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Disorder modifies the sound-wave excitation spectrum of Bose-Einstein condensates. We consider the clas-
sical hydrodynamic limit, where the disorder correlation length is much longer than the condensate healing
length. By perturbation theory, we compute the phonon lifetime and the correction to the speed of sound. This
correction is found to be negative in all dimensions, with universal asymptotics for smooth correlations.
Considering in detail optical speckle potentials, we find a quite rich intermediate structure. This has conse-
quences for the average density of states, particularly in one dimension, where we find a “boson dip” next to
a sharp “boson peak” as function of frequency. In one dimension, our prediction is verified in detail by a
numerical integration of the Gross-Pitaevskii equation.
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I. INTRODUCTION

Disorder is a key feature for the understanding of the
properties of matter. In a disordered environment, waves can
become coherently localized, leading to suppression of trans-
port �1,2�. Also strong interaction can produce an insulator
via the Mott-Hubbard transition �3�. The combined effects of
interaction and disorder, despite being studied for decades,
still hold surprises. Here we are interested in the influence of
a spatially correlated disorder potential on the low-energy
excitations of an interacting Bose-Einstein condensate
�BEC�. As Goldstone excitations, these low-energy Bogoliu-
bov excitations feature a linear, phononlike dispersion rela-
tion �k=ck with sound velocity c. The sound velocity is of
particular interest because it determines the range of super-
fluidity, according to the Landau criterion, and it determines
the density of states, which enters virtually all physically
relevant quantities. Moreover, the speed of sound is directly
measurable in cold-atom BECs �4�, where well-controlled
optical speckle potentials with interesting spatial correlations
can be studied �2,5�.

Calculating the effective speed of sound c̄ in disordered
systems is far from trivial, with different approaches leading
to different predictions. Perturbation theory, on the one hand,
predicts an increased speed of sound due to three-
dimensional �3D� uncorrelated disorder �6,7�. On the other
hand, within a self-consistent nonperturbative approach,
Yukalov and Graham �8� reported numerically a slight de-
crease. For disordered hard-core bosons on a lattice, Zhang
�9� found a decrease of c to fourth order in disorder strength
without information on the second-order effect.

To clarify the situation with suitable parameters for
present-day BEC experiments, we study in this paper phonon
excitations of a BEC in the strongly interacting case where
the chemical potential � is much larger than the disorder
strength V and where the condensate healing length �
=� /�2m� is much smaller than the disorder correlation
length � �see Fig. 1�. Without disorder, the BEC is contained
in a very shallow trap and has a constant density n0=� /g in
the region of interest. In the presence of smooth disorder
with correlation length ���, the BEC ground-state density
follows the external potential with the Thomas-Fermi profile
n0�r�=n0�1−V�r� /��. A long-wavelength density deviation

�n�r , t� from this ground state obeys the wave equation

�� · c2�r� � − �t
2��n = 0, �1�

where c�r�=c�1−V�r� /��1/2 is the local speed of sound de-
viating from the clean value c=�� /m=�gn0 /m. This is a
prototypical wave equation in a medium with random elas-
ticity but constant mass density �10,11�. Quite often, the op-
posite case is studied, with random masses and constant elas-
ticity or, equivalently, a fluctuating index of refraction
�12–14�. The disorder potential may always be taken at zero
average V�r�=0. Its strength is characterized by the variance
V�r�2=V2 and we suppose weak disorder with V	�.

Consider now a sound wave with wave vector k evolving
on the disordered potential background with correlation
length � �see Fig. 1�. If the wavelength is much longer than
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FIG. 1. �Color online� Schematic 1D representation of the sys-
tem under study: an interacting Bose-Einstein condensate with
original homogeneous density n0=� /g �dashed black line� is ex-
posed to a weak, spatially correlated random potential V�r� �solid
blue�, here a blue-detuned speckle potential with amplitude V

=0.1�, centered on the mean V̄=0 �dotted blue�. We consider the
Thomas-Fermi regime where the healing length � is much shorter
than the disorder correlation length �. The resulting ground-state
density �solid black� �Eq. �9�� mirrors the disorder while leaving the
total average density and number of particles constant. On top of
this disorder-modified ground state, an elementary plane-wave ex-
citation �green, plotted around 1� propagates with wave vector k,
here with k�=1. We calculate its effective speed of sound and the
corresponding average density of states.
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the correlation length, k�	1, the excitation averages over
the potential fluctuations and, to a first approximation, it
seems reasonable to replace Eq. �1� by its ensemble average
�12�. But then we have no net effect on the speed of sound
since c2�r�=c2 exactly. If, on the other hand, the wavelength
is much shorter than the correlation length, k��1, the exci-
tation evolves in a locally constant potential, which should
result in an average speed of sound c̄=c�1−V�r� /��1/2

�c�1− 1
8V2 /�2�. It turns out, however, that both these naïve

reasonings fall short.
In order to give the correct answer right away, our main

results are briefly summarized in Sec. II. Section III then
presents the general hydrodynamical perturbation theory,
from which detailed results on the speed of sound are de-
rived in Sec. IV. In Sec. V, we analyze the implications of
these results for the disorder-averaged density of states. A
short conclusion together with a brief comparison to related
works is contained in Sec. VI.

II. MAIN RESULTS

The effective speed of sound in a disordered interacting
Bose gas, properly defined as �k /k= c̄ from the single-
excitation dispersion relation, is affected by scattering pro-
cesses via virtual intermediate states such that a purely local
description fails. We find that the correction 
c= c̄−c to the
speed of sound has in d dimensions the limiting behavior


c

c
= −

V2

�2

1

2d
, k� 	 1 �2�


c

c
= −

V2

�2

2 + d

8
, k� � 1 �3�

These limits imply that the curves for different dimensions
have to intersect around k��1 �see also Fig. 2 below�. The
precise shape of 
c /c at intermediate k� depends on the
details of the disorder pair-correlation function. But clearly,
there is a negative correction, of order V2 /�2, in all dimen-
sions and for any disorder with finite correlation length �
��.

A reduced speed of sound implies that the free density of
states �DOS� of single excitations,

�0��� =� ddk

�2��d��� − ck� =
Sd

�2�c�d�d−1, �4�

is replaced by an enhanced average density of states �AV-
DOS� �̄���. Our results for this disorder-induced correction
can be cast into the form of a function

gd���/c� = ��̄��� − �0����/�0��� �5�

that depends only on the reduced momentum =�� /c,

gd�� = − �d + 
�

�
	
c

c
=

V2

2�2
1,  	 1

d

4
�2 + d� ,  � 1.� �6�

Gurarie and Altland �12� suggested that one should be able to
deduce from the asymptotic values and the curvatures of

such a scaling function whether the AVDOS exhibits a “bo-
son peak” at intermediate frequency ��c /�. The asymptot-
ics of the scaling function in our case allow for a smooth,
monotonic transition between the limiting values in any di-
mension d. Thus, one has no reason to expect any extrema in
between, which is indeed found to be the case in two and
three dimensions. In d=1, however, we find, by analytical
calculation for the experimentally relevant case of an optical
speckle potential, a quite nonmonotonic AVDOS with an in-
termediate dip followed by a sharp peak at �� /c=1.

III. CLASSICAL HYDRODYNAMIC THEORY

We start our detailed analysis of the mean-field BEC order
parameter �=�nei� in terms of the hydrodynamic variables
condensate density n= ���2 and phase �, which determines
the superfluid velocity v= �

m �� �15,16�. The grand-
canonical Gross-Pitaevskii energy functional for the BEC in
presence of an external potential V�r� is

E�n,�� =� ddr �2

2m
����n�2 + n����2� + �V�r� − ��n

+
g

2
n2� . �7�

The saddle-point equations �E /�n �0=0 and �E /�� �0=0 im-
ply that the ground state has constant phase �0 or zero su-
perfluid velocity v0=0 and a density n0�r� that obeys the
stationary Gross-Pitaevskii equation

−
�2

2m

�2�n0�r�
�n0�r�

+ gn0�r� = � − V�r� . �8�

We now restrict our analysis to the case where the healing
length � is much shorter than the disorder correlation length
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FIG. 2. �Color online� Relative correction to the speed of sound
as function of reduced momentum. Black line: analytical prediction
�31� for d=1 in the limit � /�=0. Blue and red symbols: data from
a numerical integration of the Gross-Pitaevskii equation �with small
but finite healing length, such that k�=0.05� at v=V /�= �0.03,
respectively, averaged over 50 realizations of disorder. In the
shaded area, the data stray far from the analytical prediction be-
cause its condition of applicability ��� becomes invalid. �Inset�
Theory �28� for d=1 �black�, d=2 �violet�, and d=3 �orange� to-
gether with the limiting values �2� and �3�.
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�. In this regime, the quantum pressure in Eq. �8� is negli-
gible and the external disorder potential leaves the Thomas-
Fermi imprint

n0�r� = �� − V�r��/g . �9�

This solution is also directly obtained if one drops the
density-gradient contribution in Eq. �7� to use

E��n,�� =� ddr �2

2m
n����2 + �V�r� − ��n +

g

2
n2� .

�10�

Formally, this formulation corresponds to the limit �→0 and
all further results can only depend on the reduced momentum
k� �17�.

The speed of sound characterizes the dynamics of small
deviations �n�r , t�=n�r , t�−n0�r� and ���r , t�=��r , t�−�0
from the ground state in the long-wavelength regime k�	1.
We can therefore develop the energy functional �10� to sec-
ond order around the ground-state solution, E�=E0�
+F���n ,���, to obtain the relevant quadratic energy func-
tional

F���n,��� =
1

2
� ddr�2

m
n0�r������2 + g�n2� . �11�

Importantly, the external disorder potential has shifted the
ground-state solution according to Eq. �9� around which we
now consider the dynamics of fluctuations. Density and
phase are conjugate variables with the equations of motion

��t�n =
�F�

�����
, − ��t�� =

�F�

���n�
. �12�

In terms of density and superfluid velocity, they read

�t�n + � · �n0�r�v� = 0, �13�

�tv = −
g

m
� �n , �14�

and are recognized as the linearized versions of continuity
equation and Euler’s equation for an ideal compressible
fluid, respectively. These can be combined to a single classi-
cal wave equation

�c2�2 − �t
2��n = 1

m � · �V�r� � �n� . �15�

This equation is equivalent to Eq. �1�, but now written in a
form amenable to systematic perturbation theory for a weak
external disorder potential V�r�.

A. Perturbation theory

Translation invariance of the free equation suggests using
a Fourier representation in space and time,

��2 − c2k2��nk =� ddk�

�2��dVkk��nk�. �16�

The disorder potential causes scattering k→k� of plane
waves with an amplitude

Vkk� = −
1

m
�k · k��Vk−k�. �17�

The factor k ·k� originates from the mixed gradient in Eq.
�15� and implies pure p-wave scattering of sound waves �18�
in contrast to s-wave scattering of independent particles �19�.

The single-excitation dispersion relation can be derived
from the corresponding Green’s function. The free Green’s
function is diagonal in k,

G0�k,�� = ��2 − c2k2 + i0�−1. �18�

Taking the disorder average of the full Green’s function G
= �G0

−1−V�−1 leads in the standard way to �14,19�

Ḡ�k,�� = �G0�k,��−1 − ��k,���−1. �19�

The poles of this average Green’s function at �2=c2k2

+��k ,�� now determine the effective dispersion relation.
The so-called self-energy ��k ,�� is given to leading order in
disorder strength by the Born approximation

��k,�� =� ddk�

�2��d �VV�kk�G0�k�,�� . �20�

The scattering potential correlator

�VV�kk� = m−2V2�k · k��2�dPd��k� − k��� �21�

involves the dimensionless k-space correlator of the bare po-
tential

Pd�� =� dd�e−i·�Cd��� . �22�

Its real-space correlator Cd�r /��=V�r�V�0� /V2 is assumed to
be isotropic. We will consider correlated potentials for which
C�r /�� decays from Cd�0�=1 to 0 on the length scale �. The
smoothness of V�r� implies that the power spectrum Pd��
decreases rapidly to 0 as function of =k�.

Applying Sokhotsky’s formula �x+ i0�−1=P 1
x − i���x� to

the free Green’s function in Eq. �20�, we can evaluate the
real part and the imaginary part of the self-energy separately.
The imaginary part determines the lifetime �−1 of the exci-
tations, whereas its real part shifts the speed of sound by 
c,

��k,ck�
2c2k2 =


c

c
− i

�

2ck
. �23�

To leading order in V, the on-shell dispersion �=ck is used
for evaluating the self-energy.

B. Scattering rate and 1D localization length

Calculating the imaginary part in Eq. �20�, the scattering
rate at frequency �=ck can be expressed as

���� =
�V2

2�2 �2�0����dfd���/c� . �24�

The last factor is the angular average of the correlation func-
tion on the energy shell
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fd�� = Sd
−1� d�d�cos ��2Pd�2 sin

�

2
� . �25�

The squared cosine under the integral goes back to the
�k ·k��2 in the potential correlator �21�, being again charac-
teristic for p-wave scattering of sound waves.

In one dimension, there are only the two contributions �
=0,� of forward- and backscattering, respectively, such that

���� =
V2�

4�2c
�2�P1�0� + P1�2��/c�� . �26�

We note in passing that the one-dimensional �1D� back-
scattering process k�−k described by the second contribu-
tion P1�2� is known to induce strong Anderson localization
of the excitation in the disordered potential �20�. The back-
scattering rate is directly proportional to the inverse localiza-
tion length �loc=�bs /2c0 describing exponential localization
�21�. Taking the backscattering contribution of Eq. �26�, we
find

�loc = �
V2

8�2

�2

c2 P1�2k�� , �27�

which agrees with the findings of a hydrodynamic theory
similar to ours �22� and also with the sound-wave limit of
Bogoliubov excitations considered in �23�. It should be noted
that these latter approaches employ the phase formalism that
is particularly suited for 1D systems, whereas our Green’s-
function theory permits to go to higher dimensions without
conceptual difficulties.

In any dimension, the phase function fd�� in Eq. �25�
tends to a constant for small  and the scattering rate of
low-energy excitations rate tends to zero as � /���d. Also
the localization length in 1D diverges as �loc

−1 ��−2 at low
frequency. In higher dimensions, it is known to be even
larger, if not infinite �13�. This assures that low-energy exci-
tations are long lived and extended. It is thus meaningful to
discuss their effective sound velocity.

IV. EFFECTIVE SPEED OF SOUND

From Eqs. �20� and �23�, the speed-of-sound shift 
c in
any dimension d is obtained as a Cauchy principal-value
integral over the potential correlation


c

c
= −

1

2

V2

�2P� dd�k���
�2��d

�k · k��2Pd��k� − k���
k2�k�2 − k2�

. �28�

In the limits k��1 and k�	1 where the potential appears
very smooth or � correlated, respectively, over a wavelength
of the propagating excitation, this correction is independent
of the precise form of the bare potential correlator Pd�� �see
Eqs. �2� and �3� above and the detailed derivation in Sec.
IV C below�. Let us then discuss the interesting, detailed
form of this correction as function of =k� in d=1. For
concreteness, we study the case of an optical speckle poten-
tial, which has recently been successfully used in experi-
ments on Anderson localization of matter waves �2�.

A. Speckle potential

By focusing a laser beam through a diffusor, the conden-
sate is subject to a random lightshift potential proportional to
the intensity of the laser field �24�. The one-point potential
value V�r� of a speckle pattern �25� has the skewed probabil-
ity distribution

P�w�dw = ��1 + w�exp�− �1 + w��dw �29�

for w=V�r� /V. For this one-sided exponential, odd moments,
such as V�r�3, are different from zero. A blue-detuned light-
shift potential with V�0 features repulsive peaks �this case
is depicted in Fig. 1�, whereas a red-detuned one with V
�0 consists of attractive wells. As far as spatial correlations
are concerned, the laws of optics forbid variations on a
length scale shorter than the correlation length �, which de-
pends on the laser wavelength and the geometry of the im-
aging system, but typically ranges around 1 �m. In one di-
mension, the correlation function is

P1�� =
�

2
�2 − �����2 − ��� . �30�

Its bounded support in k space implies that within the Born
approximation, backscattering and inverse localization
length vanish for k��1; however, exponential localization
still prevails due to higher orders in perturbation theory �5�.

B. In dimension d=1

The principal-value integral �28� over the piecewise linear
function �30� is elementary and we find a speed-of-sound
correction at =k� of


c

c
= −

V2

2�2�1 +


4
ln�1 − 

1 + 
� −

2

4
ln�1 − 2

2 �� . �31�

Its limiting values are 
c /c=− 1
2V2 /�2 for small  and


c /c=− 3
8V2 /�2 for large , as stated in Eqs. �2� and �3�.

This correction to the speed of sound, plotted in Fig. 2 as
function of =k�, shows a rather intricate, nonmonotonic
behavior. Notably, there is a logarithmic nonanalyticity at 
=1, the value beyond which backscattering is suppressed.
The speed-of-sound correction is clearly negative for all ,
which may come as a surprise in view of �6,7�.

In order to check this prediction in detail, we have nu-
merically integrated the full Gross-Pitaevskii equation de-
scribing an elementary excitation with fixed k on top of the
numerically determined ground state in a speckle potential
with V= �0.03� and variable �. This simulation operates at
a small but finite value of k�=0.05 and includes the full
quantum pressure. Moreover, it does not rely on a lineariza-
tion for small excitations nor perturbation theory in V. We
extract the effective dispersion �k by monitoring the phase of
�k�t� and then find c̄=�k /k. As shown in Fig. 2, the data
agree beautifully with Eq. �31� in its realm of validity, �
��. When the correlation length decreases toward the heal-
ing length �shaded area in Fig. 2�, the correction vanishes at
fixed disorder strength because the condensate density is
smoothed with respect to the Thomas-Fermi profile �26�. But
in any case, only negative corrections are found in d=1.
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C. In higher dimensions

In higher dimensions, the integral �28� over the correla-
tion functions �for speckle, see �19�� is sufficiently compli-
cated that analytical solutions such as Eq. �31� are not avail-
able in general. �As an exception to this rule, we find for the
two-dimensional �2D� speckle correlation 
c /c=− V2

8�2 �4
−−2� for �1.� But in all cases, the principle-value integral
�28� can be evaluated numerically. The inset of Fig. 2 shows
the corresponding curves. Short-range correlated potentials
�k�	1� affect low dimensions more than high dimensions
and vice versa.

The limits �2� and �3� can be calculated analytically as
follows. It is useful to rewrite Eq. �28� in terms of �=1 /k�
as


c

c
= −

V2

2�2P� ddq

�2��d

Pd�q��1 + �q cos ��2

2�q cos � + �2q2 . �32�

Denoting the angular part of the integral by Ad��q�, one
arrives at the radial integral �0

�dqqd−1Pd�q�Ad��q�. In the
limit k�	1, the parameter �q tends to infinity nearly every-
where under the integral. Then

Ad��� =� d�d

�2��d �cos ��2 =
Sd

�2��dd−1, �33�

and with � ddq
�2��d Pd�q�=Cd�0�=1, we arrive at Eq. �2�. In the

limit k�→�, we proceed similarly with �→0. The angular
integrand reduces to 1+ �2� cos �+�2�−1, whose principle-
value integral evaluates after some algebra to

Ad�0� =
Sd

�2��d

d + 2

4
, �34�

which leads to Eq. �3�.

D. Numerical investigation beyond Born

The perturbative analysis relies on the Born approxima-
tion �20�, so that good agreement with the true values is only
expected at rather small disorder. Could a larger disorder
strength reverse the sign of the correction? We have numeri-
cally investigated different values of v=V /� at fixed k�=1.
In Fig. 3, we show the data divided by v2 such that the Born
approximation shows as a horizontal line. As expected, for
small �v�, the agreement is very satisfactory. One can distin-
guish a third-order correction O�v3� as a linear trend with
negative slope; if needed, it could be calculated pushing Eq.
�20� beyond the Born approximation �5�. In a Gaussian
model with a symmetric probability distribution �27�, such a
third-order term would be absent.

The error bars in Figs. 2 and 3 indicate the estimated error
of the mean after ensemble-averaging over 50 realizations of
disorder. Figure 4 displays exemplary histograms of the val-
ues obtained for different disorder realizations. Clearly, the
probability distributions are single peaked with well-defined
averages on the negative side. That the speed of sound has
self-averaging character was to be expected since a plane
wave samples different spatial regions at once. At strong
disorder with v�0.1, the speckle disorder with its un-

bounded probability distribution is likely to fragment the
condensate and the concept of a unique, well-defined speed
of sound becomes questionable. As a precursor, we already
observed a slight broadening of the probability distribution
for v=+0.1 �lower right panel�. From the data shown, we
conclude that the correction to the speed of sound remains
negative over the entire interval of interest.

V. DENSITY OF STATES

Knowing the speed of sound, we can compute the AV-
DOS

�̄��� =� ddk

�2��d��� − �k� �35�

using the effective dispersion �k= c̄�k�k in the perturbative
limit where � /�	1. Denoting, similarly to �12�,

�̄��� = �0����1 + gd���/c�� , �36�

we find for the relative correction
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0.0
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v = V/µ

∆c/c

v2

FIG. 3. �Color online� Relative correction to the speed of sound
at k�=1, divided by v2, as function of disorder strength v=V /�,
taken from the numerical integration with k�=0.05. �Dashed line�
Analytical prediction 
c / �cv2�= 1

4 ln 2− 1
2 �−0.3267.
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FIG. 4. �Color online� Histograms over 50 realizations of disor-
der for the relative speed-of-sound correction for different values of
v=V /� obtained by numerical integration of the Gross-Pitaevskii
equation with an excitation at k�=1. Vertical lines indicate the av-
erage values plotted in Fig. 3.
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gd�� = − �d + 
�

�
	
c

c
, �37�

with the limiting values �6� �28�. The scaling functions gd��
are plotted in Fig. 5 for dimension d=1,2 ,3. In one dimen-
sion,

g1�� =
v2

2
�1 +



2
ln� − 1

 + 1
� −

32

4
ln�1 − 2

2 �� �38�

shows a pronounced dip around �0.7 and a sharp logarith-
mic divergence at =1. This particular structure is a conse-
quence of the Born approximation, more specifically the
nonanalyticity of the speckle pair-correlation function at the
boundary of its support. But a local maximum is also found
for other correlated potentials with fast-enough decay of
Pd�q� such as Gaussian correlation �27�. The existence of
this structure could not be inferred from the asymptotics of
g1�� alone �12�. Indeed, expanding the asymptotic behavior
as

gd�� = v2 �d
��1 + �d

�2 + ¯� ,  	 1

�d
��1 + �d

�−2 + ¯� ,  � 1,
� �39�

we find �1
�=−1− 3

2 �ln ��0 and �1
�= 1

18 �0 of opposite sign.
Together with the fact that �1

� is larger than �1
�, these as-

ymptotics would be compatible with a monotonic behavior
and thus are not sufficient to infer the existence of interme-
diate extrema.

In two dimensions, the scaling function is exactly con-
stant for �1 and thus �2

�=0 which seems to happen also in
other cases �12�. At =1, there is a kink, but overall, g2��
shows a monotonic behavior without local extrema. In three

dimensions, the logarithmic singularity has moved to the sec-
ond derivative of g3��, which is hardly resolvable in the
figure, and �3

��0 as expected �12�, leaving an all but struc-
tureless AVDOS.

VI. CONCLUSIONS

In conclusion, we have perturbatively calculated the influ-
ence of a weak spatially correlated disorder potential on the
sound-wave spectrum of Bose-Einstein condensates in the
hydrodynamic limit �	� ,1 /k and arbitrary dimension. The
sound-wave lifetimes are long enough to observe a disorder-
induced correction to the speed of sound, which is found to
be reduced. For the experimentally relevant case of an opti-
cal speckle potential, we compute the correction to the speed
of sound analytically. A numerical integration of the full
mean-field dynamics in d=1 confirms our prediction in its
range of validity and even allows to access nonperturbative
disorder strengths.

The present hydrodynamic theory compares well to re-
sults in d=1 from the phase-formalism approaches of Bilas
and Pavloff �22� and Lugan et al. �23�. We find perfect agree-
ment concerning the localization length, which we obtain
from the backscattering rate.

However, our results are in contrast to the impact of un-
correlated disorder in three dimensions, for which Giorgini et
al. �6� have predicted a positive correction to the speed of
sound. Yet, at present, there appears no contradiction be-
tween their results and ours. We have used a simple hydro-
dynamic description valid for �	� ,1 /k that cannot cover
the case of a truly �-correlated disorder, spatially varying on
a scale �	�, considered by Giorgini et al. In particular, for
such rapidly varying potentials, the Thomas-Fermi approxi-
mation Eq. �9� for the ground-state density does not hold
anymore and should be replaced by the solution of Eq. �8�,
which then shows the smoothed imprint of the disorder po-
tential �26�.

Furthermore, we have determined the average sound-
wave density of states. In low dimensions, its structure is
very rich, including a broad dip followed by a sharp peak in
d=1. As a rule, specific correlation-related features tend to
be washed out by integration in higher-dimensional k space.
Thus we expect arguments on general grounds �12� to hold
more reliably in higher dimensions. Conversely, the low-
dimensional behavior may escape a bird’s-eye view and re-
quire detailed calculations. We have presented such a calcu-
lation for spatially correlated speckle disorder, so that our
results should be of immediate use for cold-atom experi-
ments.
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FIG. 5. �Color online� Correction to the density of states gd��
= ��̄−�0� /�0 divided by the squared disorder strength v=V /� as
function of reduced momentum =�� /c in dimension d=1,2 ,3.
At =1, the momentum beyond which elastic backscattering be-
comes impossible in the Born approximation, there is a logarithmic
divergence in d=1, a kink in d=2, and a curvature discontinuity in
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