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In an intense laser field, an electron may decay by emitting a pair of photons. The two photons emitted
during the process, which can be interpreted as a laser-dressed double Compton scattering, remain entangled in
a quantifiable way: namely, the so-called concurrence of the photon polarizations gives a gauge-invariant
measure of the correlation of the hard gamma rays. We calculate the differential rate and concurrence for a
backscattering setup of the electron and photon beam, employing Volkov states and propagators for the electron
lines, thus accounting nonperturbatively for the electron-laser interaction. The nonperturbative results are
shown to differ significantly compared to those obtained from the usual double Compton scattering.
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I. INTRODUCTION

In perturbative double Compton scattering �1–3�, an in-
coming photon interacts with an electron, and two photons
are emitted. This process, which is represented by the Feyn-
man diagrams in Fig. 1, can be described by perturbative
quantum electrodynamics �QED� and requires no other spe-
cial theoretical input. Experimental evidence ranges from the
first measurements more than 50 years ago �4–6� to the more
recent �7–10�. However, if the emission process takes place
inside an intense laser field, then the physics changes, and
the electron line is dressed by multiple interactions with the
laser field �see Fig. 2�. The emission of two photons is a
purely quantum process which cannot be described by clas-
sical radiation theory �11�. An exception is encountered only
for the case of the sequential emission of two quanta, which
occurs when the intermediate propagator hits a resonance
pole, given by a resonant Dirac-Volkov state. In that case, to
which we will return to later in the paper, the diagrams in
Fig. 2 break apart into two distinctive blocks for the emission
of the two photons.

The most interesting geometry for the process is the back-
scattering case, where a relativistic electron counterpropa-
gates against an intense laser beam of comparatively low
frequency �on the order of a few eV�. In ordinary Compton
scattering, the electron is usually assumed to be at rest, and
the scattering of a highly energetic photon is considered.
Because the kinematics is inverted in the backscattering case,
one sometimes refers to this scenario as “inverse Compton
scattering.” During the emission, the electron interacts with
the laser field via an arbitrary number of interactions �see
Fig. 2�; the process can be described by fully laser-dressed
Dirac–Volkov propagators �12,13�. So, we may refer to the

process depicted in Fig. 2 as “inverse laser-dressed double
Compton backscattering.”

Note that for a single-photon Compton backscattering, the
highest photon energy attainable is 4�2�, where � is the
laser photon energy and � is the Lorentz factor of the incom-
ing electron. For a defined scattering geometry, the energy of
the emitted photon thus is uniquely defined, and it coincides
with the energy of the emitted classical �Larmor� radiation in
the specified direction provided the laser photon energy is
much smaller than the electron mass and Lorentz boost fac-
tors are taken into account. If the electron absorbs n laser
photons during laser-dressed single-Compton scattering, the
energy maximum changes to 4n�2� / �1+�2�, where the laser
intensity parameter � is defined in Eq. �6� below ��2 is pro-
portional to the laser intensity�. When two photons are emit-
ted in laser-dressed double Compton scattering, their maxi-
mum energy sum is limited by �1+�2�4n�2� / �1+�2�. As
we will show, it is possible to designate energy and angular
regions in which the double-scattering process dominates
over single scattering, which is crucial for an experimental
verification �14,15�.

Interestingly, as noted in �16–18�, the two photons emit-
ted during the process are entangled because of the quantum
nature of the process. In order to quantify the entanglement,
the emission directions of the two quanta cannot be used
with good effect, because they represent continuous variables
in three dimensions. However, the polarization components
of the two photons along the emission lines can be uniquely
decomposed in a two-dimensional space composed of unit
vectors �effectively a one-dimensional space�, and measured
independently. Triggering on simultaneous two-photon
events, one can then measure the entanglement quantita-
tively: an appropriate measure is the so-called concurrence
�19,20� which measures the polarization entanglement of the
two quanta.

The usual double Compton scattering, which involves the
absorption of only one laser photon, has a rate which is pro-
portional to the square of the laser four-vector amplitude,
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i.e., proportional to its intensity. Therefore, we may refer to
the single-scattering process as the “linear” process. With
rising laser intensity, the rate deviates from the simple linear
intensity dependence, it becomes more and more indispens-
able to include higher-order effects, and the process becomes
nonlinear.

In order to bring the current investigation into perspec-
tive, we would like to mention other work performed in con-
nection with two-photon emission from free electrons: in-
deed, a pair of photons may be produced by electrons
accelerated by any kind of external field. Probably the most
well-known process of this kind is double bremsstrahlung
�21–29�, but also photon pair creation in a magnetic field
�30–32�, and in a crossed field �33� has been considered. The
process under investigation in this paper is complementary to
those mentioned above, and may provide for better control of
the properties of the produced photons by adjusting the laser
parameters.

This paper is organized as follows. In Sec. II, we discuss
the formulation in terms of a laser-dressed �“nonperturba-
tive”� QED formalism. We then continue, in Sec. III, with a
comparison of the predictions of the fully relativistic nonper-
turbative theory to the relativistic, but perturbative �in the
laser field� theory of double Compton scattering. In particu-
lar, we extend the discussion given in Ref. �34� to also in-
clude circularly polarized laser fields. In Sec. IV, we study
the angular correlation and the entanglement of the emitted
photons, in the nonperturbative formalism. Finally, conclu-
sions are drawn in Sec. V. Throughout the paper, we use
relativistic natural units such that �=c=1, and a space-time
metric g��=diag�1,−1,−1,−1�. Scalar products of four vec-
tors are written as p�q�= p ·q for two four-vectors p and q.
The gamma matrices are written as ��, and their contraction
with a four-vector p as p̂=� · p.

II. FORMULATION OF THE QED THEORY

A. Notation

The electron mass is denoted by m, and the electron
charge by e=−�e�. The laser wave vector points in the nega-
tive x3 direction �with the space-time coordinate x�= �x0 ,x�
= �x0 ,x1 ,x2 ,x3��,

�� = ��,�� = ��1,0,0,− 1� , �1�

and the laser four-vector potential, modeled as a monochro-
matic plane wave, for linear polarization is

Alin
� �	� = a� cos 	, 	 = � · x , �2�

with a ·�=0, a�= �a��0,1 ,0 ,0�. For circular polarization we
have instead,

Acirc
� �	� = a1

� cos 	 + a2
� sin 	 , �3�

with a1 ·a2=0, a2
2=a1

2, a1
�= �a1��0,1 ,0 ,0�, a2

�= �a1��0,0 ,1 ,0�.
The laser intensity parameter � is defined as

� =
− e

m
�− a2

2
, �4�

for linear, and

� =
− e�− a1

2

m
=

− e

m
�− a1

2 − a2
2

2
�5�

for circular polarization. For a consistent comparison of lin-
ear and circular polarization, one should compare at the same
value of �, which corresponds to the same laser intensity. The
parameter � relates to the root-mean-square electric field

amplitude Ē like

� =
− eĒ

m�
, �6�

and can be said to be the relativistic �inverse of the� Keldysh
parameter: �
1 corresponds to the multiphoton regime of
relativistic laser-matter interaction, where the coupling to the
laser field is perturbative, and ��1 is commonly referred to
as the tunneling, or nonperturbative regime. The quantum
parameter � �35�, which in general determines the magnitude
of quantum effects such as e+e− pair creation, spin effects,
etc., is defined as

� = �
pi · �

m2 , �7�

where pi is the initial momentum of the electron �see Eq.
�10��. If we compute � in the rest frame of the electron,
where pi= �m ,0�, then

� = �
�

m
=

Ē

Ecrit
, �8�

where Ecrit=m2 / �e� is the critical �Schwinger� field. Thus, �
is the amplitude of the electrical field of the laser compared
to the critical field in the rest frame of the electron. The
relation to laser intensities follows from the formula

pipipi

pipipi

pfpfpf

pf

pf pf

κκκ

κ κκ

kb kb kb

kbkbkb

kc kc kc

kckckc

FIG. 1. The six Feynman diagrams contributing to �ordinary�
double Compton scattering �initial electron four-momentum pi, final
four-momentum pf�. The electron line is denoted by a single cus-
tomary fermion line. The frequencies of the two emitted photons
with wave four-vectors kb and kc may be different and thus may be
their wavelengths; this is explicitly indicated in the panel.

qiqi pb qfqf pc

kbkb kckc

FIG. 2. Feynman diagram for the two-photon decay of a Dirac–
Volkov state. The electron line is dressed by the laser field and
denoted by a zigzag laser photon superimposed on the fermion line.
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I = �2��
m
�2

Icrit, �9�

where Icrit=2.31029 W /cm2 is the critical intensity, corre-
sponding to �=1 in the laboratory frame. For most of our
examples, we use �=2.5 eV �optical laser�, which corre-
sponds to I=5.51018 W /cm2 for �=1 and I=2.2
1019 W /cm2 for �=2; the laser field here is strong but
manifestly subcritical. Note that even in the case of a rela-
tivistic �Lorentz factor �=103� electron beam as considered
later in the examples �see Secs. II E and III�, the laser field
remains subcritical in the rest frame of the electron, since
�=�pi ·� /m2	10−2�1 with the parameters chosen.

The initial electron four-momentum is �we assume the
electron to be counterpropagating with respect to the laser
field, i.e., moving in the positive x3 direction�

pi = �Ei,pi� = �Ei,0,0,�Ei
2 − m2� ,

qi = pi + �2 m2

2� · pi
� = �Qi,qi� , �10�

which is valid for both circular and linear polarization. The
final electron four-momentum is

pf = �Ef,p f�, qf = pf + �2 m2

2� · pf
� = �Qf,q f� . �11�

The four-vector qi,f introduced in Eqs. �10� and �11� is the
average momentum of a laser-dressed electron �35�, with
corresponding average mass m�,

qf
2 = qi

2 = m�
2 = m2�1 + �2� . �12�

The electron spinors are used in the following form:

ur�p� =�E + m

2m 

�r1

�r2

1

E + m
� · p��r1

�r2
� � , �13�

with the standard vector � being composed of the �Pauli�
22 spin matrices. With this convention, the spinors are
normalized according to ur

†�p��0ur�p�= ūrur=1. For an elec-
tron moving in the x3 direction, r=1 corresponds to a right-
handed electron, and r=2 to a left-handed electron.

The Volkov states �35�, solutions of the Dirac equation
with an external laser field

�i�̂ − m − eÂ�� = 0, �14�

read for linear polarization �see Eq. �2��

�p,r�x� =� m

QV
�

s=−�

� A0�s,�,�� +
e�̂â

2� · p
A1�s,�,���

 ur�p�e−i�q+s��·x, �15�

where

� =
ea · p

� · p
, � =

e2a2

8� · p
. �16�

Here, the generalized Bessel function �36,37� is defined as

Ak�n,�,�� =
1

2�
�

0

2�

cosk ���ein�−i� sin �+i� sin 2�d� , �17�

with k�0, from which follows Ak�0�n ,� ,��
= 1

2 �Ak−1�n+1,� ,��+Ak−1�n−1,� ,���.
For circular polarization �see Eq. �3�� we have

�p,r�x� =� m

QV
�

s=−�

� Js��̄�eis� +
e�̂â1

2� · p
Js

+��̄,��

+
e�̂â2

2� · p
Js

−��̄,���ur�p�e−i�q−s��·x. �18�

Here

�̄ = ��1
2 + �2

2, �1 =
ea1 · p

� · p
, �2 =

ea2 · p

� · p
, �19�

and

� = arctan2��2,− �1� . �20�

The arctan2�· , ·� functions is defined as

arctan2�y,x� = arctan� y

x
� if x� 0,

arctan2�y,x� = � + arctan� y

x
� if x
 0, �21�

the usual Bessel functions are denoted by Jn���, and

Js
+��,�� =

1

2
�Js−1���ei�s−1�� + Js+1���ei�s+1��� ,

Js
−��,�� =

1

2i
�Js−1���ei�s−1�� − Js+1���ei�s+1��� . �22�

Note the normalization factor in Eqs. �15� and �18�: the vol-
ume V comes with the wave function, and not with the spinor
u�p�.

The propagation four-vectors of the two emitted photons
are denoted by

kb = ��b,kb� = �bk̃b

= �b�1,sin �b cos �b,sin �b sin �b,cos �b� ,

�23a�

kc = ��c,kc� = �ck̃c = �c�1,sin �c cos �c,sin �c sin �c,cos �c� ,

�23b�

� measuring the azimuth and � measuring the polar angle.
As a basis for the two polarization four-vectors �b and �c of
the two emitted photons, we take

�b
1 = �0,cos �b cos �b,cos �b sin �b,− sin �b� ,
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�b
2 = �0,− sin �b,cos �b,0�

�c
1 = �0,cos �c cos �c,cos �c sin �c,− sin �c� ,

�c
2 = �0,− sin �c,cos �c,0� . �24�

As an aid to the discussion, Fig. 3 illustrates the direction of
the polarization vectors for small polar angle � and different
values of �. Alternatively, the polarization can be expressed
in a helicity basis according to

�b
R =

1
�2

��b
1 + i�b

2�, �b
L =

1
�2

��b
1 − i�b

2� ,

�c
R =

1

�2
��c

1 + i�c
2�, �c

L =
1

�2
��c

1 − i�c
2� . �25�

B. Matrix element for linear laser polarization

The S-matrix element for two-photon emission from a
Dirac-Volkov state follows from standard Feynman rules,

with four-vector potentials Âb=Ab
���= �̂beikb·x /�V2�b and

Âc=Ac
���= �̂ce

ikc·x /�V2�c for the two emitted photons �see
also the Feynman diagram in Fig. 2�. For linear laser polar-
ization, we get

Sfi
linear = Sfi

�1� + Sfi
�2�

= e2� d4x1� d4x2�̄qf,rf
�x2��iÂc�x2�iG�x2,x1�iÂb�x1�

+ iÂb�x2�iG�x2,x1�iÂc�x1���qi,ri
�x1�

= − i �
n=1

s=−�

�
�2��4e2m

2V2��c�bQiQf

�4�qi − qf + n� − kb − kc�

 ūrf
�pf�Mb

s−n
p̂b − �2 m2

2�·pb
�̂ + m

pb
2 − m�

2 Fb
s

+ Mc
s−n

p̂c − �2 m2

2�·pc
�̂ + m

pc
2 − m�

2 Fc
s�uri

�pi� . �26�

Here, G�x ,y� denotes the laser-dressed propagator function
�13,35�, which can be constructed from the Volkov state �15�.
The propagator momenta are given as

pb = qi + s� − kb, pc = qi + s� − kc. �27�

The matrix element is proportional to V−2, since there are one
in-state and three out-states, each with a factor �V. Here, n is
the net number of absorbed laser photons, and the summa-
tion index s can be understood as the number of laser pho-
tons absorbed up to and immediately before emitting the
second photon �see Fig. 4 for a pictorial explanation�.

The matrix-valued functions for the transition currents M
and F are given as follows. For the first channel, we have

Mb
s−n = A0�s − n,� f − �b,� f − �b��̂c

+ A1�s − n,� f − �b,� f − �b���̂c
e�̂â

2� · pb
+

eâ�̂

2� · pf
�̂c�

− A2�s − n,� f − �b,� f − �b�
e2a2� · �c

2� · pf� · pb
�̂ , �28�

and

Fb
s = A0�s,�i − �b,�i − �b��̂b

+ A1�s,�i − �b,�i − �b���̂b
e�̂â

2� · pi
+

eâ�̂

2� · pb
�̂b�

− A2�s,�i − �b,�i − �b�
e2a2� · �b

2� · pb� · pi
�̂ . �29�

For the second channel, the two currents are given as Mc
s−n

=Mb
s−n�c↔b� and Fc

s =Fb
s�c↔b� under replacements of the

corresponding expressions for the first channel. The argu-
ments entering the generalized Bessel functions read

� j =
ea · pj

� · pj
, � j =

e2a2

8pj · �
, �30�

with j� �i , f ,b ,c�. The spinors uri,f
describe the spin state of

the in-going and outgoing electron, respectively. Note that

ψ = 0

ψ = π/2

ψ = π

ψ = 3π/2

ε1

ε1

ε1

ε1

ε2

ε2

ε2

ε2

y

x

z

ψ

FIG. 3. Polarization vectors according to Eq. �24� for fixed,
small �	0, i.e., for a photon propagating in the positive z direction.
For example, we have at �=� /2 the two vectors �1= �0,0 ,cos � ,
−sin ��	�0,0 ,1 ,0� and �2= �0,−1,0 ,0�.

qi

κ κ

κ κ

kb kc

κ

qf

p

FIG. 4. Clarification of the index s. Shown above is one of the
contributing Feynman diagrams in the perturbative picture, where
the laser photons are inserted one by one. The net number of laser
mode absorbed photons in this case is n=1. The propagator mo-
mentum is p=qi−kb+s�, so that s counts the net number of ab-
sorbed photons before emitting photon kc, i.e., the momentum at the
position of the label “p.” For the above diagram, s=0. Although n
must be positive for a net two-photon emission process, s may be
negative, and to get the total amplitude for fixed n, one should sum
all diagrams of this kind with s ranging from −� to +�.
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� · pi,f =� ·qi,f, and that due to �2=0, �c,b and �c,b are inde-
pendent of the summation index s, although one might have
initially assumed a dependence on s in view of the presence
of pb and pc in their respective defining equations.

C. Matrix element for circular laser polarization

For the case of circular polarization of the laser, the ma-
trix element can be derived in a similar way to Eq. �26�. The
matrix element reads

Sfi
circular = Sfi

�1�c + Sfi
�2�c

= − i �
n=1

s=−�

�
�2��4e2m

2V2��c�bQiQf

�4�qi − qf + n� − kb

− kc�ūrf
�pf�Nb

s−n
p̂b − �2 m2

2�·pb
�̂ + m

pb
2 − m�

2 Gb
s

+ Nc
s−n

p̂c − �2 m2

2�·pc
�̂ + m

pc
2 − m�

2 Gc
s�uri

�pi� . �31�

Here, as is typical for circular polarization, the generalized
Bessel functions in the formulas simplify to ordinary Bessel
functions. The matrix-valued functions for the first channel
read

Nb
s−n = Js−n��̄ fb�ei�fb�s−n���̂c −

e2a1
2� · �c

2� · pf� · pb
�̂�

+ �Js−n−1��̄ fb�ei�fb�s−n−1� + Js−n+1��̄ fb�ei�fb�s−n+1��


1

2
��̂c

e�̂â1

2� · pb
+

eâ1�̂

2� · pf
�̂c�

+ �Js−n−1��̄ fb�ei�fb�s−n−1� − Js−n+1��̄ fb�ei�fb�s−n+1��


1

2i
��̂c

e�̂â2

2� · pb
+

eâ2�̂

2� · pf
�̂c� , �32�

and

Gb
s = J−s��̄ib�e−i�ibs��̂b −

e2a1
2� · �b

2� · pi� · pb
�̂�

+ �J−s−1��̄ib�ei�ib�−s−1� + J−s+1��̄ib�ei�ib�−s+1��


1

2
��̂b

e�̂â1

2� · pi
+

eâ1�̂

2� · pb
�̂b�

+ ��J−s−1��̄ib�ei�ib�−s−1�� − J−s+1��̄ib�ei�ib�−s+1��


1

2i
��̂b

e�̂â2

2� · pi
+

eâ2�̂

2� · pb
�̂b� . �33�

For the second channel, we have Nc
s−n=Nb

s−n�b↔c� and Gc
s

=Gb
s�b↔c�. Here,

�̄ fb = ��� fb
1 �2 + �� fb

2 �2, �̄ fc = ��� fc
1 �2 + �� fc

2 �2,

� fb
1 =

epf · a1

� · pf
−

epb · a1

� · pb
, � fb

2 =
epf · a2

� · pf
−

epb · a2

� · pb
,

�34�

and similarly for �̄ib,c, �ib,c
1,2 . The phases � can be expressed

in terms of the generalized arctan function �21�,

� fb,c = arctan2�− � fb,c
2 ,� fb,c

1 � ,

�ib,c = arctan2��ib,c
2 ,− �ib,c

1 � . �35�

As in the linear case, the propagator momenta pb,c are given
in Eq. �27�.

D. Resonance conditions

For the whole two-photon process, we have both momen-
tum and energy conservation, as given by the four-
dimensional Dirac � function in Eq. �26�. The final electron
is not interesting, and therefore integrated out. Left is then
one constraint from the delta function. If this is used to fix
the energy of one of the photons �we will always take photon
kc to have fixed energy�, then we are free to choose the
energy �b and the direction ��b ,�b� of photon kb, and the
direction ��c ,�c� of photon kc. In addition, since we are in-
terested in polarization resolved rates, the polarization vec-
tors �b and �c can be chosen arbitrarily. The frequency �c can
be written as a function of the direction angles �b, �c, �b, �c
as follows:

�c =
n� · qi − kb · qi − n� · kb

n� · k̃c + qi · k̃c − kb · k̃c

	
4n�Ei − �b��b

2Ei + m2

Ei
�1 + �2��

�c
2Ei + m2

Ei
�1 + �2�

, �36�

where k̃c=kc /�c. In the second line of Eq. �36�, we have
expanded the expression for small � /m, �b, �c, and m /Ei,
and we have assumed the conditions we are interested in
here, i.e., n �

m�
m
Ei

��b��c�1 �this limit corresponds to a
small total exchanged laser photon energy as compared to
the relativistic electron energy�. Finally, the limiting term for
�b=�c=0 and �b=0 is

�c
max =

4n�Ei
2

m2�1 + �2�
=

4n�2�

�1 + �2�
, �37�

confirming the estimate given in Sec. I. The factor
�1+�2�−1 can be interpreted simply as arising from the in-
creased effective mass of the electron in the field.

Resonances in the Dirac-Volkov propagator �12,38� occur
if we have either pb

2−m�
2=0 or pc

2−m�
2=0. Here the two-

photon amplitude �26� splits up in a product of two single
nonlinear Compton scattering �39–41� amplitudes multiplied
with a singular factor. If we solve for �b, we find that the
resonance conditions read
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�b
res1 =

s� · qi

qi · k̃b + s� · k̃b

	
4s�Ei

2

�b
2Ei + m2

Ei
�1 + �2�

, �38�

independent of n and kc �this is the usual nonlinear Compton
formula �39��, and a second type of resonances occurs at

�b
res2 =

n� · qi − Cs�qi · k̃c + n� · k̃c�

− Csk̃b · k̃c + qi · k̃b + n� · k̃b

,

Cs =
s� · qi

qi · k̃c + s� · k̃c

. �39�

Equation �39� depends on n, so that there is one peak for
each n, in principle. However, the dependence on s is the
decisive one for typical situations. This is natural when we
recall that s is the number of photons exchanged before the
emission of the second photon. This type of resonance,
where the electron scatters twice inside the laser pulse and
emits one photon at each scattering event, has been referred
to as “plural Compton scattering” in Ref. �42�. Figure 5 il-
lustrates the formulas �38� and �39�.

E. Via gauge invariance to the differential rate

The matrix elements �26� and �31� are both invariant un-
der the gauge transformations

�b → �b + �1kb, �c → �c + �2kc, �40�

where �1,2 are arbitrary constants �that may depend on the
parameters in the problem, i.e., �, qi, etc�. This symmetry
can be used for a numerical check of the computer code used
for the evaluation, which we have performed in order to
reassure ourselves regarding the consistency of the calcula-
tions. The gauge symmetry depends sensitively on the Bessel
functions and the recurrence relations satisfied by them �43�,
so that all signs in the formulas have to be right for the
symmetry to hold. The gauge symmetry can also be used to
simplify the expression, for example, by gauge transforming
so that terms proportional to �b,c ·� vanish. There is also
invariance under the transformation a→a+��, � constant,
but since the four-vector a always appears with a square, a2,
as â�̂, or in expressions like Eq. �34�, this gauge symmetry is
almost trivial and cannot be used as a meaningful validity
check.

We now discuss how to obtain the differential two-photon
rates, using the example of linear polarization. The differen-

tial rate per unit time dẆ is obtained as

dẆ =
1

T
�Sfi�2

Vd3qf

�2��3

Vd3kb

�2��3

Vd3kc

�2��3 . �41�

Here, d3kb,c=�b,c
2 d�b,cd�b,c. The squared amplitude �Sfi�2

contains the Dirac � of argument zero, ���4��0��2=��4��qi
−qf +n�−kb−kc�TV�2��−4, so that all factors of V and T in
Eq. �41� cancel, as they should. We integrate over the final
electron momentum and the photon energy �c with the delta
function, and in addition we sum over the final electron spin
�the final electron is always assumed to be unobserved�, and

average over the initial electron spin. Since in all examples
we will present, the initial electron energy Ei and laser inten-
sity � are chosen such that the quantum parameter � �see Eq.
�7�� is small, spin effects are marginal �35�. The final result
then reads

dẆ

d�bd�bd�c
= �

ri,rf=1

2

�
n=1

�
e4m2�b�c

2

8�2��5Qiqf · kc
� �

s=−�

�

ūrf
�pf�

Mb
s−n

p̂b + e2a2

4k·p̃b
�̂ + m

pb
2 − m�

2 Fb
s

+ Mc
s−n

p̂c + e2a2

4k·pc
�̂ + m

pc
2 − m�

2 Fc
s�uri

�pi��2

, �42�

evaluated with qf =qi+n�−kb−kc and �c is given by the first
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FIG. 5. �Color online� Panel �a� shows �b
res1 �Eq. �38�� and �b

res2

�Eq. �39��, as a function of �b. Recall that we write kb

=�b�sin �b sin �b , sin �b cos �b , cos �b�, i.e., �b is the angle be-
tween kb and pi. The parameters employed are �=2.5 eV, �=1,
Ei=103 m, �b=�c=0, and �c=10−3. In panel �b�, the resonance
position of the first harmonic at �b=10−3 is plotted as a function of
n. For �b

res1, the first harmonic �the resonance at lowest possible �b�
means s=1, and since for �b

res2 the value of n−s tells us the order of
the resonance, we have set s=n−1 for this curve. In fact, for large
values of n, the resonance �b

res2 with s=n−1 shifts down to low
photon energies, so that there will be resonances for any photon
energy �b�0. However, these higher-order resonances will be sup-
pressed by a large-order Bessel function, and effectively, one can
say that the higher-order resonances will not contribute provided �
is not too large ��1�.
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line of Eq. �36�. Note also the factor Qf�c / �qf ·kc� arising
from the delta function integration over �c.

In order to obtain a well-defined expression for the differ-
ential rate close to the propagator poles �38� and �39�, it is

necessary to discuss some kind of regularization procedure.
One alternative is to include an imaginary correction to the
mass and energy of the laser-dressed electron �44,45�, so that
Qi and m in the propagator denominator are replaced accord-
ing to

Qi → Qi − i
m��� · qi�

2Qi
, m → m − i

��� · pb,c�
2

. �43�

The imaginary correction is related to the total rate for non-

linear single-Compton scattering as ��� ·q�= q0

m ẆCompton, and
is given to a good approximation for small � ·q /m2, �=1 and
linear laser field polarization as ��� ·q�=410−3� ·q /m
�45�. The main problem with this regularization scheme is
that the resulting scattering amplitude is not strictly gauge
invariant, but the noninvariance induced by the small regu-
larizing imaginary parts of the energies of the virtual states is
moved to higher orders. We note that very similar questions
concerning two-photon emission amplitudes for bound states
have recently been discussed in �46–50�. As an alternative,
we propose to multiply the rate with the regularizing factor

� = �
s=−�

�

�1 − e−��/m3��pb
2 − m�

2�2
��1 − e−��/m3��pc

2 − m�
2�2

� , �44�

where � is the pulse length of the laser field. The rate is now
proportional to � at a resonance, and this way of regularizing
is furthermore gauge invariant. Figure 6 shows an example
of the differential rate �42�, evaluated for a specific set of
parameters corresponding to double Compton backscattering
in a relativistically strong laser field. For �b�2 MeV, there
is a “forest” of peaks at energies satisfying Eqs. �38� and
�39�. Note that according to Fig. 5�b�, the resonances
�b

res2�s=n−1� should actually lead to resonance peaks also at
very low photon energies, but these are suppressed by large-
order Bessel functions and thus not visible. The bright curves
in Fig. 6�c� correspond to the maxima in the differential rate
induced by single-Compton scattering, but the rate is nonva-
nishing in other areas of the �b−�b-plane due to the two-
photon emission.

The object of this paper is however not to study the be-
havior of the process close to the peaks, but rather to single
out a kinematic region where unambiguous conclusions can
be drawn independent of the method of regularization. The
kinematic region best suited for such investigations seems to
be for photon energies �b and angles �b smaller than some
threshold such that the contribution from the cascade peaks
is negligibly small. Mathematically, the suppression arises
due to a large-order generalized Bessel functions �or, alter-
natively, ordinary Bessel functions in the case of circular
laser polarization�, which beyond some cutoff index decays
exponentially with increasing n �37,43�. In all subsequent
examples in the remaining sections of this paper, we will
therefore restrict the photon energy �b and the polar angle �b
to the region �b�1 MeV and �b�0.002. Here, the result is
independent of the method of regularization since we are
sufficiently far away from the cascade peaks. With increasing
�, the “safe” region shrinks, as the first Compton peak ap-
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FIG. 6. �Color online� We illustrate the resonances of the fully
differential rate �42� as a function of �b. The parameters used are
�=1, Ei=103 m, �b=�b

1, �c=�c
1, �c=0.002, �b=�c=0. In panels �a�

and �b�, a fixed value of �b=0.001 is used, corresponding to a cut
along the dashed line in �c�. In panel �c�, the color coding indicates

the value of the decadic logarithm log10
dẆ

d�bd�bd�c
, where the argu-

ment of the logarithm is measured in units of s−1 sr−2 MeV−1. The
regularization method employed is given by a finite laser pulse
duration as in Eq. �44�, with �=104 /�. In the inset of panel �b�,
both method �43� �Method 1� and method �44� �Method 2� are
shown for comparison. For �b
2 MeV, the application of the two
methods yields numerically indistinguishable curves. The first
Compton harmonic �the lowest bright curve in panel �c�� is broken
at �b	1.210−3, which can be understood as the point where
a ·�b=0 in the rest frame of the electron �in this frame, and in the
gauge �b= �0,�b�, the Thomson cross section is proportional to
�a ·�b�2�.
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pears at lower energy �b, see Eq. �38�. Already at �=2, there
are cascade contributions at �b�1 MeV, why we limit the
laser intensity to ��1 in the following.

III. COMPARISON TO PERTURBATIVE DOUBLE
COMPTON SCATTERING

In the limit �→0, the amplitudes �26� and �31� reduce to
the one found in �2�, where only one photon is absorbed
from the laser. A discussion of this process can be found in
standard textbooks �51�, and was recently reexamined in �3�.
The above mentioned references as well as other previous
works �11,52,53� were devoted to the study of the cross sec-
tion for unpolarized initial and final photons �with a few
exceptions, see �54,55��. However, as noted in �18�, the dis-
cussion of photon polarization correlation necessitates an ex-
pression for the amplitude for arbitrary polarization of the
final photons.

The amplitude SPDCS for perturbative double Compton
scattering �PDCS� is given by the sum of the Feynman dia-
grams shown in Fig. 1, and reads �51�

SPDCS =
me3�2��4

�8EiEf��b�cV
5
��pf + kb + kc − � − pi���

i=1

6

Ni� ,

�45�

where

N1 = ū�pf��̂c
p̂f + k̂c + m

�pf + kc�2 − m2 �̂b
p̂i + �̂ + m

�pi + ��2 − m2 �̂u�pi� ,

N2 = ū�pf��̂c
p̂f + k̂c + m

�pf + kc�2 − m2 �̂
p̂i − k̂b + m

�pi − kb�2 − m2 �̂bu�pi� ,

N3 = ū�pf��̂
p̂f − �̂ + m

�pf − ��2 − m2 �̂c
p̂i − k̂b + m

�pi − kb�2 − m2 �̂bu�pi� ,

�46�

N4=N1�b↔c�, N5=N2�b↔c�, and N6=N3�b↔c� in a self-
explanatory notation. Here, � represents the polarization vec-
tor of the laser field. The rate is then

dẆ = J�SPDCS�2
1

T
V

Vd3kb

�2��3

Vd3kc

�2��3

Vd3pf

�2��3

=
�2m4e4

8EiEf�b�c�2��5��
i=1

6

Ni�2

��pf + kb + kc − pi − ��d3kbd3kcd
3pf , �47�

where J= �m2�2

e2 is the photon flux. Integrating over d3pf and
d�c, and summing and averaging over the electron spin, we
obtain

dẆPDCS

d�bd�bd�c
= �2 m4e4�b�c

2

16�2��5Eipf · kc
�

ri,rf=1

2 ��
j=1

6

Nj�2

. �48�

The dependence on � is thus given by the prefactor �2, and
we may thus refer to this process as the “linear” process

because the rate is proportional to the laser intensity.
In Figs. 7 and 8, we show a comparison of the predictions

of the nonperturbative formulas �Eqs. �26� and �31�� and the
perturbative formula �Eq. �45�� for the differential rate, for
both circular and linear polarization of the laser field. Note
that to compare with the circular polarization, one should put
�= �0,1 , i ,0� /�2 in Eq. �46�. The figures show that the pho-
tons may be produced in any polarization state, although
parallel polarization of the two emitted photons �b ·�c	1 is
the dominant channel for linear laser polarization. Due to the
rotational symmetry, circular laser polarization results in
similar differential rates for both parallel and perpendicular
polarization of the emitted high-energy photons �see Figs.
7�d�–7�f� and 7�j�–7�l��. For small laser intensity, the plane
defined by the polarization and propagation axes of the laser
characterizes the emission pattern of the accelerated charge,
so that alignment of the two emitted photons as shown in the
third row of Fig. 7 can be expected. Our numerical results
show that this intuitive picture is still valid in the relativistic
nonperturbative laser interaction regime, although some de-
tails change: e.g., the emission of photons with antiparallel
polarization vectors is favored over the parallel case, as is
evident from the first panel in the upper row of Fig. 7. We
here recall that the direction of the polarization basis vectors
�b,c

1,2 depends on the angles �b,c, see Fig. 3. Figure 8 confirms
this picture, here the difference of the differential rate be-
tween the parallel case ��b ·�c	1� and the perpendicular case
��b ·�c	0� amounts to several orders of magnitude.

In order to demonstrate the contribution from the different
photon orders n, we refer to Fig. 9. Here the dependence on
the photon order n is shown, if we define

dẆ

d�bd�bd�c
= �

n=1

�
dẆn

d�bd�bd�c
. �49�

As can be seen from Fig. 9, typically up to 20 photons con-
tribute to the differential rate. Equation �36� for n�20 then
yields �c�70 MeV, which implies that even though the
“first” photon has modest energy �b=1 MeV, the energy of
the “second” photon is much larger. The difference between
the smooth curve in the circular case and the sawtooth shape
of the linear curve can be traced back to the behavior of the
generalized Bessel function and the usual Bessel function,
constituting the amplitudes �26� and �31�. For example, for
the parameters shown in Fig. 9�b�, one can show that the
dominant contribution to the matrix element for linear polar-
ization is roughly proportional to the generalized Bessel
function A1�n ,0 ,��, which vanishes for even n �43�. How-
ever, if the polarization vectors are summed over, then the
case of even n contributes, and the curve smoothens out.
Similar selection rules for the emitted harmonics occur also
for the nonlinear single-Compton scattering process �35�. On
the contrary, the circular polarization curve is smooth due to
the rotational symmetry.

To conclude this section, we investigate if the integrated
rate differs in the perturbative and nonperturbative case. In
Fig. 10, we show, as a function of �, the quantity
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Ẇint = �
�b,�c

�
0

2�

d�b�
0

2�

d�c�
0

�b,max

sin �bd�b

 �
0

�c,max

sin �cd�c�
�b,min

�b,max

d�b
dẆ

d�bd�bd�c
,

�50�

with �b,max=1.510−3, �c,max=2.510−3, �b,min
=10−3 MeV, and �b,max=1 MeV. This restriction is identi-
cal to the one in �34�. By restricting the final phase space,
one can ensure that contributions from the single-Compton
scattering cascade are negligible, as discussed in Sec. II E.

Figure 10 reveals that the integrated rate is slightly larger
than one would expect from the perturbative formula, and
also that circular and linear polarization of the laser gives
almost identical results, despite their different angular char-
acteristics �see Figs. 7 and 8�. Another remark is that for the
integrated rate, the perturbative formula gives identical re-
sults regardless of laser polarization because interference
terms in the expanded perturbative rate vanish after the inte-
gration. In the interval considered ��
1�, the relative differ-
ence of the integrated nonperturbative and the integrated per-
turbative rate can be approximately fitted to a power law as

Ẇint
nonpert−Ẇint

pert �!, with !	2.7 for linear and !	3 for cir-
cular laser polarization, respectively.

FIG. 7. �Color online� Contour plot of the differential rate for different final photon polarizations. The color coding indicates the value

of the differential rate dẆ
d�bd�bd�c

, on linear scale, in units of s−1 sr−2 MeV−1. The upper two rows ��a�–�f�� display the result of the
nonperturbative formula, and the lower two rows ��g�–�l�� show the perturbative results. The parameters used are �=1, �=2.5 eV, Ei

=103 m, �b=1 MeV, and �b=2�c=10−3. In this case, �c is fixed by the scattering geometry but still depends on the number n of exchanged
photons; we present the differential rate summed over all n and thus suppose that the energy �c is unobserved. For the polarizations, we have
linear laser polarization in �a�–�c� and �g�–�i� �first and third row�, and circular laser polarization in �d�–�f� and �j�–�l� �second and fourth
row�. In �a�, �d�, �g�, and �j� �first column� we have �b=�b

1, �c=�c
1, where we recall that the polarization vectors are defined in Eq. �24�. In

�b�, �e�, �h�, and �k� �middle column� we have �b=�b
1, �c=�c

2, and panels �c�, �f�, �i� and �l� �right column� show the differential rate summed
over all possible polarizations of the final photons.
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IV. ANGULAR CORRELATION AND ENTANGLEMENT

We now turn our attention to the important questions re-
garding the quantum-mechanical correlation, i.e., entangle-
ment, of the two final photons. The theory we apply in this
section have been previously used extensively to characterize
the final-state correlation in bound states transitions �56–59�.
The idea is to use the information contained in the matrix
elements �26� and �31�, to obtain an expression for the den-
sity matrix " f of the polarizations of the final system
“electron+two photons.” Given an expression for " f, it is
then straightforward to calculate the concurrence �19�, which
is a measurement of how much the two photons are en-
tangled. The starting point is the initial density matrix �60�

"i = �
ri=1

2

�ri,0,0��ri,0,0� , �51�

where ri is the spin of the initial electron and the zeros de-
note the absence of photons �other than laser photons of
course� in the initial state. The initial electron is thus as-
sumed to be unpolarized. Note also that all dependencies on
energies and angles, etc, of the state vectors are not written
out. Next, due to the interaction R, the density matrix "i
evolves into the final-state density matrix " f,

" f = R"iR
† = �

ri=1

2

R�ri,0,0��ri,0,0�R†. �52�

The matrix elements of " f are thus given by

FIG. 8. �Color online� Contour plot of the differential rate as a function of the polar angles �b and �c. The color coding indicates the value

of the decadic logarithm log10
dẆ

d�bd�bd�c
, with the differential rate given in units of s−1 sr−2 MeV−1. As in Fig. 7, the upper two rows ��a�–�f��

show nonperturbative, and the lower two rows ��g�–�l�� perturbative results, respectively. The parameters used are �=1, �=2.5 eV, Ei

=103 m, �b=1 MeV, and �b=0, �c=�. For the polarizations, we have linear laser polarization in �a�–�c� and �g�–�i� �first and third row�,
and circular laser polarization in �d�–�e� and �j�–�l� �second and fourth row�. In �a�, �d�, �g�, and �j� �left column� we have �b=�b

1, �c=�c
1, In

�b�, �e�, �h�, and �k� �middle column� we have �b=�b
1, �c=�c

2, and panels �c�, �f�, �i� and �l� �right column� show the differential rate summed
over the final photon polarizations. Note that from Fig. 3, we have �b

1 ·�c
1	1 and �b

1 ·�c
2	0 here.
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�rf,�b,�c�" f�rf�,�b�,�c�� = �
ri=1

2

�rf,�b,�c�R�ri,0,0�

�ri,0,0�R†�rf�,�b�,�c�� , �53�

where �b,c, �b,c� � �1,2� denotes the polarization components
of the emitted photons in either Cartesian or circular basis. If
the final electron is unobserved, we should trace out rf,

��b,�c�" f��b�,�c�� = �
ri,rf=1

2

�rf,�b,�c�R�ri,0,0�

�ri,0,0�R†�rf,�b�,�c�� . �54�

If we now identify

�rf,�b,�c�R�ri,0,0� = �NSfi�ri,rf,�b,�c� ,

�ri,0,0�R†�rf,�b�,�c�� = �NSfi
� �ri,rf,�b�,�c�� , �55�

where N is a normalization constant, and we use the explicit
basis

�1 1 � = �1

0
� � �1

0
� =


1

0

0

0
� ,

�1 2 � = �1

0
� � �0

1
� =


0

1

0

0
� ,

�2 1 � = �0

1
� � �1

0
� =


0

0

1

0
� ,

�2 2 � = �0

1
� � �0

1
� =


0

0

0

1
� , �56�

for the polarization state of the final photons, then the ex-
pression for the final density 44 matrix reads

" f = �
ri,rf=1

2

N

S11S11

� S11S12
� S11S21

� S11S22
�

S12S11
� S12S12

� S12S21
� S12S22

�

S21S11
� S21S12

� S21S21
� S21S22

�

S22S11
� S22S12

� S22S21
� S22S22

�
� , �57�

where

S�b�c
= Sfi�ri,rf,�b,�c� . �58�

The normalization constant N can be found by requiring

1 = Tr " f = �
ri,rf

N��S11�2 + �S12�2 + �S21�2 + �S22�2� . �59�

According to �19�, the concurrence C�" f� is now given by

C�" f� = max�0,�#1 − �#2 − �#3 − �#4� , �60�

where the # j’s are the eigenvalues, in descending order, of
the matrix

Q = " f�$2
� $2�" f

��$2
� $2� , �61�

where $2 is the second Pauli-spin matrix. The eigenvalues # j
are real and positive. The concurrence as defined in Eq. �60�
is gauge invariant, and does not depend on the basis used for
the polarization vectors of the photons, i.e., either the Carte-
sian basis, Eq. �24�, or the helicity basis, Eq. �25�, can be
used. An explicit expression for �$2 �$2� as a 44 matrix is
given by
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FIG. 9. �Color online� Demonstration of the multiphoton char-
acter of the pair-creation rate, for linear and circular polarization of
the laser field. In �a�, �b=0, �c=�, and the final polarization is
fixed to �b=�b

1, �c=�c
1, while in �b� we have �b=� /2, �c=3� /2,

and �b=�b
1, �c=�c

2. Otherwise the parameters are the same as in Fig.
7.
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FIG. 10. �Color online� The integrated rate �50�, defined in Eq.
�50� for �=2.5 eV and Ei=103 m. The figure compares the non-
perturbative formula for linear laser polarization �Eq. �42��, for cir-
cular laser polarization �Eq. �31��, and the perturbative expression
�Eq. �48��.
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�$2
� $2� = �0 − i

i 0
� � �0 − i

i 0
� =


0 0 0 − 1

0 0 1 0

0 1 0 0

− 1 0 0 0
� .

�62�

The matrix �$2 �$2� is a kind of spin-flip operator for qubits,
we have

�$2
� $2��1 1 � = − �2 2 �, �$2

� $2��2 2 � = − �1 1 � ,

�$2
� $2��1 2 � = �2 1 �, �$2

� $2��2 1 � = �1 2 � .

�63�

This means that a maximally entangled pure state is an
eigenstate of �$2 �$2�

�$2
� $2���1 2 � − �2 1 �� = − �1 2 � + �2 1 � , �64�

and consequently has unity concurrence.
We now provide some examples and compare the concur-

rence �60� for different laser polarizations and furthermore
show that the nonperturbative treatment is indispensable to
correctly predict the degree of correlation. Figure 11 shows
the concurrence as a function of the azimuth angles �b, �c.
This figure should be compared to Fig. 7. In Fig. 12, we
show instead the dependence on the polar angles �b,c, which
should be compared with the corresponding Fig. 8 for the
differential rate.

We remark that to be able to measure the concurrence, it
is desirable to find angular regions where high concurrence
and high differential rate overlap. This seems to be possible,
at least in some cases: e.g., one may compare Fig. 12�c� with
Fig. 8�l�. Moreover, the general trend is that a strong laser

field diminishes the concurrence. Therefore, if high entangle-
ment is sought, it is advisable to employ a perturbative laser
beam ��
1�, although the nonperturbative dependence of
the concurrence as a function of � would be highly interest-
ing to measure. Similar conclusions as those above follow
from the previous investigation �34�. A final remark is that
linear and circular laser polarizations are seen to lead to simi-
lar peak values of the concurrence.

V. CONCLUSIONS

Our treatment of double Compton scattering in intense
laser fields in based on the canonical formalism of Furry-
picture quantum electrodynamics �QED�, where a strong ex-
ternal field �in this case, the oscillatory laser field� is incor-
porated into the fermion propagators. The oscillatory nature
of the laser field necessitates the expansion of all initial and
final fermion states into plane waves, thereby giving rise to
generalized �linear polarization� and ordinary �circular polar-
ization� Bessel functions. The formalism, as outlined in Sec.
II, leads to a consistent formulation of the nonperturbative
double Compton scattering for an arbitrary intensity of the
laser field, and with full account of all relativistic and spin-
dependent effects on the electron lines. In particular, a suit-
able generalization of the formalism outlined here would ap-
ply to three-photon events, which can be described by a
third-order amplitude in QED.

In addition to a consistent formulation of the polarization
resolved production rates, differential in the photon emission
angles and energy, for two-photon transitions of Dirac-
Volkov states in intense laser fields, we numerically show
that only a fully relativistic formalism, nonperturbative in the
laser field strength, can possibly yield experimentally verifi-

FIG. 11. �Color online� Contour plot of concurrence as a func-
tion of the azimuth angles �b and �c. The color coding indicates the
value of the concurrence C�" f� �see Eq. �60��. Panel �a� shows
linear laser polarization, and �b� circular laser polarization, both
calculated with the nonperturbative expressions for the amplitude.
The results of the perturbative formula are displayed in panel �c�
�linear laser polarization� and �d� �circular laser polarization�. The
values of Ei, �, �, and �b,c are the same as in Fig. 7.

FIG. 12. �Color online� Contour plot of concurrence as a func-
tion of the polar angles �b and �c. The color coding indicates the
value of the concurrence C�" f� �see Eq. �60��. Panel �a�: linear laser
polarization, nonperturbative, �b�: circular laser polarization, non-
perturbative, �c�: linear laser polarization, perturbative, �d�: circular
laser polarization, perturbative. Laser parameters as well as the ini-
tial electron energy Ei and the photon azimuth angles �b,c are the
same as in Fig. 8.
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able, consistent predictions. This is not surprising because
the differential rates depend crucially on details of the emis-
sion process, which in turn is highly dependent on the prop-
erties of the propagators near the resonances. Indeed, it is
possible to identify those angular and photon energy regions
where only the two-photon amplitude, not the single-
Compton resonances, give appreciable contributions to the
photon emission, and it is thus possible to observe entangled
high-energy photons in coincidence without having to worry
about background from resonant cascade emission by single-
photon transitions.

The necessity of the nonperturbative formalism is demon-
strated in Sec. III. The perturbative �in the laser field inter-
action� double Compton scattering cannot give reliable pre-
dictions if the nonlinear intensity parameter � approaches
unity. We stress that a value �	1, corresponding to laser
intensities of the order of 1018 W /cm2 for optical lasers, is
routinely available today in many laboratories worldwide. In
Figs. 7 and 8, we show that depending on polarization and
the observation solid angle, even order-of-magnitude differ-
ences can exist between the rates evaluated with the nonper-
turbative and the perturbative formulas. However, if angles
and photon energies are integrated over, the results are simi-
lar, as shown in Fig. 10, although the difference grows non-
linearly with �, illustrating the importance of higher orders.

The polarization entanglement is interesting but needs to
be quantified. Therefore, we discuss, in Sec. IV, the concur-
rence as a gauge-independent measure of the photon en-
tanglement. Our results �see Figs. 11 and 12� indicate that
close to maximally entangled �unity concurrence� photon
pairs may be produced, but only in certain angular regions.
Furthermore, the degree of entanglement changes strongly
with the laser field intensity. An experimental verification of
the entanglement would yield a test for this fundamental
quantum phenomenon in a high-energy domain where it is
otherwise difficult to generate entangled quanta.

Finally, we remark that the two-photon emission is not a
“rare” or “unusual” physical process but a simple generali-
zation of the basic physical phenomenon of radiation emis-
sion by moving charges, and that, therefore, we can assume
that experimental access in the near future is entirely realis-
tic.
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