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We analyze vortex nucleation in mesoscopic two-dimensional Bose superfluid in a rotating trap. We explic-
itly include a weakly anisotropic stirring potential, breaking thus explicitly the axial symmetry. As the rotation
frequency passes the critical value �c, the system undergoes an extra symmetry change or breaking. Well
below �c, the ground state is properly described by the mean-field theory with an even condensate wave
function. Well above �c, the mean-field solution works also well, but the order parameter becomes odd. This
phenomenon involves therefore a discrete parity symmetry breaking. In the critical region, the mean-field
solutions exhibit dynamical instability. The true many-body state is a strongly correlated entangled state
involving two macroscopically occupied modes �eigenstates of the single-particle density operator�. We char-
acterize this state in various aspects: �i� the eligibility for adiabatic evolution, �ii� its analytical approximation
given by the maximally entangled combination of two single modes, and finally �iii� its appearance in particle
detection measurements.
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I. INTRODUCTION

Symmetry changes or breaking belong to some of the
most fascinating phenomena in nature. In classical physics,
they are often associated with phase transitions in macro-
scopic systems �1,2�. Paradigm examples of symmetry
breaking concern magnetic phenomena, such as, for instance,
appearance of ferromagnets at temperatures lower than the
Curie temperature, Tc. In the classical world, symmetry
changes or breaking �C or B� are driven by thermal fluctua-
tions and in the standard Landau-Ginzburg scenario are as-
sociated with increase of classical correlations and arousal of
the long-range order. The mean-field approach, which goes
back to “molecular-field theory” of Curie-Weiss �3�, provides
very often quite correct description of these phenomena
away from criticality. Close to critical temperature, quantita-
tive description requires the use of renormalization-group ap-
proach à la Wilson �4,5�.

In quantum physics paradigm examples of symmetry C or
B deal with low-temperature behavior of weakly interacting
quantum Bose gases and Bose-Einstein condensation �6�. In
the quantum world, particularly interesting are quantum
phase transitions �7� and quantum symmetry C or B that are
driven by quantum fluctuations. They can occur either at zero
temperature or in quantum dynamical externally driven sys-
tems.

The symmetry C or B that have drawn a lot of attention
since the early discovery of superfluids �8� until the recent
studies of Bose-Einstein condensates �BECs� is nucleation of
vortices in rotating superfluids. In fact, one of the most strik-
ing properties of superfluid and condensed systems is their
response to rotation. The only way to acquire angular mo-
mentum is by the nucleation of vortices, topological singu-
larities surrounded by condensed atoms revolving around
their cores. The cores are well localized and have size of the,
so-called, healing length. At low temperatures, they are
empty, whereas at higher temperatures, they are filled with

the thermal fraction of the condensate. For quantum gases,
atoms are usually confined in an isotropic harmonic trap and
experience an additional quadratic potential rotating at angu-
lar frequency � �for a review, see �9,10��. Standard text-
books �6� associate vortex nucleation with thermodynamic
instability. When the rotation frequency is small, there exists
a mean-field solution of the equation describing the BEC
order parameter �condensate wave function� with a single
vortex �11,12�; this solution has, however, larger �free� en-
ergy than the one corresponding to the condensate at rest
�13�. Above certain critical rotation frequency, the solution
with the vortex becomes a ground state and in principle may
be achieved at low temperature being driven by thermal fluc-
tuations. In practice, experiments with BEC occur in a com-
pletely different way. Typically, one prepares a condensate at
very low temperature and then applies a certain dynamical
perturbation to create a vortex. First, vortices have been cre-
ated at JILA �14� using a kind of phase imprinting method
�15�. It turned out, however, that the method consisting of
slight deformation and rotation of the trap or, alternatively,
“laser stirring” �16� was more efficient and led to numerous
spectacular observations such as that of Abrikosov lattice
�16–22� �for a review, see �9,23��.

BECs of dilute atomic gases offer particular possibilities
for studies of nucleation of vortex states and their expansion
in the course of time-of-flight �TOF� detection. In addition,
these systems allow for experimental analysis and manipula-
tion of mesoscopic confined clouds of condensed atoms
trapped in the sites of optical lattices or in optical microtraps.
This opens the perspective to compare directly results of ex-
act numerical analysis for small systems to experiments and
to different approximate calculations �for the first experi-
ments in this direction, see �24,25��. Particularly interesting
are the studies of the applicability of the mean-field �MF�
theory within specific conditions. For confined systems at
large rotation frequencies �in analogy to charged particles
submitted to high magnetic fields�, strongly correlated states
develop: the so-called fractional quantum Hall �FQH�-type
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states �10,26,27�. Such states cannot be described by a
single-particle wave function that would play the role of an
order parameter.

From a theoretical point of view, the vortex nucleation
can be tackled by several techniques, ranging from a MF
approach based on the Gross-Pitaevskii equation �GPE�
�28–31� to the investigation of the many-body energy eigen-
states �32–38�. Many authors addressed the question of vor-
tex nucleation theoretically, asking in the first place for en-
ergetic stability of the vortex configuration as a ground state.
Within the mean-field approach, this has been discussed
mainly in the context of thermodynamic stability �cf. �6,13��.
Several papers discussed, however, the case of T=0 and vor-
tex nucleation in the ground state �GS� of the system using
the exact quantum description �cf. �26,33,35,36,39�� or rig-
orous derivation of the MF equations �40,41�. More recent
papers treated the problem of dynamics of vortex, or vortex
lattice nucleation in elliptically deformed rotating traps, us-
ing mean-field method �i.e., time-dependent GPE �6�� and
trying to reproduce the experimental results. The conclusion
of these works is that vortex nucleation is inevitably associ-
ated to dynamical instability of the solutions of GPE �29,42�.
Same results hold in the case of vortex nucleation via phase
imprinting �43�. Some authors �30� claim that apart from the
dynamical instability, a Landau instability �associated to dis-
sipation� is also necessary to allow vortices to penetrate the
BEC. The dynamical instability GPE is generically associ-
ated to the appearance of squeezing of two Bogoliubov–de
Gennes �BdG� quasiparticle modes, i.e., exponentially grow-
ing two-mode entanglement in the regime of validity of BdG
�i.e., regime of small Gaussian fluctuations around the MF
solutions� �44�. This observation already indicates the neces-
sity of going beyond the mean-field at the instability.

Much less is known about exact dynamics of the vortex
nucleation. Parke et al. �38� considered recently this problem
for a mesoscopic sample of atoms in the lowest Landau level
�LLL� and discover striking non-mean-field effects in the
�stationary� spectrum of the system at the critical rotation
frequency �c. They interpreted their results in terms of co-
operative tunneling of a vortex pair by “requantizing” the
mean-field theory �reduced to three relevant modes�. In a
recent paper �45�, we used another approach and studied ex-
act dynamics of a mesoscopic sample of atoms in a ellipti-
cally deformed rotating harmonic trap. Our main result was
that as one increases �, at the �c, the mean-field description
ceases to be valid. The system enters a strongly correlated
and entangled state, well described by an effective two-mode
model. The mean-field description �similar to that of Ref.
�38�� exhibits dynamical instability and hysteresis for �
��c. Since we explicitly include an anisotropic stirring po-
tential, the present mechanism concerns a discrete parity
symmetry breaking. Therefore, it differs from the case of the
vortex nucleation in axially symmetric traps: in the latter
case, breaking of the continuous rotational symmetry in-
volves a gapless Nambu-Goldstone mode �46�, while here
we deal with a gapped system.

We believe that this example constitutes a paradigm of
mean-field symmetry C or B in the course of adiabatic evo-
lution of a many-body system. The character of the strongly
correlated states depend on the nature and character of the

symmetry C or B and the specific system—it is thus different
in our case and in the case of Ueda and Nakajima �46�, in the
case of rotating lattice rings �47�, or in BEC in a tilted
double-well potential �48�. The last reference �48� reveals,
however, a feature closely related to our results, which may
have universal character: instability or chaotic behavior of
the system predicted by the MF approach is a signature of
the existence of a strongly correlated state.

This is quite an unexpected result, since at least for large
systems, when N goes to infinity, the MF theory in the re-
gime of nucleation of the first vortex where the angular mo-
mentum of the systems changes from L=0 to N is believed to
be correct. This belief has been in fact recently supported by
rigorous results in Ref. �41�, where it has been proved that
the MF expressions for the total energy of the system coin-
cides with the exact result for large N. Moreover, while the
MF description of the GS is not correct for moderately big N
at criticality, the single-particle density is another example of
a quantity correctly described by the MF approach. This last
observation is supported by our result: we obtain that the
density of the ground state at �c for increasing N becomes
indistinguishable from that obtained for small N. This means
that some macroscopic mean quantities, such as the density
or the total energy, are practically insensitive to the symme-
try C or B process at criticality.

The aim of the present work is to perform a deeper analy-
sis of the precursor state of the nucleation process, named �c
from now on, using various techniques. First, we analyze the
dynamical process of increasing rotation frequency and show
that, during the time evolution from an initial GS at a starting
rotation frequency �where the angular momentum is L=0� to
the final one-vortex state where L=N, one must pass through
a state that cannot be described by a MF order parameter.
This state contains two macro-occupied modes of different
parities of the single-particle density matrix. Second, we
characterize this noncondensed state and its properties and
ask how does this state exhibit these properties in measure-
ment process. We note that similar questions have been
posed in the context of appearance of the relative phase in
the interference of two BECs in the course of measurements
�49–51�. Inspired by the work of Javanainen and Yoo �49�,
we simulate the measurement process in a TOF experiment
for a one-shot event and for the accumulation of a large
number of single shots. To be able to perform the measure-
ment simulation of the �c state assuming a large number of
particles, we use a two-mode model which provides a very
accurate approximation of the exact state. For most of the
times, the single shot events produce a single vortex located
randomly along the x axis whereas the accumulation of a
large number of shots reproduce the density. We discuss the
interpretation of the outcomes and relate them with other
strongly correlated states discussed previously in various
systems. Note that in the view of the recent experimental
progress in detection of density of atomic clouds at a single
atom level �52,53�, our measurement simulation results could
be directly observed in experiments proposed by us.

Our paper is organized as follows. In Sec. II, we present
our model and a brief repetition of previous results for rotat-
ing bosonic systems. In Sec. III, we analyze the time evolu-
tion of the nucleation process. First, we look at the possibil-

DAGNINO, BARBERÁN, AND LEWENSTEIN PHYSICAL REVIEW A 80, 053611 �2009�

053611-2



ity of adiabatic evolution and second, we discuss a two-mode
model for the GS at a critical frequency at which parity sym-
metry breaking takes place at the MF level. In Sec. IV, we
study the energy spectrum as a function of the rotation fre-
quency in terms of the contributions of different L subspaces
in the GS and analyze the robustness of the �c state. In Sec.
V, we describe measurement simulations and discuss their
possible interpretations. Here, the comparison to a model cat
state �analogous to that predicted in Ref. �47�� is included.
Finally, in Sec. VI, we present our conclusions.

II. MODEL AND BACKGROUND

We assume a two-dimensional cloud of few condensed
Bose atoms of mass M interacting via contact forces con-
fined in a symmetric parabolic trap with frequency ��. Two
extra perturbing potentials are also considered. One simu-
lates a stirring laser that sets the system in rotation by a
slight anisotropic deformation in the xy plane, rotating at
angular frequency � around the z axis breaking the cylindri-
cal symmetry. The second one is a perturbation that breaks
the parity symmetry, a symmetry that is otherwise preserved
by the previous terms. The last one simulates possible
second-order contributions of the laser fields and will help us
in the analysis of the system. The rotation frequency � is
strong enough to assume the LLL regime �39�, i.e., we con-
sider that the kinetic energy within the LLL given by ����

−��, the strength of the interaction, and both perturbations
are small compared to the separation between Landau levels
given by ����+�� �54�. It is implicit in our model that in
the z direction, a strong parabolic trap of frequency �z
freezes the atomic motion producing an effective two-
dimensional �2D� system. We model the contact interaction
U and the two perturbing potentials V1 and V2 by

U�r�i,r� j� = ��2g/M��
i�j

N

��r�i − r� j� , �1�

V1�r�� = 2AM��
2 �

i

N

�xi
2 − yi

2� , �2�

and

V2�x� = B
M��

2

��
�

i

N

xi
3, �3�

where g=�8�a /�z, a being the three-dimensional �3D� scat-
tering length, �z=�� /M�z, and ��=�� /M��. The dimen-
sionless parameters g, A, and B measure the strength of each
term. We choose ��, ���, and �� as units of length, energy,
and frequency, respectively. It is worth mentioning that a
simpler term that breaks the parity symmetry �B�ixi is a
center-of-mass excitation that would leave the internal struc-
ture unchanged revealing no new physics. In the second-
quantized formalism, the Hamiltonian of the system pro-
jected onto the LLL in the rotating reference frame is
described by

Ĥ = 	L̂ + 
N̂ + Û + V̂1 + V̂2 	 Ĥ0 + Û + V̂1 + V̂2, �4�

where 	=����−�� and 
=���. �L̂ and N̂ are the total
z-component angular momentum and particle number opera-
tors, respectively; H0 being the kinetic contribution. The
contact-interaction term is given by the operator

Û =
1

2 �
m1m2m3m4

U1234am1

† am2

† am4
am3

, �5�

where the matrix elements read

U1234 = 
m1m2�U�m3m4�

=
g

��
2 �

�m1+m2,m3+m4

�m1 ! m2 ! m3 ! m4!

�m1 + m2�!
2m1+m2+1 . �6�

The operators ami

† and ami
create and annihilate a boson in a

single-particle eigenstate of Ĥ0 with angular momentum mi,
respectively. These eigenstates are taken as a basis to repre-
sent wave functions and operators in the second-quantized
formalism. We will refer to this set of functions as the Fock-
Darwin �FD� functions restricted to the LLL �without nodes
in the radial direction� and will denote them as �m= 1

��m!
�x

+ iy�mexp�−�x2+y2� /2��
2 �, being m its angular momentum.

The term V̂1 in Eq. �4� is given by

V̂1 =
A

2 �
m

�m�m − 1�am
† am−2 + ��m + 1��m + 2�am

† am+2

�7�

and the term V̂2 by

V̂2 =
B

8 �
m

��m�m − 1��m − 2�am
† am−3 + 3�m + 1��mam

† am−1

+ 3�m + 2��m + 1am
† am+1

+ ��m + 1��m + 2��m + 3�am
† am+3� . �8�

In the absence of anisotropy �A=B=0�, the total angular
momentum of the GS as a function of � shows sharp steps at
critical values �i i=1,2. . ., being �1 ��1=��−gN /8�� the
value at which the angular momentum of the system jumps
from zero to L=N for all N. Above �1, a plateau indicating
constant angular momentum extends up to �2 where the sec-
ond jump, not always to L=2N, takes place. From this value,
a sequence of jumps and plateaus emerges up to the last
possible L value given by L=N�N−1�, corresponding to the
Laughlin state. The extension of the first plateau, from �1 to
�2, increases with N and at the same time, �1 decreases �this
is a characteristic of the first plateau; in contrast, the next
ones reduce drastically as N increases�. From the expression
of �1, it is evident that for a given value of g, there is a
maximum number of atoms compatible with our LLL as-
sumption; for large N �N�25 for g=1�, the functional rela-
tion between �1 and N cannot be linear anymore; extra Lan-
dau levels must be taken into account.

Eigenstates with more than one vortex can only exist lo-
cally at �i where several eigenfunctions with different angu-
lar momentum but degenerated in energy can be combined to
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generate vortex configurations in a spontaneous symmetry-
breaking mechanism. For instance, for N=5, there is degen-
eracy between the states with L=0, 2, 3, 4, and 5 at �1, L
=5 and 8 at �2, or L=8, 10, and 12 at �3. Namely, for small
systems, the possibility to have vortex states is localized
around discrete values of �. However, for larger N, on one
hand, the distance between the critical values of �i is dras-
tically reduced �36� and on the other hand, the steps are
softened due to the slight anisotropy that must be applied to
accelerate the system; these two effects effectively provide
the possibility to nucleate vortices in a continuous way for
all ��1 �17,40�.

If anisotropy is included in the Hamiltonian, the steps are
softened. For a fixed A �and B=0�, the softening is larger for
small values of N in such a way that the steps may disappear.
This effect can be reduced increasing g, namely, the increase
of anisotropy reduces the effect of the interaction. To keep a
well defined first step around the same �1 for all N, we
considered gN=const in our calculations; in addition, this
decrease of the interaction as N increases preserves the LLL
condition �39�.

Having specified the Hamiltonian of the model, we per-
form exact diagonalization. The isotropic Hamiltonian can be
diagonalized in boxes of finite L subspaces whereas, in the
anisotropic case, several basis of different L subspaces must
be considered until convergence is obtained, depending on

the value of A and B. However, if B=0 since the term V̂1 in
Eq. �7� can only mix L and L�2, the parity of the angular
momentum is well defined and only subspaces with the same
parity must be considered.

To finish this section, we must introduce the single-
particle density-matrix �SPDM� operator and its eigenfunc-
tions as tools to be used in the next sections. One of our aims
is to analyze the states generated as � grows in a dynamical
process that follows the evolution of the GS from an initial
value �0 �smaller than a critical frequency �c to be defined
later� to a final value � f �c at the middle of the first pla-
teau, where the first vortex has been nucleated. For these
relatively low values of � and far from the critical fre-
quency, the degree of condensation is high and the eigen-
function �a single-particle wave function� of the SPDM that
corresponds to the highest occupation plays the role of the
order parameter �OP� of the condensate �55�. To obtain this
OP, we solve the eigenvalue equation for the SPDM

 dr��n�1��r�,r����k
��r��� = nk�k�r�� , �9�

where

n�1��r�,r��� = 
GS��̂†�r���̂�r����GS� , �10�

with �̂ being the field operator. If there exist a relevant ei-
genvalue n1�nk for k=2,3 , . . ., then

�n1�1�r�� �11�

plays the role of the OP of the system. The map of the local
phase of this complex function gives precise information of
the position of vortices �55�. The change of the phase by 2��
around a point, where � is a positive integer, signals the

location of a vortex with � quanta of circulation. Notice that
m labels the single-particle angular momentum from m
=0,1 ,2 , . . . of the FD functions, whereas k=1,2 , . . . is a la-
bel that distinguishes between the eigenstates of the SPDM.
In Appendix A, we show a detail derivation of the relation-
ship between the operators that create FD functions âm

† and

those that create eigenfunctions of the SPDM operator b̂k
†.

III. DYNAMICS OF THE NUCLEATION
OF THE FIRST VORTEX

A. Adiabatic evolution

First, we try to find out if the nucleation of the first vortex
can be obtained as the final configuration of the adiabatic
time evolution of the initial GS submitted to increasing �.
To understand how the resulting state changes during the
process, we perform several runs from �0 to � f for increas-
ing time intervals and compare the results to the sequence of
stationary solutions obtained from the diagonalization of the
time-independent Hamiltonian for the same range of � val-
ues.

Assuming linear dependence in time of the rotation fre-
quency as

��t� = �0 + �t , �12�

where � is a constant, we solve the Schrödinger equation

i�t���t�� = Ĥ�t����t�� �13�

for the initial exact solution ���t=0�� at �0. If we assume
the expansion of the state in the Fock basis as ���t��
=�kck�t��k�, where �k� is the N-particle Fock state with the
well-defined angular momentum, and project Eq. �13� on the
state �j�, we obtain the system of equations

i�tcj�t� = �
k

ck�t�
j�Ĥ�t��k� , �14�

which can be solved numerically. The bracket 
j�Ĥ�t��k� is
expressed as


j�Ĥ�t��k� = 
j�Ĥ1�k� + Lj�1 − ��t��� jk, �15�

with a time-independent matrix which must be calculated

only once, plus a time-dependent diagonal term. Ĥ1=
N̂

+ Û+ V̂1+ V̂2; Lj is here the angular momentum of the
N-particle Fock state �j�.

We compare then the time evolution to the corresponding
sequence of stationary states at instant rotation frequencies
and choose three different criteria of adiabaticity. The first
one compares the profiles of the angular momentum as a
function of �. We consider that adiabaticity is obtained when
the maximum difference between the curves is 0.03. In Fig.
1, we plot for N=6 �A=0.03 and B=0� the evolution of the
angular momentum of the state that fulfils the condition of
being the exact GS at �0=0.4, up to � f =0.85 at the middle
of the first plateau. Different time intervals �t have been
considered until adiabaticity is achieved for �t=30 000; the
black line corresponds to the stationary solutions. This
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means that from the stationary state at �0=0.4, a slow evo-
lution taking at least 28 s is necessary to nucleate the first
vortex at � f evolving through stationary states �g=1, A
=0.03, and ��=2��175 Hz has been considered�. The
equilibrium state at �0=0.4 can be experimentally realized
after relaxation once the system is suddenly put in rotation at
�=0.4 �16�. The origin of the oscillations can be clarified by
the analysis of the contributions of different L subspaces in
the expansion of ���t�� as � evolves. Figure 2 shows the
weight of each subspace within ��t�. It can be inferred that
the interplay between L=6 and L=4 produces the oscilla-
tions. We proved that this is a general result for all N; very
fast evolution is possible, keeping adiabaticity, from �0 up to
about �1, whereas beyond this frequency, a sequence of qua-
drupolar excitations between L=N and N−2 produces oscil-
lations on 
L� lowering the speed.

A similar behavior is found for our second criterion based
on the evolution of the expected value of the energy. In con-
trast to the previous case, however, the coincidence with the
stationary values is obtained much faster �about �t=5000 for
the GS�, producing the incorrect impression of adiabaticity—
incorrect since other characteristics of the system, as is the
case of the angular momentum, are still not reproduced.

Finally, the third option is to measure the overlap between
the exact GS and ���t�� at � f and to consider that one gets
adiabaticity when the overlap is larger than 0.99. For N=6,
adiabaticity is fulfilled in 21 s, compatible with the result
obtained from the first criterion.

For odd values of N, the time evolution driven by a
parity-preserving Hamiltonian �with B=0� cannot carry up

L� from 0 to N and a slight perturbation, which breaks parity
symmetry, is necessary. In other words, the sequence of sta-
tionary solutions of the parity-invariant Hamiltonian develop
a first-order transition at about �1 where even L-subspace
contributions are substituted by the odd ones within the com-
position of the GS. In the inset of Fig. 1, we show, for com-
parison, for N=5 the time evolution for the case when adia-
baticity is achieved for B=0 and nearly achieved for B
=0.003 ��t=50 000 in the last case�. In the first case, the
expected value of the angular momentum is around 4 and no
vortex is nucleated, whereas in the second case, a one-vortex
state with 
L�=5 is obtained.

Figure 3 shows �c defined as � f =�0+�c�t as a function
of N. For fixed values of the initial and final frequencies
taken for all cases at �0=0.4 and � f =0.85, we increase �t
until adiabaticity is fulfilled �using the third criterion previ-
ously mentioned� and from it, we obtain �c. In both cases,
with and without the parity-breaking term in the Hamil-
tonian, �c converges, meaning that even for large number of
particles, the process is possible at a finite time interval.

B. Two-mode state

To analyze the evolution of the GS in more detail �we
focus on the case B=0�, we look at the eigenfunctions of the
SPDM �see Eq. �9�� and their occupations nk. They provide
an alternative representation of multiparticle states and op-
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FIG. 1. �Color online� For N=6 and B=0, time evolution of the
mean value of the angular momentum �in units of ��, taking as the
initial condition its GS value at �0=0.4 �not shown in the figure�.
The value of �t is the time used in the process to run linearly from
�0 to � f =0.85 in units of ��

−1. For N=5, inset shows 
L� over �;
for B=0 once adiabaticity is fulfilled and close to adiabaticity for
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erators by the substitution of the FD functions �m by �k. The
result obtained is that during the whole time evolution from
�0 to � f, only two of these single-particle eigenstates, �1
and �2 �the most occupied and the next one�, with occupa-
tions n1 and n2, respectively, play a role in the GS. Moreover,
through the whole evolution �n1+n2� /N�0.9 and as N in-
creases, this joint occupation is even larger. In Fig. 4, the
adiabatic change in time of the first two occupations nk is
shown. This result strongly suggests the substitution of the
GS by a two-mode state in which only �1 and �2 are con-
sidered. We define as “critical” ��c� the frequency where the
coincidence of the occupations n1 and n2 takes place. The
decrease of the anisotropy A reduces the width of the critical
regime, but the peaks in the population of �1 and �2 always
touch each other.

In contrast, if B�0, n1 is strictly greater than n2 at �c and
although these modes are still the dominant ones, the peaks
do not touch at any frequency. The two-mode model works
well, but the system becomes slightly more condensed. How-
ever, within the region around �c, the system lies always
beyond the regime of applicability of MF theories �45�.

Another relevant information is that only the three first
LLL single-particle states �for m=0,1 ,2� have a significant
weight in the expansion of �1 or �2. Below �c, �1 is a
combination of �0 and �2; at �c it changes its nature to a
state that contains only the �1 and remains as that up to � f.
The second most occupied state, �2, develops the opposite
changes in such a way that they interchange their composi-
tion at the critical frequency. As a consequence, the density
of the GS shows predominantly two symmetric vortices, pro-
duced by the combination of �0 and �2, that move from the
edge to the center �up to a nonzero shortest distance� as �
approaches �c and a single centered vortex produced by �1
from �c to � f. Figure 5 shows the evolution of the weights
�p0 and p2� of the FD functions in the expansion of �1 up to
the critical frequency where they disappear. Close to �0, �1

is essentially �0 �and �1 is essentially the GS�, producing a
fully condensed state. Just before �c, it has both components
with significant weights and at �c, these weights are substi-
tuted by the weight of the unique component �1 �not shown
in the figure�.

Had we considered the combination of �0 and �2 for the
whole range from �0 to � larger than �� �with the addition
of a quartic potential�, in the spirit of a MF approach, then
the curves p0 and p2 in Fig. 5 would cross each other and
would end with final values of p2=1 and p0=0 at some �,
meaning that a single double-quantized vortex would be pro-
duced at the center of the condensate, in agreement with the
results obtained by Saito and Ueda �56�. The evolution
would not fulfill the condition of adiabaticity and the last
state would be an excited state.

In order to perform simulations of TOF experiments in
Sec. V, assuming a large number of particles to have good
statistics, we combine the results from exact diagonalization
with the use a two-mode model in the following way: at �c,
we analyze the overlap between the exact GS and N-body
two-mode Fock states of the type

�n1,n2,0,0, . . .� , �16�

where n1+n2=N, which will be abbreviated as �n1 ,n2�. Here,
we must clarify a point concerning the definition of �1 and
�2. At �c, n1=n2 and the “most occupied” state can be both
of them. As long as we concentrate in the analysis of the GS
at �c, we choose for �1 the expansion in terms of �0 and �2
and for �2 the one represented by �1.

Figure 6�a� shows �
GS �n ,N−n��2 as a function of n for
B=0. The result means that in the GS, there is a nearly
uniform distribution among the different components �better
as N increases� and in addition, that �GS� is very close to the
maximally entangled �ME� state constructed from even n
values, since the overlap �
ME �GS��=0.92 is indeed large.
Here �ME� is defined as

�ME� = ��N,0� + �N − 2,2� + ¯ + �0,N��/�N/2 + 1.

�17�

Note that the combination �=�k=0
N �� N

k �	N−k
k�N−k ,k� for a
given 	 and 
 is a condensate, a system with a single one-
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body wave function occupied: �̃=	�1+
�2 since �̃ � �̃

� ¯ � �̃=�. However, there does not exist neither a pair 	,

, that reproduces the state �17� with only even entries, nor a
pair that reproduces the cat state �57�. Note also that we are
using here the concept of entanglement for identical particles
corresponding to the mode entanglement �for various ways
of defining entanglement in systems of identical particles,
see �58,59��. This analytic approximation to the GS allows us
to simulate experimental TOF measurements with an arbi-
trarily large number of atoms, where the only ingredients
supplied by the exact analysis are the coefficients of the
expansions of �1 and �2 on the FD functions. We use it in
Sec. V.

Figure 6�b� shows similar results for B�0. The main dif-
ference between the two cases consists on the expansion of
�1 and �2 in the FD states. In the parity-broken case, in both
expansions, �0, �1, and �2 are significant. The decrease of
the columns with n is exponential and can be accurately
adjusted by an analytical function. We define as �PB� �PB for
parity broken� the expansion on �n ,N−n� states with the ap-
propriate decreasing coefficients. It must be pointed out that
the single-particle odd occupations must be zero for B=0 and
very close to it for B=0.001 not observable in the scale of
Fig. 6�b�. The variation of the weights for different number
of particles converges as N increases, as shown in Fig. 7
where the results from N=16 and N=18 coincide. In Sec. V,
we use the converged coefficient to simulate the measure-
ments. For a given N, the distribution of weights shown in
Fig. 6 is robust against changes in the anisotropy strength A.

For comparison, we also analyzed, for B=0, the overlap
of the GS with other celebrated states. One is the “cat state”
represented by the combination �N ,0�+ �0,N� �47�, which
means that as a result of a single shot, the system can only
appear as a full condensed state of each type with a probabil-
ity of 50%; similar phenomenology was analyzed in Ref.
�61� related with optical vortex cat states. Another is the
so-called “fragmented state” with only one component in its
expansion, given by �N /2,N /2� with a 50% of occupation
for each mode �51�, and the last case considered is the full
condensed state. In Fig. 8, for N=12, we show the overlaps
as a function of � for each case; the system evolves from a
full condensed state at �0 to a quite condensed one at � f,

passing through a strongly correlated state, very similar to
�ME� at the critical frequency.

IV. ENERGY SPECTRUM

In Sec. III, we addressed the question related to the pos-
sibility of adiabatic evolution from �0 to � f in a finite �t
when nonzero values of A and B are included in the Hamil-
tonian. The conclusion was that as long as B is small com-
pared to A and g, even for a large number of particles, �t
remains finite. In this section, in contrast, we analyze the
energy gap between the GS and the first-excited state as a
necessary ingredient, aside from the critical �c already
treated in Sec. III, to decide if the adiabatic criterion is ful-
filled. We look for the possibility of excitations of different
multipolarity. First, we analyze the energy gap between the
GS and the lowest-excited states during the evolution in
terms of the contribution of the L subspaces in their compo-
sition and see how this analysis depends on A, B, and N.
Next, we concentrate on the robustness of the GS of the
parity-invariant Hamiltonian at the critical frequency against
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FIG. 6. �Color online� Analysis of the GS for N=12 at the criti-
cal frequency in terms of the square of the scalar products, Pn
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occasional external perturbations, i.e., we inquire about the
experimental feasibility of obtaining the �c state in the labo-
ratory. This question is suggested by possible applications to
quantum information, where it is necessary to manipulate
and control the system.

For the symmetric Hamiltonian �A=B=0�, as was men-
tioned in Sec. II, at the critical frequency ��c=�1=��

−gN /8� in this case�, N stationary states are energy degen-
erated �those with L=0 and L=2, . . . ,N� as expected from
the analytical expression of the energies

EL =
g

4�
N�N −

L

2
− 1� + �� � − ��L + N��

= L��� − � −
gN

8�
� +

gN

4�
�N − 1� + N��, �18�

which become L independent when �=�1. This degeneracy
is lifted by the introduction of nonzero A, B, or both. Figure
9 shows for N=6 the evolution of the energy spectrum for
A=B=0, A�0, and B=0, and A=0 and B�0, respectively.
In the second case, the energies are grouped in pairs of dif-
ferent parity, as was previously obtained by Parke et al. �38�,
namely, for some values of �, the lowest-excited state is
nearly twofold degenerated being, however, well separated
from the GS. This was the general trend in all considered
cases �N�20�. As � changes, some crossings and anticross-
ings take place in such a way that the minimum gap between
the GS and the first excitation �defined as Gm� may imply
jumps from even to even �which is the case of N�6� or even
to odd �for N6�.

In Fig. 10, we show, for N=10, the evolution of the con-
tributions of different L subspaces to the GS �upper figure�
and to the first-excited state �bottom figure�. We consider A
=0.03 and a relatively large value of B=0.005 to emphasize
the broken-parity effect. Since both symmetries are broken,
all L subspaces have nonzero contributions. However, there
is a remarkable difference between the regions below and
above �1=0.76. For ���1, only even values of L are sig-
nificant in spite of the fact that the Hamiltonian breaks parity
symmetry and the presence of external fluctuations that
would produce monopolar �L�1� or octupolar �L�3� exci-
tations is irrelevant, since these excitations are energetically
blocked; the most probable process is a quadrupolar excita-
tion from L=0 to L=2. In contrast, for ��1, all even and
odd values of L play a role; in particular, far from �1, the
change from L=10 to L=9 is the most probable scenario,
which means that the possible nonadiabaticity of the evolu-
tion would be dominated by a braking process �i.e., slowing
down the rotational speed of the system�, where in an effec-
tive way, one of the atoms jumps from the condensed to the
thermal phase, ceasing its contribution to the total angular
momentum of the system. Had we suppressed B in Fig. 10,
we would obtain for the first-excited state separated regions
with only even or only odd contributions �due to crossings in
the spectrum�.

Finally, in Fig. 11, we show the minimal gap Gm as a
function of N obtained from the parity-invariant Hamil-
tonian. We distinguish between two cases: in the upper curve

�2�2�, only even values of L are considered, i.e., it gives the
gap for quadrupolar excitations, in contrast, in the lower
branch, all L values are considered �1�1� and it represents
the minimal gap that must be overcome by any perturbation
of arbitrary multipolarity. If the system is protected against
parity-breaking perturbations, the adiabaticity of the process
is guaranteed �upper curve� since Gm tends to a constant for
large N and simultaneously �c decreases in such a way that
the adiabatic criterion given by �cN /Gm�1 is fulfilled �for
example, 0.006 for N=10�. However, if parity-breaking ex-
citations can occur and the number of particles is large, the
adiabatic evolution is practically impossible.

It is worth noticing that we have been dealing with two
different definitions of the critical frequency �c: one is the
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frequency where the two single-particle occupations equalize
�n1=n2� and the other one is the frequency where the mini-
mum gap between the GS and the first-excited state takes
place. Within our numerical precision, both definitions are
the same.

V. SIMULATION OF MEASUREMENT

Once we have an accurate representation of the GS at the
critical frequency for both cases, with and without parity
symmetry breaking, we can simulate measurements during
a TOF experiment for an arbitrary large number of atoms

�49�. We assume ballistic expansion, a hypothesis compatible
with our LLL condition �60�. We proceed as follows. After
solving the eigenvalue equation for the SPDM of the exact
GS �see Eqs. �9� and �10��, we get �1 and �2 for the two
modes. Then the density distribution of the GS �the two-
mode model state� determines the position of the first atom
using the following algorithm. A randomly generated posi-
tion r� is accepted if ��r�� /�max is larger than another ran-
domly generated number u, 0�u�1, or rejected otherwise;
�max being the maximum of the density. This first step ends
up with the detected position of the first atom: let us call it r�1.
Next we consider the pair-correlation function �PCF� given

by ��2��r�1 ,r��= 
GS��̂†�r�1��̂†�r���̂�r���̂�r1���GS� �being �̂�r��
=�l�lâl the field operator� and generate the second position
in the same way. By repetition of the procedure N times,
finally we get the set of positions of all the N atoms. This
sequential algorithm simulates a TOF measurement of a
single shot. The procedure is the same in both cases, with or
without parity-broken symmetry. However, the main differ-
ence is that in the first case �B�0�, the weights of the com-
ponents �n ,N−n� in �PB� become negligible for n18,
which simplifies the numerical calculation.

Figure 12 shows a set of four shots for N=10 000 atoms
with B=0; here, the spots represent the positions of the N
atoms, whereas in Fig. 13, we show the N-correlation func-
tion defined as

��N��r�1,r�2, . . . ,r�N−1,r�� �19�

related to the four shots of Fig. 12, respectively. The N cor-
relation gives the probability to find the last atom at r� once
the other N−1 have fixed positions. For such a large number
of atoms we obtain, as a general result, that the j-correlation
function is indistinguishable from the j+1 one, if j100,
namely, the correlation is important only for the first posi-
tions. From the sample of four single shots shown in Fig. 12,
it is clear that a vortex is produced at random places along
the x axis �this axis is preferred due to the particular form of
the anisotropic term�, with sometimes a slight manifestation
of a second vortex, as is the case of the first shot. At odds
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with this result, in the case where parity symmetry has been
broken �i.e., the last degree of freedom�, the GS is project-
edonto the most probable option and the vortex always ap-
pears at the same place �see Fig. 14� at a negative value of x
in our case. This result is again due to our particular choose
of the parity-broken term in the Hamiltonian, namely, the
vortex would be located at a positive x if

V2�x� = − B
M��

2

��
�

i

N

xi
3 �20�

had been chosen.
We interpret the results in the following way: each image

of the system in a single shot �in the case B=0, for example�
is produced by two ingredients: one is the “intrinsic” nature
of the GS which determines the density distributions of the
j�N successive correlation functions �or equivalently the
density of systems with N− j+1 particles� and the other is the

particular measurement procedure, in our case by a one-by-
one detection of the atoms. In other words, the measurement
modifies the system and the pictures shown are a combina-
tion of the two factors. Different type of experiments detect-
ing particle positions would produce different pictures, com-
ing however from the same GS. However, the differences
disappear in the averaged picture given by the density. The
experimental mechanism does not modify the mean proper-
ties of the system.

According to the result demonstrated in Appendix B, the
accumulation of a large number of shots for a macroscopic
system reproduces the density. However, an unexpected re-
sult is that the density of a system of N=10 000 particles is
indistinguishable from that of a reduced N �N�20�, meaning
that some mean properties of macroscopic systems are well
captured by the exact results from mesoscopic systems mak-
ing unnecessary the extrapolation to the thermodynamic
limit. This density contains two vortices symmetrically posi-
tioned along the x axis. We want to stress that at the level of
the exact GS, we proved that the holes that appear in the
density are real single-quantized vortices as the phase of �1
changes by 2� around them. If the analysis of the nucleation
process would had only the density of the sequence of sta-
tionary states for increasing � from �0 to �c, as a unique
source of information, the conclusion would be that the
nucleation of the first vortex is preceded by the presence of
two symmetric vortices that move to the center. However,
this is nothing else than one possibility among the multiple
realizations of the experimental performance.

As a test of our procedure to simulate the TOF experi-
ment, we considered a cat state, artificially created from the
�ME� suppressing all the contributions shown in Eq. �17�
except those from �0,N� and �N ,0�. The result is shown in
Fig. 15, which corresponds to the densities of �1 and �2 as
expected, with one or two vortices. We obtained only two−2 −1 0 1 2
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FIG. 13. �Color online� Nth correlation functions of the shots of
Fig. 12 �see Eq. �19��.
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FIG. 15. �Color online� Shots on the cat state.
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possibilities, as the system is fully occupying the single par-
ticle �1 or �2 and no partial occupations are possible. Thepo-
sitions of the noncentered vortices are given by x
= ��2� 	


 ��1/2�1.5, where �1=	�0+
�2 in terms of the FD
states.

Some experience in the analysis of many-body systems
suggests that complementary information can be obtained by
the inspection of the PCF �37�. However, the success of such
exercise depends strongly on the type of state. Since the
meaning of the PCF is the probability of finding an atom at
r� when another one is placed at r�1, a circular symmetric
result means that the system is not correlated, whereas a hole
at r�1 and ordered peaks in special positions means that the
position of the atoms is strongly correlated; this is, for ex-
ample, the case of the Laughlin state, solution of the sym-
metric Hamiltonian with L=N�N−1� in the region of strong
rotation. It is a nondegenerated GS and as a consequence,
its density is circular symmetric preserving the symmetry of
the Hamiltonian. However, its PCF reveals a strongly corre-
lated Wigner-type structure of N peaks. The reason for the
discrepancy between the density and the PCF is that the
Laughlin state is a number state with the phase completely
undefined �the opposite case of a condensate�. It is a linear
combination of all possible orientations of the Wigner struc-
ture. A measurement that fixes the position of one atom
projects the system in a particular orientation, revealing the
Wigner structure. In contrast, the GS at �c is the solution of
a Hamiltonian that contains a rotating symmetry-breaking
term �A�0� and has a fixed orientation. The PCF does not
provide then extra unknown information if r�1 is chosen at the
maximum of the density.

Finally, we want to mention a speculation. In the case of
a system submitted to both types of anisotropy �A�0 and
B�0� and considering in general both signs for the param-
eter B, the density of the system would contain two vortices
in fixed symmetric positions on the x axis. This state is a
candidate to experience tunneling between the two single
vortex states in agreement with the picture raised by Parke
et al. �38� as the precursor mechanism for the nucleation.

VI. CONCLUSIONS

We have analyzed in this paper vortex nucleation in me-
soscopic 2D Bose superfluid in a rotating trap. The main
ingredient of our work is that we have included a weakly
anisotropic stirring potential, breaking thus explicitly the
axial �rotational� symmetry. The system we consider is well
described by the mean-field theory well below “criticality”
�with an even condensate wave function� and well above the
criticality, with the order parameter being an odd function.
This phenomenon involves therefore a discrete parity sym-
metry breaking in the order parameter. In the critical region,
the MF solutions exhibit dynamical instability. The main re-
sult of our paper is that the true many-body state in this
region is a strongly correlated entangled state involving two
macroscopically occupied modes �eigenvectors of the single-
particle density matrix�. We have characterized this state in
various aspects, which can be summarized in more details as
follows:

�i� The parity symmetry breaking at the critical frequency
manifests itself as dynamical instability within the mean-
field framework. It does not prevent, however, the adiabatic-
ity of the nucleation process. The increase of the parity con-
serving perturbation A notably reduces the necessary period
of time to evolve from �0 to � f �for A=0.1, �t�1 s�. This
conclusion remains valid even when the number of particles
increases. However, a significant value of the parity-breaking
perturbation �B�0� evidently acts against the adiabaticity.
This perturbation leads to an exponential decrease of the en-
ergy gap from the GS to the first-excited state.

�ii� The maximally entangled combination of �1 and �2 of
the two-mode state, which is a fairly accurate representation
of the strongly correlated state at the critical frequency for
B=0, reveals a single vortex structure randomly located
along the x axis in a single shot measurement �with an addi-
tional small probability of a pair of, in general, nonsymmetri-
cally located vortices�. This is the result of the particular way
of measurement mechanism that we consider here; a one-
particle-followed-by-another-one detection.

�iii� The function ��2��r�1 ,r��, with r�1 at one of the peaks
of the density on the y axis, does not reveal any hidden
structure due to the fact that the system has a fixed orien-
tation and the position of the vortex along the x axis is
smeared out by the integration over the positions of the
other N−2 atoms. This is an intrinsic property of this corre-
lation function. In contrast, ��N��r�� breaks both symmetries,
rotational and parity, producing the pictures shown in Fig. 13
typical of a projection mechanism implicit in a single mea-
sure �51�.

�iv� The state �ME� becomes a better representation of
the exact GS as N increases. It is robust against changes in
A for 0�A�0.1. The state �PB� has zero contribution of
�n ,N−n� for n�18.

�v� The mean properties of the system as those given by
the total energy and the density are insensitive to the
symmetry-broken mechanism at �c.

�vi� Instability or chaotic behavior of the system in a
mean-field calculation can be a signature of the existence of
a strongly correlated state whose description lies beyond the
mean-field framework.
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APPENDIX A

1. Natural orbitals

From the diagonalization of the SPDM, one obtains a new
set of single-particle wave functions �SPWF�, often called
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natural orbitals, and their corresponding annihilation opera-
tors given by

�i = �
j=0

L


ij� j
FD, �A1�

b̂i = �
j=0

L


ijâj , �A2�

where 
ij are real numbers. âj is the operator that annihilates
the FD with angular momentum j, j=0,1 , . . . ,L, being L the
largest single-particle angular momentum in the GS ��0�. We
have sorted the SPWFs in decreasing order of occupation

�
ni�� in such a way that b̂1 and b̂2 create the most occupied
single particle and the next one, respectively. It is worth to

notice that the subindex in b̂i and �i �i=1,2 , . . . ,L+1� labels
different SPDM eigenstates, whereas the subindex in �i

FD

�i=0,1 , . . . ,L� means angular momentum.
The representation of a state ��� in terms of the FD func-

tions can be transformed into one in terms of the natural base
��i� in the following way. Given a general state

��� = �
k=1

dim

	k�k�FD, �A3�

where �k�FD is a N-body state expressed in the FD base and
dim is the dimension of the space considered, �k�FD can be
expressed as

�k�FD =
1

��l=0

L
nlk!

�
j=1

N

âwkj

† �0� , �A4�

where nlk is the occupation of FD l in the state �k�FD and wkj
is the angular momentum of each particle in the state �k�FD.
Using Eqs. �A2� and �A4� in Eq. �A3�,

��� = �
k=1

dim
	k

��l=0

L
nlk!

�
j=1

N

�
i=1

L+1


i,wkj
b̂i

†�0� , �A5�

where we have used the orthogonality properties of the 

matrix �
ij�−1= �
ij�T= �
 ji�.

2. Overlap

The ME state is a combination of states �n ,N
−n ,0 , . . .�SPDM, n�even, with the same weight, where n is
the occupation of the most occupied SPWF and N−n the
occupation of the next one. At �c, the first natural orbit is a
combination of SPWF with angular momenta m=0 and m
=2, �1

SPDM=c�0
FD+d�2

FD, with d=−�1−c2 and the second
one is equal to the FD with angular momentum m=1,
�2

SPDM=�1
FD. Then, each state can be expressed in the FD

bases as

�n,N − n,0, . . . ,0�SPDM

=
�câ0

† + dâ2
†�n�â1

†�N−n

�n ! �N − n�!
�0�

= �
i=0

n �n

i
� �câ0

†�n−i�dâ2
†�i

�n!
�0,N − n,0, . . . ,0�FD

= �
i=0

n ��n

i
�cn−idi�n − i,N − n,i,0, . . . ,0�FD. �A6�

Projecting each of these states on the GS obtained from exact
diagonalization �GS�=�i0,i1,. . .,iL

	i0,i1,. . .,iL
�i0 , i1 , . . . , iL�FD,

summing over all the states �n ,N−n ,0 , . . .�SPDM, n�even,
and finally multiplying by the normalization constant
1 /�N /2+1, we obtain the overlap expressed in the simple
form

�
GS�ME��

=
1

�N/2 + 1� �
n=0

n�even

N

�
i=0

n ��n

i
�cn−idi	n−i,N−n,i,0,. . .,0� ,

�A7�

which measures the suitability of �ME� as an approximation
of the GS.

APPENDIX B

Density

The superposition of the data coming from a large number
of single shots reproduces the density of a system in a state
���, as can be shown in what follows. The probability to find
a particle at the position r after k particles have been de-
tected is given by the function �k�N−1, N the number of
particles�

��k+1��r1,r2, . . . ,rk,r� = 
�̂†�r1��̂†�r2� ¯ �̂†�rk��̂†�r�

��̂�r��̂�rk� ¯ �̂�r2��̂�r1�� ,

�B1�

where the expected value is in the state � and �̂�rk�
=�i�i�rk�âi is the field operator. Using the commutation re-
lations of the creation and annihilation operators and the
ortogonormalization of the set ��i�rk��, we can deduce the
general relations


r1�R2

��2��r1,r�dr1 = �N − 1���r� , �B2�


r1�R2


r2�R2

��3��r1,r2,r�dr1dr2 = �N − 2��N − 1���r� ,

�B3�

] �B4�
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r1�R2


r2�R2

¯
rN−1�R2

��N��r1,r2, . . . ,rN−1,r�

�dr1dr2 ¯ drN−1 = �N − 1� ! ��r� . �B5�

We could use any of them to recover the density, however,
the last is the one that fits our simulation. To model the
experiment, we have defined a grid in the xy plane and we
count the number of times that we detect a particle at each
site of the grid. On the other hand, if we interpret the mul-
tiple integral of Eq. �B5� as a multiple summation on a large
number of different configurations �r1 ,r2 , . . . ,rN−1 ,r� on the
discretized grid, keeping r fixed, then we can make the con-
nection since the histogram obtained after a large number of
shots is nothing else than, aside of a constant number, the
probability to find a particle at r when the other N−1 have
visited all the possible configurations, which is the meaning
of the correlation function ��N� in the left-hand side of Eq.
�B5�. More than that, the summation over the ��N� functions

is not arbitrary. It contains the information of the structure of
the state � as is the case in the simulation. It can be easily
proved, for example, in the case of the pair-correlation func-
tion that can be rewritten as

��2��r1,r� = 
V0��̂†�r1��̂†�r��̂�r��̂�r1��V0�

= ��r1�
V1��̂†�r��̂�r��V1� , �B6�

where

�V1� =
�̂�r1��V0�

���r1�
�B7�

is a system with N−1 particles and �V0� is the initial state
���. Or in other words, the probability to find a particle at r
when other is located at r1 depends on the probability to
have a particle at r1 in the state �. This completes our as-
sertion.
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