t�

�t
= H��r�,t� , �1�

where the mean-field Hamiltonian H reads

H = −
�2

2m
�2 + Vext�r�� + �N − 1�� Vdd�r� − r������r��,t��2d3r��.

�2�

Here, m denotes the mass of the dipoles. We interpret ��r� , t�
as a single-particle wave function and correspondingly use

the normalization ����r� , t��2d3r�=1. The external cylindrically
symmetric confining potential Vext consists of a harmonic
trapping potential Vho with angular frequencies �� and �z
and a Gaussian barrier Vg with height A �A�0� and width b,

Vext�r�� = Vho��,z� + Vg�z� , �3�

where

Vho��,z� =
1

2
m���

2�2 + �z
2z2� �4�

and

Vg�z� = A exp�−
z2

2b2	 . �5�

We define the aspect ratio � of the harmonic confining po-
tential as

� =
�z

��

. �6�

Throughout, we employ cylindrical coordinates and write r�
= �� ,� ,z�.

The third term on the right hand side of Eq. �2� represents
the mean-field potential, which depends on both the density
of the system and the dipole-dipole potential Vdd. Through-
out, we assume that the dipoles are aligned along the z axis,

Vdd�r� − r��� = d21 − 3 cos2 	

�r� − r���3
, �7�

where d denotes the strength of the dipole moment of the
dipolar atom or molecule under study and 	 the angle be-
tween the relative distance vector r�−r�� and the z axis.
Throughout, we assume that the s-wave scattering length as
vanishes, implying the absence of the usual s-wave contact
interaction term in Eq. �2�. For dipolar Cr BECs, e.g., this
can be achieved by varying an external magnetic field in the
vicinity of a Fano-Feshbach resonance �5–7�.

Rewriting the integro-differential equation �Eq. �1� with
Eqs. �2�–�7�� in harmonic oscillator units az and Ez, where

az =
 �

m�z
�8�

and

Ez = ��z, �9�

shows that the GP equation depends on four dimensionless
parameters: �i� d2�N−1� / �Ezaz

3�, which characterizes the
strength of the mean-field potential; �ii� the aspect ratio �;
�iii� the scaled barrier height A /Ez; and �iv� the scaled barrier
width b /az. To reduce the parameter space, we consider a
fixed barrier width b, i.e., b=az /5. While most of our calcu-
lations are performed for A=12Ez, we consider smaller bar-
rier heights in selected cases. The aspect ratio is varied from
�=0.1 �cigar-shaped external harmonic confinement� to �
=12 �pancake-shaped external harmonic confinement�.
Lastly, the dimensionless mean-field strength D,
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D =
d2�N − 1�

Ezaz
3 , �10�

is, for a given A and �, varied from 0 to the value Dcr at
which collapse occurs.

In practice, the mean-field strength D can be adjusted by
loading the double-well potential with condensates of vary-
ing particle number N. More conveniently, one might envi-
sion tuning the electric dipole moment of a molecular BEC
through the application of an external electric field �35� or, in
the case of magnetic Cr BECs, by changing the ratio between
the dipole-dipole and the s-wave interactions through the ap-
plication of an external magnetic field in the vicinity of a
Fano-Feshbach resonance �5–7�. Although our study consid-
ers as=0 and varying D, the latter scenario should allow for
the observation of a number of features predicted in this
study. Experimentally, the Gaussian barrier potential of vary-
ing height and width can be realized by a repulsive dipole
beam with adjustable intensity and waist.

The solutions to the integro-differential mean-field equa-
tions have to be determined self-consistently since the den-
sity ���2, which is part of the solution sought, also enters into
the mean-field potential. The stationary solutions can be
written as ��r��=
�� ,z�h��� with h���=exp�ik�� /
2�. In
the following, we seek stationary solutions with azimuthal
quantum number k=0. Our calculation of the excitation spec-
trum does, however, include k�0 modes �see Sec. II B�. The
evaluation of the integral contained in the mean-field poten-
tial can be performed most readily by transforming to mo-
mentum space via a combined Fourier-Hankel transform
�54�. To determine the stationary solutions, we implemented
two different approaches: �i� we minimize the total energy of
the system following the conjugate gradient approach �55�.
In this approach, the solution is expanded in terms of har-
monic oscillator basis functions in � and z, and the expansion
coefficients are optimized so as to minimize the total energy
per particle. �ii� We propagate an initial state in imaginary
time until the stationary solution has been projected out.

The basis functions and the initial state are both repre-
sented on a grid in the � and z directions. The grid along � is
chosen according to the zeroes of the Bessel functions �see
Ref. �54��, which are distributed roughly linearly. Along the z
direction, we use a linear grid. For most calculations, a grid
of N��Nz=64�128 is sufficient. We employ a rectangular
simulation box of lengths �0,�max� and �−zmax,zmax�. For
pancake-shaped systems �i.e., ��1�, a “cutoff” is used for
the dipolar potential �i.e., the interaction is truncated for �z�
�zmax�, which reduces the interaction of the true BEC with
an “artificial image BEC,” and thus allows for the usage of a
smaller zmax �54�. For �
1, no cutoff is employed. Typical
values for �max and zmax are around 15a� and 12az, respec-
tively, where a�=
� / �m���.

We have checked that the conjugate gradient and imagi-
nary time evolution approaches result, within our numerical
accuracy, in identical energies and densities. Furthermore,
for vanishing barrier height, i.e., for A=0, our solutions for
cylindrically symmetric harmonic traps agree with those re-
ported in the literature �15,54�. For nonvanishing barrier
height, we compared our solutions with those reported in

Ref. �49�. Our energies and chemical potentials are in rea-
sonable agreement with those reported in Ref. �49�. For A
=4Ez, b=0.2az, �=0.1, and D=0.6, e.g., we find E /N
=10.69Ez and �=10.00Ez while the values reported in Fig. 2
of Ref. �49� are smaller by about 3% and 4%, respectively.
These deviations are somewhat larger than our estimated nu-
merical uncertainty.

The time dynamics of the system is determined by evolv-
ing a given initial state in real time. The initial state is chosen
according to the variational two-mode model wave function
�see Sec. III� or by adding a small random or smooth pertur-
bation to the stationary GP wave function of the energetically
lowest lying state. If the system collapses to a high-density
state in response to the application of a small perturbation,
then our simulations are only able to follow the real time
evolution for a limited time period. Eventually, our grid be-
comes too coarse to accurately present the time-evolved
state. Since our main aim is directed at identifying the sta-
bility and the collapse mechanisms, this artifact does not
pose any true limitations on our analysis. In fact, once the
density becomes sufficiently high, the mean-field GP descrip-
tion breaks down anyway and beyond mean-field corrections
need to be included. Such a treatment is, however, beyond
the scope of the present work.

B. Bogoliubov–de Gennes equations

In addition to time-evolving a given initial state, we ana-
lyze the stability of the dipolar BEC by seeking solutions to
the time-dependent GP equation of the form �56�

��r�,t� = exp�− i�t/����0�r�� + ���r�,t�� , �11�

where �0�r�� denotes the energetically lowest lying solution
of the time-independent GP equation with k=0 and � the
corresponding chemical potential. We seek “perturbations”
���r� , t� that oscillate with frequency �,

���r�,t� = u�r��exp�− i�t� + v��r��exp�i�t� , �12�

where u�r�� and v�r�� denote the Bogoliubov–de Gennes “par-
ticle” and “hole” functions �57�. Plugging Eq. �11� with ��
given by Eq. �12� into Eq. �1�, keeping terms up to first order
in ���r� , t� and its complex conjugate, and equating the coef-
ficients of the terms oscillating with exp�−i�t� and exp�i�t�,
respectively, we find the Bogoliubov–de Gennes equations
�54�:

��u�r�� = A�r��u�r��

+ �N − 1�� Vdd�r� − r����0
��r���u�r���d3r���0�r��

+ �N − 1�� Vdd�r� − r����0�r���v�r���d3r���0�r��

�13�

and
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− ��v��r�� = A�r��v��r��

+ �N − 1�� Vdd�r� − r����0
��r���v��r���d3r���0�r��

+ �N − 1�� Vdd�r� − r����0�r���u��r���d3r���0�r�� .

�14�

In Eqs. �13� and �14�, the operator A�r�� is defined as

A�r�� = H0 − � + �N − 1�� Vdd�r� − r�����0�r����2d3r��,

�15�

where H0 denotes the Hamiltonian of the noninteracting sys-
tem,

H0 = −
�2

2m
�2 + Vext�r�� . �16�

Equations �13� and �14� can be decoupled by introducing
two new functions f and g, f�r��=u�r��+v�r�� and g�r��=
−u�r��+v�r��. Assuming, without loss of generality, that �0�r��
is real, we find

�2�2f�r�� = A�r���A�r��f�r���

+ 2�N − 1�A�r���� f�r���Vdd�r� − r����0�r���d3r���0�r���
�17�

and

�2�2g�r�� = A�r���A�r��g�r���

+ 2�N − 1�� Vdd�r� − r����0�r���A�r���g�r���d3r���0�r�� .

�18�

Following Ref. �54�, we solve Eq. �18� for the square of the
Bogoliubov–de Gennes excitation frequency � and the cor-
responding eigenvector g�r�� iteratively using the Arnoldi
method. Once g�r�� is determined, the eigenvector f�r�� can be
obtained from the identity

f�r�� = −
1

��
A�r��g�r�� . �19�

The physical meaning of f is elucidated by calculating the
density ���r� , t��2 up to first order in �� and its complex con-
jugate. For real u and v, this gives

���r�,t��2 
 ��0�r���2 + 2 cos��t��0�r��f�r�� , �20�

which shows that f�r��, together with �0�r�� and �, determines
the time-dependent density. Due to the cylindrical symmetry
of the system, the � dependence of f�r�� separates, f�r��
= f̄�� ,z�h���. Section V discusses the behavior of f̄�� ,z�,
which we refer to as the Bogoliubov–de Gennes eigenmode,
for different k and various �D ,�� combinations.

The outlined approach allows for the determination of a
sequence of excitation frequencies for a given azimuthal

quantum number k at a time. It can be seen from Eq. �12�
that a negative �2 and thus a purely imaginary � corresponds
to a situation where the stationary ground state solution is
dynamically unstable.

III. TWO-MODE MODEL

Atomic BECs, coupled through nonvanishing potential
barriers, have been used extensively to model coupled con-
densed matter systems such as 3He-B reservoirs
�39,41,42,45,58�. Although neutral, the study of weakly
coupled atomic BECs allows, e.g., for the realization of a
variety of typical dc and ac effects that characterize charged
Cooper pair superconducting junctions �42,59�. The connec-
tion between weakly coupled atomic BECs and more tradi-
tional condensed matter systems becomes most apparent if
the former is approximated by a two-mode model and
mapped to a Josephson-like Hamiltonian. Here, our primary
motivation for employing the two-mode model is to develop
an intuitive understanding of some of the phenomena ob-
served in our time-independent and time-dependent mean-
field studies.

Let �S�r�� and �A�r�� denote the energetically lowest lying
stationary GP solutions that are, respectively, symmetric and
antisymmetric with respect to z=0. If the symmetric function
�S�r�� is the energetically lowest lying solution of the station-
ary GP equation, we calculate it by employing the conjugate
gradient method or by evolving in imaginary time �see Sec.
II�. The antisymmetric solution �A�r�� is obtained by restrict-
ing the basis functions employed in the conjugate gradient
method to functions that are antisymmetric with respect to
z=0. Without loss of generality, we assume in the following
that �S and �A are real. In the two-mode model, the solutions
�S and �A are treated as a basis that defines the two “modes”
�L�r�� and �R�r��,

�L,R�r�� =
�S�r�� � �A�r��


2
. �21�

By construction, �L�r�� and �R�r�� are normalized to one and
orthogonal to each other. The functions �L and �R are, for
appropriately chosen parameters, located predominantly in
the left well and in the right well, respectively.

Within the two-mode model, the time-dependent wave
function is approximated by �see, e.g., Ref. �56��

��r�,t� = cL�t��L�r�� + cR�t��R�r�� , �22�

where the complex-valued time-dependent expansion coeffi-
cients cL�t� and cR�t� are related through the normalization
condition �cL�t��2+ �cR�t��2=1. Defining cL,R�t�
= �cL,R�t��exp�i�L,R�t��, the time evolution within the two-
mode model is governed by two variables: the fractional dif-
ference Z�t� of the population located in the left and in the
right well,

Z�t� = �cL�t��2 − �cR�t��2, �23�

and the phase difference or relative phase ��t�,
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��t� = �R�t� − �L�t� . �24�

Plugging Eq. �22� into Eq. �1�, multiplying by �L�r�� and
�R�r��, respectively, and integrating out the spatial degrees of
freedom, we obtain two coupled equations that govern the
time dynamics

i�
dcL�t�

dt
= �E0 + B + �U − B��cL�t��2�cL�t� − TcR�t� �25�

and

i�
dcR�t�

dt
= �E0 + B + �U − B��cR�t��2�cR�t� − TcL�t� .

�26�

In deriving Eqs. �25� and �26�, we neglected terms of the
form

�N − 1�� � �i�r��� j�r��Vdd�r� − r����k�r����l�r���d3r��d3r�

�27�

with i� j or k� l, where i, j, k, and l can take the values L
and R. These terms are small as long as �L and �R are
located predominantly in the left well and in the right well,
respectively. In Eqs. �25� and �26�, the onsite, offsite �or
interaction tunneling�, and tunneling matrix elements U, B,
and T are defined as

U = �N − 1�� � ��L�r���2Vdd�r� − r�����L�r����2d3r��d3r� ,

�28�

B = �N − 1�� � ��L�r���2Vdd�r� − r�����R�r����2d3r��d3r� ,

�29�

and

T =� �− �2

2m
� �L�r�� · ��R�r�� − �L�r��Vext�r���R�r���d3r� ,

�30�

and the “zero point energy” E0 is defined as

E0 =� � �2

2m
���L�r���2 + Vext�r����L�r���2�d3r� . �31�

Usage of �R�r�� instead of �L�r�� in Eqs. �28� and �31� gives
the same result.

Rewriting the coupled Eqs. �25� and �26� in terms of Z�t�
and ��t� leads to the classical Hamiltonian HTM �using �
=1�,

HTM = 2T��
Z2�t�

2
− 
1 − Z2�t� cos���t��� , �32�

where

� =
U − B

2T
. �33�

Notably, Z�t� and ��t� are conjugate variables of the classical
Hamiltonian. The energy of HTM is conserved and can, e.g.,
be obtained by inserting Z�0� and ��0� into Eq. �32�. The
properties of HTM have been discussed in detail in the litera-
ture �39,41,42,45�. Here, we review a few points that will aid
in the understanding of our GP solutions.

The two-mode model immediately leads to three different
classes of stationary solutions, i.e., solutions with constant
Z�t� and ��t�: a symmetric solution for ��t�=2�n �n integer�
and Z�t�=0; its energy is −2T. An antisymmetric solution for
��t�= �2n+1�� �n integer� and Z�t�=0; its energy is 2T. A
symmetry-broken solution for ��t�= �2n+1�� �n integer� and
Z�t�= �
1−�−2; this solution exists only if ����1 and its
energy is T��+�−1�. Section IV compares these stationary
two-mode model solutions with those obtained from the sta-
tionary GP solutions.

It turns out that Hamilton’s equations of motion can be
solved analytically for HTM �41�. Of particular interest for
our study is the so-called Josephson oscillation frequency �J,
which—for small amplitude motion—can be expressed in
terms of � �with � “restored”�,

��J,TM = 2T
1 + � . �34�

Section V compares the two-mode model frequency �J,TM
with the frequency obtained from the real time dynamics and
by solving the Bogoliubov–de Gennes equations. For the real
time dynamics, we prepare an initial state at time t=0 ac-
cording to Eq. �22� and then time-evolve this state according
to the time-dependent mean-field Hamiltonian. A Fourier
analysis of the expectation value of z�t� then reveals the pre-
dominant excitation frequency.

IV. DISCUSSION OF STATIONARY SOLUTIONS

This section discusses our solutions to the stationary GP
equation. In particular, we present the phase diagram as a
function of the aspect ratio � and the mean-field strength D
for a fixed barrier height A and discuss selected density pro-
files. Furthermore, we discuss how the phase diagram
changes with varying barrier height and explain some of the
GP results within the two-mode model.

Figure 1 summarizes the character of the energetically
lowest lying solutions with k=0 of the stationary GP equa-
tion as functions of the aspect ratio � and the mean-field
strength D for A=12Ez. The parameter combination �� ,D�
= �0.1,1� corresponds, e.g., to a Cr condensate with vanish-
ing s-wave scattering length, �z=2��10 Hz, ��

=2��100 Hz, and N
1835. The “phase diagram” consists
of three regions: first, a region where the energetically lowest
lying state with k=0 of the stationary GP equation is sym-
metric with respect to the z axis; we refer to this solution as
symmetric �“S”� throughout this paper. Exemplary density
profiles are shown in Figs. 2�a�, 2�c�, and 2�d� �see below for
more details�. Second, a region where the energetically low-
est lying state of the stationary GP equation is neither sym-
metric nor antisymmetric with respect to the z axis; we refer
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to this solution as symmetry-broken �“SB”� or asymmetric.
An exemplary density profile is shown in Fig. 2�b�. And
third, a region where the stationary GP equation supports a
high-density or collapsed solution but no gaslike solution.
We refer to this solution as mechanically unstable �“U”�.
Sections IV A and IV B discuss the properties of the phase
diagram in more detail for ��1 and ��1, respectively.

A. “Small” aspect ratio (�›1)

Figure 3�a� shows the energy contributions to the total
energy per particle Etot /N for �=0.3 and A=12Ez as a func-
tion of D: the kinetic energy per particle Ekin �dashed line�;
the harmonic trap energy per particle Eho �dotted line�, which
is defined as the expectation value of Vho; the Gaussian en-
ergy per particle Eg �dash-dotted line�, which is defined as
the expectation value of Vg; and the mean-field dipole-dipole
energy per particle Edip �dash-dash-dotted line�, which is de-
fined as the expectation value of the mean-field term �third
term on the right hand side of Eq. �2��. A solid line shows the
total energy per particle Etot /N. The energies terminate at the
critical value Dcr at which the stationary GP equation first
supports a negative energy solution.

The Gaussian energy Eg is shown on an enlarged scale in
Fig. 3�b�. It can be seen that Eg shows a “kink” at D
0.75.
We find that the other energy contributions �i.e., Ekin, Eho,
and Edip� and Etot /N exhibit kinks at the same D value. These
kinks are, however, less pronounced and not �or hardly� vis-
ible on the scale shown in Fig. 3�a�. Our analysis shows that
the D values at which the kinks occur coincide with the D
values at which the density profiles of the energetically low-
est lying stationary GP solutions change from symmetric to
symmetry-broken. In most of our calculations for fixed b, A,
and � but varying D, we use the kink in Eg to determine the

D value at which the character of the energetically lowest
lying stationary GP solution changes and thus to obtain the
dash-dot-dotted line in Fig. 1. The stability of the solutions
around the symmetry to symmetry-broken transition is dis-
cussed in Sec. V in the context of Fig. 7 through Fig. 10.

The dash-dot-dotted lines in Fig. 1 can be reproduced
qualitatively by the two-mode model �see circles in Fig. 1�.
To illustrate some aspects of the two-mode model, solid and
dashed lines in Fig. 4 show � �see Eq. �33�� as a function of
D for �=0.3 and 0.4, respectively, and A=12Ez and b
=0.2az. For ����1 and positive T, the two-mode model pre-
dicts a symmetric stationary ground state. For ����1,
a symmetry-broken solution is supported; if T�0 and
�
−1, the symmetry-broken state has a lower energy than
the symmetric state. Vertical arrows in Fig. 4 mark the D
values, D
1.31 and 2.89, at which the transition from sym-
metric to symmetry-broken occurs for �=0.3 and �=0.4, re-
spectively. These two-mode model predictions �also shown
as circles in Fig. 1� are slightly larger than the results ob-
tained by solving the GP equation but predict the symmetric
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FIG. 1. �Color online� Character of the energetically lowest ly-
ing stationary GP solution for b=0.2az and A=12Ez: the dash-dot-
dotted, dash-dotted, and dashed lines indicate those � and D values
at which the character of the energetically lowest lying stationary
GP solution with k=0 changes from symmetric �S� to symmetry-
broken �SB�, from symmetry-broken to unstable �U�, and from
symmetric to unstable, respectively. The “solid �red� islands” in the
upper right corner of the phase diagram �comparatively large D and
�� indicate two regions of the phase diagram where the solutions
are symmetric but where the density maximum is located at ��0;
these islands are discussed in more detail in the context of Fig. 5.
For comparison, circles show the boundary between the symmetric
and symmetry-broken regions predicted by the two-mode model.
Note the log scale of both axes.
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FIG. 2. �Color online� Density plots of the energetically lowest
lying stationary GP solution with k=0 for b=0.2az, A=12Ez and
four different �D ,�� combinations: �a� �D ,��= �0.5477,0.3� �sym-
metric solution�, �b� �D ,��= �1.643,0.3� �symmetry-broken solu-
tion�, �c� �D ,��= �316.2,10� �symmetric solution with density
maximum at �=0�, and �d� �D ,��= �474.3,10� �symmetric solution
with density maximum at ��0�. The contour lines are chosen equi-
distant in all four panels. The dashed contours correspond to �a�
0.05az

−3, �b� 0.1az
−3, �c� 0.0001az

−3, and �d� 0.0001az
−3, while the

solid contours correspond to �a� 0.35az
−3, �b� 0.7az

−3, �c� 0.0007az
−3,

and �d� 0.0007az
−3.
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to symmetry-broken transition qualitatively correctly.
It is interesting to compare the behavior of �, which can

be interpreted as the ratio between an effective interaction
energy and twice the tunneling energy, for �=0.3 and 0.4
�solid and dashed lines in Fig. 4�. For �=0.3, an increase in
the mean-field strength D leads to a monotonic decrease in
�. For �=0.4, in contrast, � first increases, reaches a maxi-
mum at D
0.87 and then decreases monotonically. We find
that the onsite energy U and the offsite energy B are both
negative for all D shown in Fig. 4. A change in the aspect
ratio � effectively changes the strength of the dipole-dipole
interaction, leading to a less attractive U than B, and thus to

a positive �, for small D and �=0.4. For �=0.3, in contrast,
the onsite energy U is always more negative than the offsite
energy B, resulting in a negative � for all D.

In addition to the barrier height A=12Ez, we considered
smaller barrier heights A, in particular A=4Ez and 8Ez, for a
few selected � values. Our calculations suggest that the dash-
dot-dotted line in Fig. 1 �i.e., the line that marks the symmet-
ric to symmetry-broken transition� moves to larger D values
with decreasing A while the dash-dotted line �i.e., the line
that marks the symmetry-broken to unstable transition� re-
mains approximately unchanged with decreasing A. The de-
pendence of the dash-dot-dotted line on A for fixed � and b
can be explained by applying the two-mode model. As A
decreases, the tunneling energy T becomes more important
compared to the absolute value of the effective interaction
energy U−B. This implies that ��� decreases with decreasing
A �for fixed � and b�. Correspondingly, a larger D is required
for the two-mode model condition ���=1, which signals the
symmetric to symmetry-broken transition, to be fulfilled. The
fact that the dash-dotted line in Fig. 1 remains to first order
unchanged with decreasing A is due to the fact that the den-
sity of the system prior to collapse is located predominantly
in one of the wells. This implies that the density prior to
collapse is only weakly dependent on A, thus explaining the
comparatively small dependence of the dash-dotted line on A
for the parameter combinations investigated.

We note at this point that the linear stationary Schrödinger
equation permits only symmetric and antisymmetric solu-
tions but no symmetry-broken solutions. This fact empha-
sizes that the transition from symmetric to symmetry-broken
is driven by mean-field interactions. Furthermore, this fact
implies that the symmetry-broken solution should disappear
if sufficiently many higher order corrections to the mean-
field GP equation are taken into account �see, e.g., Ref. �41��.
In this sense, the appearance of the symmetry-broken region
in the phase diagram is an artifact of the mean-field formal-
ism. It is, however, intimately related to the dynamical phe-
nomena of Josephson oscillation and macroscopic quantum
self-trapping, both of which have been observed experimen-
tally for s-wave interacting BECs. We return to these consid-
erations in Sec. V in the context of the discussion of Fig. 7
through Fig. 10.

B. “Large” aspect ratio (�œ1)

Figure 5 shows an enlargement of the large � region of
Fig. 1 using a linear scale for both � and D. The S0 region of
the phase diagram is characterized by GP solutions whose
density maxima are located at �=0 �see Figs. 2�a� and 2�c�
for examples� while the S�0 region of the phase diagram is
characterized by GP solutions whose density maxima are lo-
cated at ��0 �see Fig. 2�d� for an example�. The latter class
of density profiles only exists in a narrow parameter region
of the phase diagram; in particular, these solutions only arise
for pancake-shaped confining potentials and not for cigar-
shaped confining potentials. Furthermore, the solutions with
S�0 character are unique to dipolar gases, i.e., they are not
observed for purely s-wave interacting gases, and thus di-
rectly reflect the anisotropic long-range nature of the dipole-
dipole interactions.
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FIG. 3. �Color online� �a� Energy contributions of the energeti-
cally lowest lying stationary GP solution with k=0 as a function of
D for �=0.3, A=12Ez, and b=0.2az. The solid, dashed, dotted,
dash-dotted, and dash-dash-dotted lines show Etot /N, Ekin, Eho, Eg,
and Edip, respectively. �b� Blow-up of the Gaussian energy Eg. Eg

exhibits a kink at D
0.75, indicating the symmetry change �sym-
metric to symmetry-broken� of the energetically lowest lying sta-
tionary GP solution.
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FIG. 4. �Color online� Two-mode model parameter � for A
=12Ez and b=0.2az as a function of D for �=0.3 �solid line� and
�=0.4 �dashed line�. Vertical arrows mark the D values at which ���
equals 1; for ���
1 and �1, the two-mode model predicts that the
energetically lowest lying stationary state is symmetric and
symmetry-broken, respectively.
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The two different classes of symmetric solutions have
previously been characterized for A=0, i.e., for a pancake-
shaped trapping geometry without barrier �15,60�. In those
studies, a dipolar BEC with density maximum at ��0 was
termed “red blood cell,” as its isodensity surface is reminis-
cent of the shape of a red blood cell. The S�0 regions in Fig.
5 are characterized by the formation of two staggered red
blood cells. Section V shows that the dynamical instability
near Dcr of the stationary k=0 ground state solutions of types
S0 and S�0 is distinctly different.

Figure 5 shows that, generally speaking, the D value at
which the dipolar gas becomes unstable increases with in-
creasing �. This trend can be understood by realizing that an
increase in � leads to a “flattening” of the system so that the
dipoles interact effectively more repulsively. The boundary
near the stable and unstable regions shows a rich structure:
�i� as already noted above, S�0 islands in which the density
profiles are structured exist. �ii� The boundary between the
S0 and the U regions of the phase diagram changes non-
monotonically. For D
240, e.g., the system is mechanically
stable for ��8.13, mechanically unstable for 8.13��
�7.72, and then again mechanically stable for a small �
regime �7.72���7.42�.

We find that some, though not all, of the features of the
phase diagram can be reproduced qualitatively by a simple
variational wave function �var�� ,z�,

�var��,z� = �exp�−
�2

2b1
2	 + b2 exp�−

�2

2b3
2	�

��exp�−
z2

2b4
2	 + b5�1 −

z2

�az
2	exp�−

z2

2b6
2	� ,

�35�

where b1−b6 denote variational parameters that are opti-
mized by minimizing the energy per particle. For b2=b5=0,
�var reduces to the commonly used variational wave function
of purely Gaussian shape. The second term in the first square
bracket on the right hand side of Eq. �35� has been added to
allow for the description of densities of S�0 character, while
the second term in the second square bracket on the right
hand side of Eq. �35� has been added to account for the

Gaussian barrier along the z direction. Figure 6 compares the
total energy per particle from our variational calculation
�dashed line� with that from the full numerical calculation
�solid line� for A=12Ez, �=7, and b=0.2az. The variational
energy is less than 2% higher than the energy obtained from
the full numerical calculation. We find that the density of the
dipolar gas changes from S0 to S�0 character at D
35, com-
pared to D=80.03 obtained from the full calculation. For
both sets of calculations, the energy and its derivative change
smoothly as the system undergoes the structural change from
S0 to S�0. For comparison, a dash-dotted line in Fig. 6 shows
the energy per particle for �var with b2=0 �we refer to this
variational wave function as four-parameter wave function�,
i.e., for a wave function that is not sufficiently flexible to
describe structured ground state densities of red blood cell
shape. As expected, this variational wave function results in
somewhat higher energies.

The variational wave function �var predicts S0 to S�0 tran-
sitions for all aspect ratios � between 5 and 12, indicating
that it is not flexible enough to describe the island character
of the S�0 regions of the phase diagram and, furthermore,
that the S0 to S�0 transition is driven by a delicate balance
between the different energy contributions. Motivated by cal-
culations presented in Ref. �15�, we expect that the varia-
tional four-parameter wave function can qualitatively repro-
duce the existence of alternating stable and unstable regions
of the phase diagram as � is changed for fixed D and A �see
our discussion above for D
240 and A=12Ez�; we have,
however, not checked this explicitly. Lastly, we note that the
variational six-parameter wave function predicts a stable di-
polar gas even for fairly large D �i.e., D values larger than
those shown in Fig. 6� while the full numerical calculation
predicts collapse at D
190.49.

V. DISCUSSION OF DYNAMICAL STUDIES

This section presents Bogoliubov–de Gennes excitation
spectra and discusses the corresponding eigenmodes. For
small � and appropriate D �see Sec. V A�, the lowest nonva-
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FIG. 5. �Color online� Blow-up �with more detail� of the phase
diagram for b=0.2az and A=12Ez shown in Fig. 1: the region where
the energetically lowest lying symmetric stationary GP solution has
its density maximum at �=0 is labeled by “S0” and that where the
energetically lowest lying symmetric stationary GP solution has its
density maximum at ��0 by “S�0.”
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FIG. 6. �Color online� A solid line shows the total energy per
particle Etot /N of the energetically lowest lying stationary GP solu-
tion with k=0 as a function of D for �=7, A=12Ez and b=0.2az

obtained numerically. For comparison, dashed and dash-dotted lines
show Etot /N obtained using the variational six- and four-parameter
variational wave functions �see text for details�. The density of the
system changes from S0 to S�0 character at D
35 and 80.03 for
the six-parameter variational and the full numerical calculations,
respectively.
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nishing Bogoliubov–de Gennes excitation frequency is iden-
tified as the Josephson oscillation frequency �J. Compari-
sons with results obtained by time-evolving a properly
prepared initial state and by applying the two-mode model
equations are presented. In the regime where the symmetric
solutions are of types S0 and S�0, respectively �large �, see
Sec. V B�, the decay mechanisms are identified. Further-
more, the character of various �avoided� crossings of the ex-
citation frequencies is revealed.

A. “Small” aspect ratio (�›1)

Figure 7 shows the excitation spectrum as a function of D
obtained by solving the Bogoliubov–de Gennes equations for
A=12Ez, b=0.2az, and �=0.3. The spectrum is characterized
by three distinct features that will be elaborated on in the
following paragraphs: �i� the real part of the lowest k=0
frequency vanishes at D
0.68, and “reappears” at D

0.75. �ii� The k=0 frequencies show a series of crossings
�or avoided crossings� at D
2.42. �iii� At slightly larger D
values, i.e., near D
2.45, the real part of several k=0 exci-
tation frequencies vanishes.

We first discuss the regime �i� around D
0.68–0.75. Fig-

ure 8�a� shows the Bogoliubov–de Gennes eigenmode f̄�� ,z�
that corresponds to the lowest nonvanishing k=0 frequency
for D=0.6573, A=12Ez, �=0.3, and b=0.2az. For these pa-
rameters, the energetically lowest lying stationary GP solu-
tion is symmetric and the corresponding eigenfrequency has
a finite real part and vanishing imaginary part �see Fig. 7�.
Since Bogoliubov–de Gennes functions with k=0 have no
explicit � dependence, the eigenmode shown in Fig. 8�a�
corresponds to a situation where the population oscillates
with frequency � between the left and the right well as a
function of time. The lowest nonvanishing k=0 frequency
can thus be identified as the Josephson oscillation frequency
�J �see also below�. For comparison, Fig. 8�b� shows the

Bogoliubov–de Gennes eigenmode f̄�� ,z� corresponding to
the lowest nonvanishing k=0 frequency for D=0.7668 �i.e.,
in the regime where the frequency has “reappeared” and
where the energetically lowest lying stationary GP solution
with k=0 is symmetry-broken� and the same A, Ez, and b

values as before. In this case, the asymmetry of the eigen-
mode indicates that there is population transfer between the
left and the right wells but that there is, on average, more
population in the right than in the left well. This behavior is
identified as macroscopic quantum self-trapping. Our inter-
pretation of the Bogoliubov–de Genne eigenmodes is sup-
ported by our time-dependent calculations.

In our time-dependent studies near the symmetric to
symmetry-broken transition, we prepare an initial state and
time-evolve it according to the mean-field Hamiltonian H,
Eq. �2�. As for s-wave interacting BECs, the system dynam-
ics can be divided into two categories �see also above�: a
regime where the population is transferred back and forth
between the left well and the right well �this is the Josephson
oscillation regime� and a regime where the time averaged
population is asymmetrically divided among the two wells
�this is the macroscopic quantum self-trapping regime�. Fig-
ures 9�a� and 9�b� show the time evolution of the expectation
value �z�t�� for D=0.6573 and D=0.7668, respectively.
Here, �z�t�� is obtained by calculating the expectation value
of z with respect to the GP density at each time step. The
expectation value �z�t�� is related to but not identical to the
population difference Z�t� introduced in Sec. III. For these D
values, the energetically lowest lying stationary GP solution
is symmetric and symmetry-broken, respectively. For D
=0.6573, the initial state is prepared according to Eq. �22�
with ��0�=0 and Z�0�=0.002. Figure 9�a� shows that �z�t��
oscillates between positive and negative values of equal
magnitude and that the time average of �z�t�� over a period
gives zero. For D=0.7668, the initial state is prepared by
adding a small amount of random noise to the energetically
lowest lying stationary GP solution. Figure 9�b� shows that
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FIG. 7. �Color online� Excitation spectrum obtained by solving
the Bogoliubov–de Gennes equations as a function of D for A
=12Ez, b=0.2az, and �=0.3. The real parts of the frequencies for
k=0 and 1 are shown by solid and dashed lines, respectively. The
vertical arrow indicates the D value, D
0.68, at which the real part
of the lowest nonvanishing k=0 Bogoliubov–de Gennes frequency
vanishes.
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FIG. 8. �Color online� Bogoliubov–de Gennes eigenmodes

f̄�� ,z� corresponding to the lowest nonvanishing k=0 frequency for
�=0.3, A=12Ez, b=0.2az, and �a� D=0.6573 and �b� D=0.7668.
The contours are chosen equidistant, with solid and dashed lines

corresponding to positive and negative values of f̄ . The dash-dotted

lines indicate the nodal lines of f̄ .
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�z�t�� oscillates about a negative value and that the time av-
erage of �z�t�� gives a nonzero value. An analysis of the time
evolution of the density profiles confirms that the system is
in the Josephson regime and in the macroscopic quantum
self-trapping regime, respectively.

To determine the oscillation frequency from the time evo-
lution of �z�t��, we Fourier transform �z�t�� and record the
center of the dominant peak for various parameter combina-
tions. Circles in Fig. 10 show the resulting Josephson oscil-
lation frequency �J for A=12Ez, �=0.3, and b=0.2az. The
agreement between the frequency obtained from the Fourier
analysis �circles in Fig. 10� and the lowest nonvanishing k
=0 Bogoliubov–de Gennes excitation frequency �solid line
in Fig. 10� is excellent. The D value at which the Josephson
oscillation frequency obtained by Fourier transforming �z�t��
vanishes, coincides, within our numerical accuracy, with that
at which the lowest nonvanishing k=0 Bogoliubov–de
Gennes excitation frequency becomes imaginary. Notably,
this D value, D
0.68, is slightly smaller than the D value at
which the energetically lowest lying stationary GP solution
changes from symmetric to symmetry-broken �D
0.75�.

We find that the lowest nonvanishing k=0 Bogoliubov–de
Gennes frequency for D=0.7668 and �=0.3 is about 30%
smaller than the oscillation frequency extracted from Fig.
9�b�, i.e., �=0.059�z. The fact that the Bogoliubov–de
Gennes excitation frequency differs notably from the fre-
quency obtained by Fourier transforming �z�t�� might be due
to the approximate nature of the Bogoliubov–de Gennes
equations.

For comparison, a dash-dotted line in Fig. 10 shows the
Josephson oscillation frequency �J,TM, Eq. �34�, predicted by
the two-mode model. Figure 10 shows that the two-mode
model provides a qualitatively but not quantitatively correct
description of the Josephson oscillation frequency. The fact
that the two-mode model does not allow for quantitative pre-
dictions for all D is likely due to the fact that the modes �L
and �R are not entirely located in the left well and in the
right well, respectively, but that the left mode “leaks” into
the right well and the right mode into the left well. This has
been discussed in some detail in Ref. �49�, which employs a
slightly modified version of the two-mode model. In an at-
tempt to obtain a better simple quantitative description of the
system dynamics, we applied the improved two-mode model
proposed in Ref. �45�. For the cases considered, we find that
this model leads only to small changes compared to the
simple two-mode model applied above and does not provide
a significantly improved description. In the future, it may be
interesting to apply a multimode model.

We now discuss the regime �ii� near D
2.42, where the
k=0 frequencies show �avoided� crossings. To shed light on
these �avoided� crossings, Figs. 11�a�–11�d� show the

Bogoliubov–de Gennes eigenmodes f̄�� ,z� corresponding to
the four lowest nonvanishing k=0 frequencies just before the
crossing �i.e., for D=2.410�, while Figs. 11�e�–11�h� show
those corresponding to the four lowest k=0 frequencies just
after the crossing �i.e., for D=2.443�. Dash-dotted lines in
Fig. 11 indicate the nodal lines of the Bogoliubov–de Gennes
eigenmodes. While some of these nodal lines are to first
order only dependent on z, others depend in a nontrivial
manner on � and z. In the following, we discuss a few key
features of the eigenmodes shown in Fig. 11. The eigenmode
corresponding to the lowest frequency extends over both
wells just before the crossing �see Fig. 11�a�� and is located
predominantly in one of the wells just after the crossing �see
Fig. 11�e��. The eigenmode corresponding to the second low-
est nonvanishing frequency, in turn, is located predominantly
in one of the wells just before the crossing �see Fig. 11�b��
and extends over both wells just after the crossing �see Fig.
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FIG. 9. Solid lines show the expectation value �z�t�� �see text�—
calculated by time-evolving a given initial state according to the
mean-field Hamiltonian, Eq. �2�—as a function of time t for A
=12Ez, �=0.3, b=0.2az, and �a� D=0.6573 �Josephson oscillation
regime� and �b� D=0.7668 �macroscopic quantum self-trapping re-
gime�. In panel �a�, the initial state is prepared according to Eq. �22�
with Z�0�=0.002 and ��0�=0. In panel �b�, the initial state is pre-
pared by adding a small amount of random noise to the energeti-
cally lowest lying stationary GP solution.
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FIG. 10. �Color online� Josephson oscillation frequency �J as a
function of D for �=0.3, A=12Ez, and b=0.2az. The circles show
the Josephson oscillation frequency �J obtained from our time-
dependent study, in which the initial state is prepared according to
Eq. �22� with Z�0�=0.002 and ��0�=0 and then time-evolved ac-
cording to the mean-field Hamiltonian H, Eq. �2�. The solid line
shows the lowest nonvanishing k=0 Bogoliubov–de Gennes excita-
tion frequency. For comparison, a dash-dotted line shows the two-
mode model prediction �J,TM.
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11�f��. The third and fourth lowest excitation frequencies
show an avoided crossing at D
2.41 �see Fig. 7�. The
eigenmode corresponding to the third lowest nonvanishing
k=0 frequency has a fairly small amplitude in the right well
before the avoided crossing �see Fig. 11�c��; after the
avoided crossing, the eigenmode corresponding to the third
lowest k=0 frequency is located essentially entirely in the
left well �see Fig. 11�g��. The eigenmode corresponding to
the forth lowest frequency, in turn, changes comparatively
little as D increases �see Figs. 11�d� and 11�h��.

Next, we turn to regime �iii� near D
2.45, where the real
part of several k=0 Bogoliubov–de Gennes excitation fre-
quencies vanishes. The softening of these frequencies is in-
herently related to the transition from the stable symmetry-
broken region to the unstable region of the phase diagram.
The Bogoliubov excitation spectrum for Az=12Ez, �=0.3,
and b=0.2az shows that the real part of the lowest k=0 fre-
quency vanishes at D
2.45, which is slightly smaller than
the D value at which the stationary GP equation starts sup-
porting unbounded negative energy solutions. In particular,
for the parameter combination considered, the difference is
about 0.6%. The Bogoliubov–de Gennes excitation spectrum
indicates that the collapse is triggered by the lowest k=0
mode. The corresponding eigenmode �see Fig. 11�e�� shows

that, as might be expected naively, the density grows appre-
ciably in the well that supports the majority of the popula-
tion. This interpretation is supported by our time-dependent
studies. Following the lowest k=0 mode, the eigenmode cor-
responding to the third lowest nonvanishing k=0 frequency
becomes soft. As indicated in Fig. 11�g�, this eigenmode is,
not unexpectedly, also located predominately in one of the
wells. To summarize, the collapse of the system can be char-
acterized as a global collapse in which the density maximum
increases in one of the wells, with the density maximum
being located at �=0.

B. “Large” aspect ratio (�œ1)

This section discusses selected Bogoliubov–de Gennes
excitation spectra for larger �. In particular, we focus on �
=5 and �=7, for which the energetically lowest lying sta-
tionary GP solution prior to collapse is of type S0 and S�0,
respectively.

Figure 12 shows the excitation spectrum as a function of
D for �=5, A=12Ez, and b=0.2az. The two lowest nonvan-
ishing k=0 frequencies �solid lines in Fig. 12�a�� cross at
D
17. Prior to the crossing, the lowest k=0 frequency cor-
responds to an eigenmode whose nodal line is parameterized
by z=0 �see dash-dotted line in Fig. 13�a��. Correspondingly,
the eigenmode describes density oscillations between the left
and the right well with, on average, equal densities in each of
the two wells. For D
17–22 �i.e., after the crossing�, the
nodal line of the lowest nonvanishing k=0 eigenmode is to a
good approximation independent of z and can be param-
etrized by �
2az to 
3az. As an example, Fig. 13�b� shows
the eigenmode for D=21.87, which is just slightly smaller
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FIG. 11. �Color online� Bogoliubov–de Gennes eigenmodes

f̄�� ,z� corresponding to the four lowest nonvanishing k=0 frequen-

cies for �=0.3, A=12Ez, and b=0.2az. Panels �a�–�d� show f̄ cor-
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than the D value at which the real part of the corresponding
Bogoliubov–de Gennes frequency vanishes. In particular, the
lowest Bogoliubov–de Gennes mode becomes soft at D

21.92, while the stationary GP equation ceases to a support
a positive energy solution with k=0 at a somewhat larger D
value, namely at D
22.03.

Figures 12 and 13�b� suggest that the collapse of the sys-
tem is triggered by the lowest k=0 mode and that the col-
lapse is associated with an increase in the peak density at �
=0 in each of the two wells. The collapse can thus be char-
acterized as a local collapse as opposed to a global collapse.
The local nature of the collapse �i.e., the fact that the peak
density grows simultaneously in two distinct regions� can be
traced back directly to the presence of the comparatively
large Gaussian barrier. The chemical potential � takes values
around 2Ez for the parameter range considered in Fig. 12 and
is thus significantly smaller than the barrier height A, A
=12Ez. In the limit that the Gaussian barrier vanishes �15�,
the collapse becomes global. In this case, a similar nodal
pattern of the eigenmode was found �see Fig. 2Ic of Ref.
�15�; the larger number of nodal lines in this plot can be
traced back to the larger � value� and the collapse is associ-
ated with a radial roton.

Figure 14 shows the Bogoliubov–de Gennes excitation
spectrum for �=7, A=12Ez, and b=0.2az. For this parameter
combination, the energetically lowest lying stationary GP so-
lution deviates from the “structureless Gaussian shape” prior
to collapse and is instead characterized by a density whose
maximum is located at ��0, i.e., the density is of type S�0
prior to collapse �see Fig. 2�d� for a density profile of type
S�0 for a somewhat larger ��. The Bogoliubov–de Gennes
excitation spectrum shown in Figs. 14�a� and 14�b� is rich,

with a series of crossings and avoided crossings. Here, we
focus on the large D regime. Figures 14�a� and 14�b� show
that the lowest k=3 mode becomes soft first, followed by the
lowest k=2, k=1, and k=0 modes. This indicates that the
collapse is triggered by a mode with nonvanishing azimuthal
quantum number, similarly to the case with vanishing barrier
height �15�. The D value, D
163, at which the k=3 mode
becomes soft is about 16% smaller than the D value at which
the stationary GP equation first supports negative energy so-
lutions. This implies an appreciable reduction in the S�0 is-
lands shown in Figs. 1 and 5.

It is worth emphasizing at this point that the fact that the
k=3 mode becomes soft first is not specific to the double-
well geometry considered here; in fact, decay triggered by
the k=3 mode has also been found for pancake-shaped dipo-
lar gases without barrier �see Ref. �15� and below�. While
Fig. 14 shows an example where the k=3 mode becomes soft
first, we find that the collapse can—again, just as in the case
of vanishing barrier �15�—also be triggered by other finite k
modes. For example, for a somewhat smaller barrier height
but the same barrier width and aspect ratio as in Fig. 14 �i.e.,
for A=9Ez, b=0.2az, and �=7�, we find that the k=2 mode
becomes soft first, followed by the k=3 and k=1 modes �our
calculations included modes k=0 through 4�. In the follow-
ing, we analyze the collapse triggered by the k=3 mode in
more detail.

Figure 15 shows the eigenmodes associated with the two
lowest k=3 Bogoliubov–de Gennes frequencies for D
=119.1 �Figs. 15�a� and 15�b�� and D=161.4 �Figs. 15�c� and
15�d��. Figure 15 shows that the eigenmode corresponding to
the lowest nonvanishing k=3 frequency has no nodal line
prior to the avoided crossing at D
140 �see Fig. 15�a�� but
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one nodal line, which can be parametrized roughly by �

6az �or, equivalently by �
2.6a��, just prior to collapse
�see Fig. 15�c��. Importantly, the eigenmode remains sym-
metric with respect to z=0 even close to collapse and exhib-
its two equivalent extrema at positive and negative z. This
suggests that the collapse is associated with a total of six
density peaks, three located on a ring of the red blood cell
located in the left well and three located on a ring of the red
blood cell located in the right well. The collapse can thus be
characterized as local, with the local character arising from
�i� the angular rotonlike nature of the instability and �ii� the
presence of the Gaussian barrier.

It is interesting to compare the eigenmodes for systems
with vanishing and finite barrier in the regime where the first
Bogoliubov–de Gennes mode becomes soft. To this end, Fig.
16 shows the eigenmodes corresponding to the two lowest
nonvanishing k=3 frequencies for two different D values,
i.e., for D=66.14 and D=81.49, and �=7 and A=0. The
latter D value corresponds to that investigated in Fig. 2II of
Ref. �15�. While we find that our excitation spectrum for A
=0 �not shown here� agrees with Fig. 2IIb of Ref. �15�, our
eigenmode corresponding to the lowest nonvanishing k=3
frequency differs. In fact, we find that the eigenmode shown
in Fig. 2IIc for D=81.49 �61� corresponds to the second
lowest and not to the lowest nonvanishing k=3
Bogoliubov–de Gennes eigenfrequency as stated in Refs.
�15,62�. The eigenmode shown in Fig. 16�c� for A=0 and
D=81.49 has a nodal line very similar to that shown in Fig.
15�c� for A=12Ez and D=161.4, i.e., for a D value that is
roughly twice as large as that for A=0. The main difference
between the two eigenmodes is that, the latter is character-
ized by extrema at z
 �az as opposed to z=0.

VI. SUMMARY AND OUTLOOK

This paper presents a detailed mean-field analysis of a
purely dipolar BEC in a cylindrically symmetric external
confining potential with repulsive Gaussian barrier centered
at z=0. The dipoles are assumed to be aligned along one of
the symmetry axes of the confining potential, which can be
realized experimentally through the application of an exter-
nal field. We have investigated the behaviors of the system as
functions of the dimensionless parameter D, which is defined
as the product of the number of particles and the square of
the magnitude of the dipole moment d, the aspect ratio �
and, in a few selected cases, the height A of the Gaussian
barrier. Throughout, the barrier width b and the s-wave scat-
tering length as were kept fixed at b=0.2az and as=0, respec-
tively. The energetics and the density profiles obtained by
solving the stationary GP equation have been discussed and
the onset of the mechanical instability has been analyzed.
Additional insights were gained from a dynamical stability
analysis, which is based on time-evolving a given initial state
or on the Bogoliubov–de Gennes excitation spectrum. The
latter was complemented by a detailed analysis of selected
Bogoliubov–de Gennes eigenmodes.

For sufficiently small aspect ratios, i.e., for cigar-shaped
harmonic traps in which the dipoles are aligned along the
weak confinement direction, the energetically lowest lying
stationary ground state solution is either symmetric or
symmetry-broken. As in the case of s-wave interacting
BECs, the appearance of these solutions can be explained
qualitatively within a two-mode model. For a critical mean-
field strength Dcr, the system becomes unstable. The
Bogoliubov–de Gennes framework reveals that the collapse
occurs globally, i.e., within a single well, with the decay
being triggered by a mode with vanishing azimuthal quan-
tum number.
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As the aspect ratio � increases, the region of the phase
diagram where the energetically lowest lying stationary GP
solution is symmetry-broken vanishes. For sufficiently large
aspect ratio �, the symmetric solutions fall into one of two
classes: the system’s density is characterized by a density
maximum at �=0 �this is referred to as S0 type� or by a
density maximum at ��0 �this is referred to as S�0 type�.
The latter class of solutions occupies a fairly small region of
the phase diagram and only occurs near the dynamical insta-
bility line and only for certain aspect ratios � and barrier
heights A. For a barrier height of A=12Ez and �=7, e.g., the
solution is of type S�0 prior to collapse. Correspondingly, we
find that the collapse occurs locally through a mode with
finite azimuthal quantum number �k=3�, with density spikes
emerging in six different regions of the trap. Three of these
density peaks grow in the left well and three in the right well.
Furthermore, each of the three density peaks lies on a ring
that is associated with the density maximum of the ground
state solution at ��0. The instability can, as in the case of a
vanishing Gaussian barrier, be characterized as an angular
roton instability. We note, however, that the radial degrees of
freedom also play a role, i.e., that the Bogoliubov–de Gennes
eigenmodes prior to collapse contain radial nodal lines. For
pancake-shaped trapping geometries �i.e., for ��1�, this pa-
per primarily explored the �D ,�� parameter space for fixed
A. We find that the double-well system exhibits a number of
rich stability characteristics as the barrier height A is varied;
these studies will be reported on in a forthcoming article
�63�.

Our theoretical predictions for purely dipolar BECs pre-
sented in this paper can be tested experimentally by loading
a dipolar BEC such as a Cr BEC into a double-well potential
and by tuning the s-wave scattering length to zero through
the application of an external magnetic field in the vicinity of
a magnetic Feshbach resonance. Following the spirit of the
double-well experiments for s-wave interacting BECs �see,
e.g., Ref. �44��, it should be possible to study the transition
from the Josephson tunneling regime to the macroscopic
quantum self-trapping regime by loading the double-well
system with varying number of particles and varying popu-

lation difference in the left and right wells. For pancake-
shaped harmonic confinement, we suggest an experimental
sequence that would allow the stability lines discussed in the
context of Fig. 5 to be probed. We suggest to increase the
radial trapping frequency �� �and to thus decrease �� for
fixed A and to monitor the loss of atoms from the trap. This
scenario corresponds to approaching the instability line in
Fig. 5 vertically from above. By repeating this experiment
for condensates with varying number of particles, the differ-
ent collapse mechanisms associated with the S0 regions and
the S�0 islands could be probed �see also Ref. �64��.

In the future, it will be interesting to investigate how the
behaviors of the system change as a function of the “spac-
ing” between the left and the right well, i.e., as a function of
the barrier widths b. The present study covers the regime
where the spacing between the left and the right well is com-
paratively small, i.e., where it is comparable to the axial
confinement length, and where the system is described by
one macroscopic wave function. Our approach for pancake-
shaped confinement with Gaussian barrier is distinctly differ-
ent from other recent studies of multilayer �quasi-�two-
dimensional dipolar BECs �50,52�, which assume that the
dipoles in neighboring wells feel each other but that the dis-
tance between the neighboring wells is so large that each
dipole can be assigned to a specific well. In this case, the
system has been discretized, leading to a coupled set of equa-
tions that have been solved self-consistently. It will be inter-
esting to extend the present study of pancake-shaped two-
well systems to a regime where comparisons with a
discretized description become meaningful. It will also be
interesting to extend the present work to multiwell traps. In
the regime of small aspect ratio, e.g., a three- or four-well
system might lead to interesting dynamics that can be con-
trolled by varying the onsite and the offsite interactions. In
this case, a multimode analysis suggests itself as a first start-
ing point.
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