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We study numerically the behavior of rotational revivals in a molecular gas when subject to the fluctuating
electric field of a background plasma. We model a molecule using a rigid rotor Hamiltonian and couple it to an
electric field using permanent and induced multipole interaction terms. The evolution of the density matrix for
the molecule is calculated for a short intense laser pulse, followed by a fluctuating background electric field. A
broad superposition of angular momentum eigenstates of a molecule is created by the laser field, and the result
of an ensemble average over initial molecular orientation is a set of recurring peaks in the probability density
for observing a particular orientation—the so-called “rotational revivals.” The fluctuating background field is
created using the dressed particle technique, and the result is a loss of coherence between the phases of the
various basis states of the molecule, which causes a decreasing amplitude for subsequent alignment peaks.
Modern short-pulse lasers operate with sufficient intensity to make this effect relevant to experiments in
molecular alignment.
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I. INTRODUCTION

There has been intense study of laser-induced molecular
alignment in recent years, because of the availability of rela-
tively small high-power short-pulse lasers �1�. Of relevance
here is nonadiabatic alignment due to a laser pulse of dura-
tion much less than the inverse of the frequency associated
with the first excited rotational state of the molecule �2,3�.
This excites a broad superposition of phase-coherent angular
momentum states that constitute the molecular wave func-
tion. Because of the energy dependence of the basis states of
a rigid rotor, the phase alignment of the molecular wave
function is periodic in time. The result is a series of sharp
peaks in the probability density for observing a molecule
with a particular orientation �4�. These peaks are referred to
as “rotational revivals.” Experimentally, this effect can be
observed by measuring the variation in the refractive index
of the gas �5�, or by Coulomb explosion imaging �6�.

In an ideal system, the rotational revivals would continue
indefinitely, however, in real systems, dissipative effects
cause a loss of coherence between the phases of the various
basis states �7�, and so the amplitudes of successive revival
peaks reduce until the revival structure disappears. A major
contribution to this dissipation comes from molecular colli-
sions �8�. In this paper, we investigate an additional mecha-
nism for the disappearance of the revival structure, involving
the electric field of a background plasma and its coupling to
the various multipole moments of the molecules.

The paper is organized as follows: in Sec. II, we consider
the different parameters involved in our system, and provide
some justifying remarks to establish the relevance of the ef-
fect under consideration. In Sec. III, we discuss briefly the
time evolution of the density matrix elements under the ef-
fect of the laser pulse, and then consider the modification of
the multipole interaction terms due to a background plasma.
In Sec. IV, we discuss the numerical techniques used, present
the results of the numerical simulations for a variety of sys-
tem parameters, and compare the results to scaling laws pro-
duced by a toy model. We conclude with a brief outlook.

II. DECOHERENCE DUE TO ELECTRIC FIELD
FLUCTUATIONS

We first establish the conditions of relevance of the pro-
posed effect. Specifically, we wish to show that the effect is
observable for a reasonable choice of plasma parameters. As
previously noted, the recurrence peaks occur because of a
periodic phase alignment of the time evolution factors in the
wave function, and so it is reasonable to suppose that the
decoherence occurs because of a time-dependent alteration
of the phase factor by the background field. To estimate the
decay time, we take the form of the energy level shift from
perturbation theory and define the decay time to be the time
at which the phase shift is of order unity. Specifically, we
estimate the decay time to be

� �
�

�E
, �1�

where �E=�2EI
2 /B is a typical second order change in the

energy levels due to the field fluctuations, and EI=e /rI
2 is a

typical fluctuating field strength. In these expressions, B is
the rotational constant of the molecule, rI is the typical dis-
tance between a molecule and an ion, and � is the permanent
dipole moment. The expression contains a second order term
in the interaction strength because the linear term vanishes
due to symmetry.

For the decay time due to collisional decoherence, we
consider the measurements made by Chen et al. �5� for a
number of different molecular gases at different pressures.
These measurements give collisional decay times of 10–25
ps for pressures in the range 2–7 atmospheres. Substituting
these numbers into the decay time equation suggests that for
the effect under consideration to be observable in the pres-
ence of collision decoherence, we must consider plasma den-
sities of at least 1018 cm−3. Since it is possible to completely
ionize higher density gas samples with a laser pulse �for
example, �9� �, then it is possible to achieve such a plasma
density while retaining sufficient neutral molecules, either
through careful control of the laser intensity, or through the
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use of an appropriately chosen mixture of gases.
The other important parameter to consider is the plasma

temperature. In estimating the decay time in the manner
shown above, we have assumed that the charged particles
that interact with the molecule are essentially stationary. This
is a reasonable assumption for a sufficiently cold molecular
gas, since the ionizing laser pulse will be sufficiently short
that the ion temperature will not be appreciably different
from the neutral temperature. Conversely, the electrons will
undergo heating through various mechanisms, for example,
above threshold ionization and Raman scattering �10�. The
resulting electron temperatures vary from 1 eV to 1 keV, and
since the characteristic interaction time between an electron
and a molecule will be much shorter than rotational fre-
quency of the molecule, the electrons will only affect the
decay time in the context of Debye shielding.

We conclude from these heuristic investigations that it is
quite possible to observe this effect in an appropriately de-
signed experiment. One may imagine a molecular gas that is
partially ionized to create a plasma of the correct density and
temperature, by choosing the pulse length, intensity, gas tem-
perature, and gas mixture appropriately. If this plasma is left
a sufficiently long time, then any rotational revivals will de-
cay due to collisional decoherence and the electron plasma
will have time to thermalize. A second laser pulse �presum-
ably weaker, so as not to change the state of ionization� may
then be introduced, and will generate another set of coher-
ences. The effects of the background plasma on these coher-
ences may then be measured.

III. CALCULATION OF DENSITY MATRIX ELEMENTS

In this paper, we consider a linear molecule, modeled as a
modified rigid rotor interacting with an electric field through
permanent dipole, induced dipole, and permanent quadrupole
interactions. In the basis of eigenstates of the field-free
Hamiltonian, the evolution of the density matrix is governed
by

d

dt
�IJ = − i�IJ�IJ +

i

�
�
K

��IKVKJ − VIK�KJ� , �2�

where VIJ is an interaction matrix element and �IJ represents
the difference in the unperturbed frequencies of states I and J
and is given by

�IJ =
B

�
�i�i + 1� − j�j + 1�� −

D

�
�i2�i + 1�2 − j2�j + 1�2� .

�3�

Here, I= �i ,m� and J= �j ,n� are double indices consisting of
the total and directional angular momentum quantum num-
bers, B is the rotational constant of the molecule, and D is
the centrifugal distortion constant for the molecule in its low-
est vibrational state.

The most general interaction operator we consider takes
the form

VIJ = − �I�� · E +
1

2
E · � · E +

1

6
Q:�E�J	 , �4�

where � is the permanent dipole moment, � ·E is the in-
duced dipole moment and Q is the permanent quadrupole
moment tensor.

We consider two types of electric field here. The first is
the electric field of a laser pulse, which can be used to create
a revival structure in a molecular gas. We are interested in
pulse lengths that are long compared to the optical period,
but short compared to the typical rotational time scale of a
small diatomic molecule �on the order of picoseconds�. This
places us in the regime of nonadiabatic molecular alignment.
By choosing a laser field for which there are many cycles
over the duration of the pulse, we allow the cycle-averaging
of the interaction terms in the Hamiltonian. A consequence
of this is that interaction terms with odd powers in the field
strength are negligible compared to those with even powers.
We therefore consider only the induced dipole term for the
laser pulse.

In the body-fixed frame of a molecule with the molecular
axis chosen as the z axis, the polarizability tensor may be
written as a diagonal matrix with entries �xx, �yy, and �zz. In
a coordinate system in which the molecular axis is defined
by a unit vector n̂, the polarizability tensor takes the form

� = ��1 + ��n̂n̂ , �5�

where ��=�xx=�yy and ��=�zz−��. We may choose the z
axis as the direction with which to measure a component of
angular momentum, and we may further choose the laser
field to be polarized in this direction. Writing the laser field
as

E�t� = Re
ẑE0�t�exp�− i�t�� , �6�

the interaction term for the laser is now

VIJ
�L� = −

1

4
E0

2����IJ + ���I�cos2 	�J	� . �7�

Here, we have written cos 	= n̂ · ẑ. The second term in Eq. �7�
may be calculated using spherical harmonics.

The evolution of the density matrix elements for the mol-
ecule subjected to a laser pulse may now be found using
either perturbation theory or numerical techniques. Having
found them, we must find a measure of the alignment of a
molecule in the gas. In the density matrix formalism, this
measure is

�cos2 	� = �
I,J

�IJ�J�cos2 	�I	 , �8�

where the square brackets denote the ensemble average over
the angular momentum states.

The other type of electric field considered is the fluctuat-
ing background field due to the presence of a plasma. Unlike
the laser field, we cannot choose to align the electric field
vector and the angular momentum measurement axis, and so
the interaction terms have an angular dependence of greater
complexity. If we define the function
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W = n̂ · E = �n̂ · x̂�Ex + �n̂ · ŷ�Ey + �n̂ · ẑ�Ez, �9�

then the method for evaluating the matrix elements of W
becomes clear. The interaction terms for each type of multi-
pole coupling are given by

VIJ
�P� = − ����I�W�J	 �10�

VIJ
�Q� = −

1

6
�Q� � · E�IJ + �Q�I�n̂ · �W�J	� �11�

VIJ
�I� = −

1

2
����E�2�IJ + ���I�W2�J	� , �12�

where we have written the quadrupole tensor in analogy to
Eq. �5�.

We wish to study the effect of this field on the revival
structure created by the laser pulse. If the fluctuations are
small and frequent, then an approximate analytic solution is
possible, and the density matrix changes in proportion to the
correlation function of the interaction at two different times.
For the system parameters of interest, however, the fluctua-
tions are large and infrequent, and so we resort to a numeri-
cal solution.

We proceed by modeling the plasma as a collection of
dressed particles �11�. In this method, we consider a test
particle moving in a straight line through a plasma at some
velocity v. Such a particle will acquire a shielding cloud
from the plasma, and this will alter its potential. For a test
particle at rest, this is the familiar Debye shielding effect, but
for a moving particle the shielding is modified in an aniso-
tropic way. We refer to the combination of the test particle
and its shielding cloud as a dressed particle.

Allowing for transient effects to vanish, the potential of a
test particle is given by


�xob,x,v,t� = 4�q� d3k

�2��3

exp�ik · �xob − x − vt��
k2D�k,k · v�

,

�13�

where x is the initial position of the dressed particle and xob
is the point of observation of the potential �12�. D�k ,k ·v� is
the dielectric function of the plasma, given by

D�k,k · v� = 1 − �
�

�p�
2

k2 � d3v�

�2��3

k · �v�f0�

k · �v� − v� − i0+ ,

�14�

where � refers to the plasma species and f0� is the unper-
turbed plasma distribution function.

We note that in the current approach, we take the test
particle velocities to be constant and unaffected by the mol-
ecule’s electric field. The result is that over time, there will
be continuous energy transfer from the plasma particles to
the molecule. In reality, the energy gain of the molecule is
limited, and the molecule will come into thermal equilibrium
with the plasma. We assume that this process occurs over a
longer period of time than the destruction of the recurrences.

The plasma will be created by the partial ionization of the
molecular gas by the laser pulse. Since this is very short, we

expect the molecular ions to be thermally distributed at the
same temperature as the unionized molecules. The electrons
will, in general, be much faster than the ions. We therefore
use a dressed particle model with molecule-mass test par-
ticles, shielded by fast electrons and stationary ions. We
choose to exclude electrons as test particles because we ex-
pect the ions to remain in proximity to a molecule for much
longer than the electrons, and so the ions will have the domi-
nant effect. In this case, we are interested in the low speed
approximation for the potential. This calculation may be
found in Ref. �13�, and the result is


�r,v� 
q

r
�exp�− rkD� +

v
uth

g�r, r̂ · v̂� + ¯� , �15�

where r=xob−x−vt, v �u� is a velocity associated with ions
�electrons�, and kD is the reciprocal of the Debye length. The
function g�r ,r ·v� is given by

g�r, r̂ · v̂� =
1

�2�
�r̂ · v̂�� rkD

2
�1 −

1

rkD

+
1

�rkD�2�exp�rkD�E1�rkD� +
rkD

2
�1 +

1

rkD

+
1

�rkD�2�exp�− rkD�Ei�rkD� − 1� , �16�

where E1 and Ei are exponential integral functions.
Once we calculate the electric field for a collection of test

particles, we may compute the density matrix and thus the
ensemble average molecular alignment over the various ro-
tational states available, as per Eq. �8�. We then repeat this
procedure for a number of different test particle configura-
tions to generate an ensemble average of the molecular align-
ment over each molecule in the gas.

IV. NUMERICAL SIMULATION RESULTS

In this section, we present the results of the numerical
simulations. As previously stated, the goal is to calculate the
time-dependent expectation value �cos2 	� for a fluctuating
background field. We simulate the background field by cal-
culating the electric field components at the center of a
spherical region containing a number of test particles. These
test particles move in straight lines from random initial po-
sitions and with random velocities, all generated from the
appropriate distribution functions. Test particles that leave
this region are replaced by re-generating their initial condi-
tions to place them somewhere on the system boundary with
an ingoing velocity. The number of test particles present in
the system at any one time is chosen to correspond to a
certain plasma density.

To calculate the density matrix, we use the Cash-Karp
embedded Runge-Kutta method �14�. This allows for an ef-
ficient adaptive stepsize calculation. We begin with a thermal
distribution of rotational states, and calculate the effect of the
laser pulse strike on the density matrix. We will consider a
laser beam with an intensity of 1012 W /cm2, which is large
enough to create a revival structure while avoiding compli-
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cations introduced when the populations of the angular mo-
mentum states change significantly. This intensity is not suf-
ficient to cause the appropriate level of ionization, and so our
simulations correspond to an experiment of the type de-
scribed in Sec. II. We choose the pulse length to be 100 fs
and the optical frequency to be 1015 Hz, both typical of a
short-pulse laser. This optical frequency will be sufficiently
large compared to the characteristic molecule rotational fre-
quency as to allow the cycle averaging discussed in the deri-
vation of Eq. �7�.

The density matrix calculated for the laser strike is then
used as an initial condition for the calculation of the evolu-
tion of the density matrix with the fluctuating background
field present. We use this to calculate the amount of align-
ment of a single molecule in the gas, and then repeat this
procedure for a large number of test particle configurations,
so as to obtain an average over many molecules.

In these simulations, we will consider the molecules Hy-
drogen Cyanide �HCN� and Nitrogen �N2�. HCN is an ex-
ample of a linear molecule with a strong permanent dipole
moment, while N2 is a common dipole. We will consider the
different multipole interactions separately, since we expect
their sizes to differ significantly from one another. This may
be seen by estimating in each case the size of the interaction
term for a Coulomb field at distance n−1/3. The free param-
eters in these simulations are the electron and ion tempera-
tures, and the plasma density.

The first set of results is for HCN with the background
ions at room temperature. The parameters for HCN associ-
ated with the molecular dynamics are B=1.48 cm−1 and D

=3.33�10−6 cm−1, and multipole moments are ���=2.96
�10−18 esu cm �15�, �Q=7.68�10−26 esu cm2, and ��
=2.0�10−24 cm3 �16�. We considered electron temperatures
of 1 and 10 eV, and for the permanent dipole case, we chose
a plasma density of 1018 cm−3. For higher order moments,
we chose higher densities, since we expect the decay time to
be longer. This choice reduces computation time and avoids
large-time effects associated the centrifugal stretching.

Figure 1 demonstrates the revival structure and the decay.
Here, the letters P, Q, and I indicate the different multipole
interactions considered. Specifically in Figs. 1�a� and 1�b�
only the permanent dipole interaction is allowed, in Fig. 1�c�
only the permanent quadrupole interaction is allowed, and in
Fig. 1�d�, only the induced dipole interaction is allowed. As
the permanent dipole interaction is strongest, followed by the
quadrupole and induced dipole interaction, decoherence ap-
pears at relatively lower densities in Figs. 1�a� and 1�b�, fol-
lowed by successively higher densities in Figs. 1�c� and 1�d�.
To understand the revival structure, we consider the form of
the average alignment, as seen in Eq. �8�. This may be re-
written

�cos2 	� = �
I,J

�IJ exp�− i�IJt��J�cos2 	�I	 , �17�

where �IJ=�IJ exp�i�IJt�. In field-free conditions, �IJ is a
constant, and revival peaks occur because the phase factors
in Eq. �17� align periodically. Comparing Eqs. �3� and �17�,
the revival period is seen to be �=�� /B. For HCN, the re-
vival period is calculated to be �=11.3 ps, which is consis-
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FIG. 1. �Color online� Average alignment of HCN molecules vs time for �a� the permanent dipole interaction with n=1018 cm−3 and
Te=1 eV, �b� the permanent dipole interaction with n=1018 cm−3 and Te=10 eV, �c� the permanent quadrupole interaction with n
=1019 cm−3 and Te=1 eV, and �d� the induced dipole interaction with n=1020 cm−3 and Te=1 eV.
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tent with our results. At the halfway point between revival
peaks, there exist sharp decreases in the alignment. This is
because at half revival times, half of the complex exponen-
tials in Eq. �17� are phase aligned with value 1 and the other
half are aligned with value −1. The terms in the sum thus
interfere destructively leading to a decrease in the alignment.

There is a second set of peaks due to the second term in
Eq. �3�. Because the constant D is much smaller than B,
however, these peaks are much wider than the revival peaks,
and their recurrence period is much larger. If we were to
observe a revival structure in the absence of decoherence for
a sufficiently long time, we would observe the revival peaks
reducing in size until they vanish, and then periodically re-
appear at times �D=�� /D �This is the long-time centrifugal
effect alluded to earlier�. We tend not to observe this effect,
since there is always sufficient decoherence to destroy the
revival structure before time �D.

In the presence of a background plasma, the coefficients
�IJ are no longer constant, but are time-dependent complex
functions. For each set of test particles, the complex expo-
nential part of each term in the sum in Eq. �17� is modified
by the phase of the coefficient. If the phase change in the
coefficient is small between the laser strike and the first re-
vival time, then the amplitude of each revival peak is re-
duced. At later times, the phase change is greater than at
earlier times, and so the revival peaks are destroyed com-
pletely. If the phase change becomes large on a time scale
smaller than the recurrence time, then the revival structure is
destroyed before the first peak appears.

The next set of results is for N2, again with the ions at
room temperature. The molecular parameters for N2 are B
=1.99 cm−1 and D=5.76�10−6 cm−1 �17�. The quadrupole
moment for N2 is �Q=1.49�10−26 esu cm2 �16�.

The graphs in Fig. 2 once more demonstrate the revival
structure. We note that the decay time is much greater for N2
than for HCN. This is because the quadrupole coupling con-
stant for HCN is �5 times greater than that for N2 �note that
we have suppressed the permanent dipole interaction for
HCN, which is its dominant interaction�, and so the back-
ground field is much more effective in exciting different ro-
tational states of the molecules and disrupting the phase co-
herence of the revivals. In the N2 graph, the additional peaks
at � /4 and 3� /4 are due to the requirement that the wave
function of N2 must be symmetric under exchange of the
nuclei, since Nitrogen atoms are spin-1 bosons. This means,
for example, that if the wave function for some rotational
state is even, then only even two-nucleus wave functions are
allowed. Since for combinations of two spin-1 particles there
are six symmetric states and three antisymmetric states, the
populations of even rotational states are weighted by a factor
of two.

The final set of results consists of a detailed study of the
decay time as a function of the ion thermal velocity and the
plasma density. These results are obtained by generating
alignment vs time graphs and fitting an exponential curve to
the recurrence peaks. In Fig. 3�a�, the decay times were ob-
tained for a plasma density of 1018 cm−3, while in Fig. 3�b�,
the results were obtained for ions with a thermal velocity
corresponding to room temperature. In both cases, we con-
sidered only the permanent dipole interaction for HCN, and

the electron temperature was held constant at 1 eV.
We can explain these results by considering the quantum

mechanical description of a single molecule subject to the
electric field of a passing ion. To begin, we note that for a
constant electric field, the energy of the state �l ,m	 shifts by
an amount

�Elm = �
�j,n	��l,m	

��l,m�� · E�j,n	�2

El − Ej
=

�2E2

B
�lm. �18�

This term can be calculated from second order in perturba-
tion theory. The shift is second order because the diagonal
matrix elements of the interaction vanish identically. In gen-
eral, this term will depend on the orientation of the electric
field and the particular eigenstate under consideration, but
we neglect these and focus on scaling laws. The energy shift
is important, since it is related to the phase change that de-
stroys the alignment in the evolution terms in Eq. �17�.

Decoherence will occur even if all ions are stationary due
to the fact that each molecule experiences a different electric
field depending on its proximity to neighboring ions. The
typical electric field strength a molecule experiences is

E 
e

rI
2 , �19�

where rI=n−1/3 is the inter-ion spacing. The fluctuations in
the electric field strength are comparable to this value. Thus,
there will be variations in �Elm. The functional form of the
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FIG. 2. �Color online� Average alignment of N2 molecules vs
time for �a� the quadrupole dipole interaction with n=1019 cm−3

and Te=1 eV, and �b� the quadrupole dipole interaction with n
=1019 cm−3 and Te=10 eV.

EFFECT OF ELECTRIC-FIELD FLUCTUATIONS ON… PHYSICAL REVIEW A 80, 053411 �2009�

053411-5



decay in time is determined by the distribution of electric
field values, and is probably not exponential. Since the fluc-
tuations in electric field magnitude are as large as the typical
value, we estimate that decoherence will occur in a time

�s =
��

�Elm
=

��BrI
4

�2e2�lm
� n−4/3. �20�

Averaging over the various field angles, and weighting by
angular momentum state populations, we estimate the decay
time to be 24 ps. This is not dissimilar to the first few data
points in Fig. 3�a�.

If the ions are moving, the decoherence time can be
shorter than �s. This is because with time, an ion is likely to
come much closer to a molecule than the typical ion spacing
rI. The strong electric field occurring during such an encoun-
ter gives a phase change much bigger than calculated for
static ions. For this regime to be of interest, the static deco-
herence time must be much longer than the typical time it
takes an ion to move a distance equal to the inter-ion spac-
ing, i.e., �rI /uth, where uth is the typical ion velocity.

For the case of ions moving at a low speed such that their
transit time �i.e., time spent in proximity to molecule� is
large compared to the characteristic evolution time of the
eigenstates, we may use the adiabatic approximation to esti-
mate the phase change. Which states satisfy the adiabatic
approximation will be discussed subsequently. For the mo-
ment, we assume that all do. Here, we assume that the ion
moves in a straight line with velocity u and impact parameter
b and causes a time-dependent energy shift

�E 
�2e2

B

1

�b2 + u2t2�2 . �21�

The total phase shift in the molecular wave function caused
by a single ion is then

�
 =� dt
�E�t�

�
=

��2e2

2�B

1

b3u
. �22�

If we now suppose that each phase shift happens instanta-
neously �which is equivalent to assuming that the decay time
we will calculate is long compared to the ion transit time�,
and further assume that the phase shifts due to different ions
are independent events, we can evaluate the rate of decoher-
ence.

To do this, we break time into N intervals of duration
�t= t /N. We assume that during each time interval, there is a
probability of a random phase change �
 due to a close
encounter with an ion. The net phase change to the wave
function is the sum of all random phase changes. The aver-
age of the wave functions of an ensemble of molecules will
evolve in time according to

�exp�i��t
�
�	 = �� dP exp�i�
��N

, �23�

where dP is the probability of a phase change �
 in the
interval d��
�, and we have assumed that the phase changes
in the N different time intervals are independent. As time t
=N�t goes to infinity, the average phase factor will decay.

We evaluate this decay by assuming that the amount of
decay in a single time interval is small. Thus, we write in the
N→� limit

�exp�i��t
�
�	 = �1 +

t

N
� dP

�t
�exp�i�
� − 1��N

 exp�− �t� , �24�

where

� = −� dP

�t
�exp�i�
� − 1� . �25�

We note the � has both a real and an imaginary part. The real
part controls the decay of the recurrences while the imagi-
nary part describes the average energy shift. To evaluate the
probability per unit time that there will be a phase change
�
, we note that in the time interval �t, the number of ions
with speed u in the range du entering a sphere of radius b
surrounding the molecule is

dN = 4�b2n
1

�2uth

exp�− u2/uth
2 �udu�t . �26�

All of these ions will have an impact parameter less than b.
Thus, the number of ions with impact parameter b in the
interval db passing per unit time is obtained by differentiat-
ing with respect to b

(a)

(b)

FIG. 3. �Color online� Dependence of the decay time of align-
ment of HCN on �a� ion thermal velocity at fixed density n
=1018 cm−3 and �b� density at fixed ion temperature Ti

=0.025 eV.
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dP

�t
=

dN

db

db

�t
=

8�1/2n

uth
u exp�− u2/uth

2 �dubdb . �27�

We may now substitute Eq. �22� for �
, and change vari-
ables of integration to �=u /uth and b=bc�, where

bc
3 =

��2e2

2�Bu
, �28�

to obtain for the decoherence time

�d
−1 = � = − nuth

1/3���2e2

2�B
�2/3

� , �29�

where

� = 8�1/2�
0

�

d��1/3 exp�− �2��
0

�

�d��exp�i/�3� − 1� .

�30�

Numerical evaluation gives �=−6.43+11.14i. Comparing
the static decoherence time �s given by Eq. �20� and the
dynamic decoherence time �d given by Eq. �29�, we note that
�d

−1��s
−2/3�uth /rI�1/3. Since at the boundary separating the

static and dynamic cases uth�rI /�s, the two results are in
agreement.

There is some evidence of the density and temperature
dependences implied by Eq. �29� in Fig. 3. Figure 3�a� shows
the dependence of the decoherence time on ion thermal ve-
locity at fixed density. As the thermal velocity tends to zero,
the decoherence time tends to a fixed value. As the thermal
velocity is increased, the decoherence time decreases. The
solid line in Fig. 3�a� shows the scaling expected from Eq.
�29�. The range over which this scaling applies is too small
to say conclusively that it is observed.

The vertical dashed line indicates the velocity of an ion
with a transit time corresponding to the period of the l=1
eigenstate. For larger ion velocities, we expect that some of
the eigenstates that comprise the wave function will evolve
too quickly, and the adiabatic approximation will break
down. At lower ion velocities, the decay time is not constant
as expected in the static approximation, but varies within a
small range.

We expect the adiabatic result to apply for the density
dependence of the decay time, as shown in Fig. 3�b�. This is
because the density dependent adiabatic boundary remains
above the ion thermal velocity for all densities considered,
and also because we know that the result for the case n
=1018 cm−3 is consistent with the adiabatic approximation. A
direct fit of the data points reveals a power law dependence
somewhat different than expected, however, the correct
power law dependence will fit within the uncertainty of the
result. This uncertainty is due to an ambiguity in the method
used for calculating the decay time. The adiabatic approxi-
mation predicts a simple exponential decay of the revival
peaks, and we assume this when using the peak heights of
the revival graphs to predict the decay time. The decay is
probably not this simple, and we quantify the difference be-
tween the exponential estimate of the decay and the true
decay pattern by calculating exponential decay times from
all possible peak pairs in Fig. 1�a�. From these results, we see
a variation in decay times of about 12 ps either side of the
stated time.

V. CONCLUSION

In conclusion, we studied the effect of a fluctuating elec-
tric field on the coherence of a set of rotational revivals in a
molecular gas. For significant ionization fractions, we found
that the decay time for the revival amplitudes was on the
order of picoseconds to tens of picoseconds. The permanent
dipole was shown to be the most effective coupling for de-
coherence, followed by the quadrupole moment. We did not
explore the induced dipole case because of limited comput-
ing resources, but from the scaling it appears that the quad-
rupole term will always dominate. Finally, for the parameters
investigated the decoherence process is complex involving
interplay between the ion motion and the break down of
adiabaticity of the rotational states. In this regime computa-
tion is necessary to arrive at a quantitative value of the de-
coherence time.
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