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The creation and detection of atomic polarization is examined theoretically through the study of basic
optical-pumping mechanisms and absorption and fluorescence measurements and the dependence of these
processes on the size of ground- and excited-state hyperfine splittings is determined. The consequences of this
dependence are studied in more detail for the case of nonlinear magneto-optical rotation in the Faraday
geometry �an effect requiring the creation and detection of rank-two polarization in the ground state� with
alkali-metal atoms. Analytic formulas for the optical rotation signal under various experimental conditions are
presented.
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I. INTRODUCTION

Since the pioneering work of Kastler and Brossel in the
1950s �1�, atomic polarization created by the interaction of
light with atoms have been an exciting topic of research,
providing methods for laser spectroscopy and delivering
technologies for practical applications, such as narrow-band
optical filters �2�.

Atomic polarization created in a medium by polarized
light can modify the optical response of the medium, affect-
ing the light field. For example, the absorption of light of a
particular polarization by atoms in a polarized state can be
reduced �electromagnetically induced transparency �3�� or in-
creased �electromagnetically induced absorption �4�� com-
pared to that for an unpolarized state. Coherent population
trapping �5� is a closely related phenomenon, the study of
which led to the discovery of an interesting effect that is also
a powerful tool for the manipulation of atomic states: coher-
ent population transfer between atomic states, known as
stimulated Raman adiabatic passage �STIRAP� �6�. “Lasing
without inversion” �7,8� is another related effect.

Additional effects are encountered when atoms interact
with coherent light in the presence of a magnetic field �9,10�.
�Reference �11� discusses a relationship between these ef-
fects and electromagnetically induced absorption.� These
magneto-optical effects—especially those involving
magnetic-field-induced evolution of long-lived ground-state
polarization—can be used to perform sensitive magnetom-
etry �12�. �These effects are also often referred to as “coher-
ence effects,” although this is something of a misnomer, as in

some cases the effects can be described using a basis in
which there are no ground-state coherences �13�.�

The atomic polarization responsible for specific effects,
such as nonlinear magneto-optical rotation �NMOR�, can be
described in terms of the polarization moments �PMs� in the
multipole expansion of the density matrix �14,15�. The
lowest-rank multipole moments correspond to population,
described by a rank �=0 tensor, orientation, described by a
rank �=1 tensor, and alignment, described by a rank �=2
tensor. It is these three lowest-rank multipole moments that
can directly affect light absorption and laser-induced fluores-
cence �15,16� and thus can be created and detected through
single-photon interactions. An atomic state with total angular
momentum F can support multipole moments with rank up
to �=2F �14,15�; multiphoton interactions and multipole
transitions higher than dipole allow the higher-order mo-
ments to be created and detected. Magneto-optical tech-
niques can be used to selectively address individual high-
rank multipoles �17,18�. Recently, the possibility of using the
�=4 hexadecapole moment to improve the characteristics of
atomic magnetometers was studied �see Ref. �19�, and refer-
ences therein�. Effects due to the �=6 hexacontatetrapole
moment have also been observed �20,21�.

Magneto-optical coherence effects that involve linearly
polarized light generally require the production and detection
of polarization corresponding to atomic alignment. �There
are multifield high-light-power effects in which alignment is
converted to orientation, which is then detected �22–24�;
these effects still depend on the creation of alignment by the
light.� Thus, for ground-state coherence effects, the ground
state in question must have angular momentum of at least
F=1 in order to support a rank-two polarization moment.
The alkali-metal atoms K, Rb, and Cs—commonly used for
magneto-optical experiments—each have ground-state hy-
perfine sublevels with F�1. If light is tuned to a suitable
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transition between a ground-state and an excited-state hyper-
fine sublevel, alignment can be created and detected in the
ground state.

The situation changes, however, if the hyperfine structure
�hfs� is not resolved. If the hyperfine transitions are com-
pletely unresolved �as was the case in early work that used
broadband light sources such as electrodeless discharge
lamps to excite atoms�, then it is the fine-structure transition
that is effectively excited—the D1 line �n 2S1/2→n 2P1/2� or
the D2 line �n 2S1/2→n 2P3/2�. In this case, the effects related
to the excitation of a particular hyperfine transition are aver-
aged out when all transitions are summed over. Thus the
effect of the nuclear spin is removed, and the states have
effective total angular momentum J=1 /2 for the ground
state and J=1 /2 or 3/2 for the excited state. In this case the
highest rank multipole moment that can be supported by the
ground state is orientation ��=1�, and effects depending on
atomic ground-state alignment will not be apparent.

In practical experiments with alkali-metal atoms in vapor
cells, even when narrow-band laser excitation is used, the
hyperfine structure is in general only partially resolved due
to Doppler broadening. At room temperature, the Doppler
widths of the atomic transitions in K, Rb, and Cs range from
463 MHz for K to 226 MHz for Cs. The ground-state hyper-
fine splittings, ranging from 462 MHz for K to 9.192 GHz
for Cs, are on the order of or greater than the Doppler widths,
while the excited-state hyperfine splittings, ranging from 8
MHz to 1.167 GHz, are generally on the order of or smaller
than the Doppler width. Thus the question arises: how do
coherence effects depend on the ground- and excited-state
hyperfine splitting when the hyperfine structure is neither
completely resolved nor completely unresolved?

In Sec. II we discuss transitions for which one or the other
of the excited- or ground-state hfs is completely unresolved.
We determine which polarization moments can be created in
the ground state via single-photon interactions, and which
moments can be detected through their influence on light
absorption. We find that the two contributions to the ground-
state polarization—absorption and polarization transfer
through spontaneous decay—depend differently on the
ground- and excited-state hyperfine structure.

In Sec. III, we choose a particular system �the D1 and D2
lines of alkali-metal atoms� and investigate the detailed de-
pendence of NMOR signals on the excited- and ground-state
hyperfine splitting. We consider three cases: systems in
which the atomic Doppler distribution can be neglected, and
systems in which the Doppler distribution is broad compared
to the natural line width and in which the rate of velocity-
changing collisions is either much slower than or much faster
than the ground-state polarization relaxation rate. The Ap-
pendix contains some general results used in Sec. III and
some more details of the calculation.

Throughout the discussion we use the low-light-intensity
approximation in order to simplify the calculations and ob-
tain analytic results. It can be shown, using higher-order per-
turbation theory and numerical calculations, that the essential
results presented here hold for arbitrary light intensity, as
well. Previous work that discusses the dependence of optical
pumping on whether or not hfs is resolved includes Refs.
�25–29�.

II. TOTALLY UNRESOLVED GROUND- OR EXCITED-
STATE HYPERFINE STRUCTURE

In this section, we discuss the creation and detection of
atomic polarization in systems for which either the ground-
or excited-state hyperfine structure is unresolved. This sec-
tion deals with systems that can be described using the
complete-mixing approximation, i.e., the assumption that
atomic velocities are completely rethermalized in between
optical pumping and probing. This is the case for experi-
ments using buffer-gas or antirelaxation-coated vapor cells,
in which atoms undergo frequent velocity-changing colli-
sions during the ground-state polarization lifetime. The con-
sequences of the complete mixing approximation are similar
to those of the broadline approximation �30–33�, which takes
the spectrum of the pump light to be broader than the Dop-
pler width of the ensemble. In the complete-mixing case,
narrow-band light produces polarization in a single velocity
group in the Doppler distribution, and the polarization is av-
eraged over all velocity groups through rethermalization,
while in the broadline case, the entire Doppler distribution is
pumped directly.

A. Depopulation pumping

We consider an ensemble of atoms with nuclear spin I, a
ground state with electronic angular momentum Jg, and an
excited state with angular momentum Je. The various
ground- and excited-state hyperfine levels are labeled by Fg
and Fe, respectively. The atoms are subject to weak mono-
chromatic light with complex polarization vector ê and fre-
quency �, near-resonant with the atomic transition frequency
�JgJe

. We assume that the atoms undergo collisions that mix
different components of the Doppler distribution �or, equiva-
lently, use the broadline approximation�. We also neglect co-
herences between different ground-state or different excited-
state hyperfine levels �these coherences will not develop for
low light power as long as the hyperfine splittings are larger
than the natural width of the excited state�. We first consider
polarization produced in the ground state due to atoms ab-
sorbing light and being transferred to the excited state �de-
population pumping�. The general form of the contribution to
the ground-state density matrix due to this effect is given by
�26� �see also Refs. �30–33� for the derivation in the context
of the broadline approximation�

�mn
�depop� � �

r

ê� · dmrê · drnG�� − �rn� , �1�

where m and n are degenerate ground states, r is an excited
state, �rn is the transition frequency between r and n, and G
is a function describing the spectral line shape. If the natural
width of the excited state is much smaller than the Doppler
width �D, G is approximately a Gaussian of the Doppler
width. For the system described above, this takes the form

�Fgm,Fgm�
�depop�

� �
Fem�

�Fgm�ê� · d�Fem��

��Fem��ê · d�Fgm��G�� − �FeFg
� . �2�
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Now suppose that the light frequency is tuned so that it is
close, compared with the Doppler width, to an unresolved
group of transition frequencies and far from every other tran-
sition frequency �Fig. 1�. We employ the simplest approxi-
mation that G��−�FeFg

� takes the same value for each tran-
sition in the unresolved group and is zero for all other
transitions. With these approximations, Eq. �2� becomes

�Fgm,Fgm�
�depop�

� �
Fem�

�Fgm�ê� · d�Fem���Fem��ê · d�Fgm�� , �3�

where the sum now runs over only those excited states Fe
that connect via one of the unresolved resonant transitions to
the ground state Fg in question. �This sum also arises in the
broadline approximation.�

We now investigate which coherences can be created in
the ground state by the light. As we will see, this will deter-
mine which polarization moments can be created. Suppose
first that the excited-state hfs is entirely unresolved. Then the
sum over �Fem���Fem�� in Eq. �3� runs over all excited states
so that it is equivalent to the identity. We replace this sum
with the sum over the eigenstates in the uncoupled basis
�mI�mJ�

�ImI�JemJ���ImI�JemJ��. Further, we insert additional sums
to expand the ground-state coupled-basis eigenstates in terms
of the uncoupled basis. We also expand ê and d in terms of
their spherical components. Equation �3� becomes

�Fgm,Fgm�
�depop�

� � �− 1�q�+q��e��q�eq��Fgm�ImIJgmJ�

��ImIJgmJ�d−q��ImI�JemJ��

� �ImI�JemJ��d−q��ImI�JgmJ���ImI�JgmJ��Fgm��

= � �− 1�q�+q��e��q�eq��Fgm�ImIJgmJ�

��JgmJ�d−q��JemJ���JemJ��d−q��JgmJ��

��ImIJgmJ��Fgm�� , �4�

where the inner products �¯ �¯ � are given by the

Clebsch-Gordan coefficients, with �J3m3 �J1m1J2m2�
= �J1m1J2m2 �J3m3�. In the second line we have used the fact
that the electric-dipole operator is diagonal in the nuclear-
spin states.

We now use the Clebsch-Gordan condition m1+m2=m3,
as well as the related electric-dipole selection rule,

�J1m1�dq�J2m2� = 0 unless m1 = m2 + q , �5�

to determine which coherences �Fgm,Fgm�
�depop� can be nonzero in

Eq. �4�. Traversing the factors in the last line of Eq. �4� from
left to right, we find that a term in the sum is zero unless

m = mI + mJ, mJ� = mJ + q�,

mJ� = mJ� + q�, m� = mI + mJ�. �6�

From this we find that

�m� − m� = �q� + q�� � 2. �7�

We can translate a limit on �	m� directly into a limit on the
rank � of polarization moments that can be created as fol-
lows. The polarization moments are the coefficients of the
expansion of the density matrix into a sum of irreducible
tensor operators �a set of operators with the rotational sym-
metries of the spherical harmonics�. A polarization moment
of rank � has 2�+1 components with projections q
=−� , . . . ,�, which are related to the Zeeman-basis density-
matrix elements by

�q
��� � �

m,m�=−F

F

�Fm�q�Fm���mm�. �8�

From Eq. �8�, a ground-state PM �q
��� with a given value of

�q� can exist if and only if there is a �	m�= �q� coherence in
the ground-state density matrix. A limit on �q� is not by itself
a limit on � because any polarization moment with rank �
� �q� can have a component with projection q. However, if
such a high-rank moment exists, we can always find a rotated
basis such that the component with projection q in the origi-
nal basis manifests itself as a component with projection � in
the rotated basis. Because Eq. �4� holds for arbitrary light
polarization, it holds in the rotated basis so we can conclude
that no polarization moment �q

��� with rank � greater than the
limit on �	m� can be created regardless of the value of q.

For the case under consideration, this analysis reveals that
only polarization moments with ��2 are present. This is a
consequence of the fact that we are considering the lowest-
order contribution to optical pumping �namely, second order
in the incident light field� so that multiphoton effects are not
taken into account. A single photon is a spin-one particle so
it can support polarization moments up to �
=2. For a po-
larization moment of rank � to be created, the unpolarized
�rank 0� density matrix must be coupled to a rank-� PM by
the rank �
�2 photon. The triangle condition for tensor
products implies that ���
+0�2.

An additional condition on �	m� can be found from Eq.
�6�, using the fact that mJ and mJ� are projections of the
ground-state electronic angular momentum so that their ab-
solute values are less than or equal to Jg. From the first and
last conditions of Eq. �6� we find

�2 0 2

Detuning �GHz�

A
bs

or
pt

io
n

Fg � 3� Fe Fg � 2� Fe

FIG. 1. Doppler-free �solid line� and Doppler-broadened
�dashed line� absorption spectra for the 85Rb D2 line. A Maxwellian
velocity distribution at room temperature is assumed. If the incident
light frequency is tuned near the center of the Fg=2→Fe transition
group, the condition discussed in the text is fulfilled. Namely, the
light detuning from each resonance frequency is either much less
than or much greater than the Doppler width. The condition holds
somewhat less rigorously for light tuned to the center of the Fg

=3→Fe transition group.
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�m� − m� = �mJ� − mJ� � 2Jg. �9�

Thus the coherences that can be created within a ground-
state hyperfine level Fg are limited to twice the ground-state
electronic angular momentum Jg even if Fg�Jg. As a con-
sequence, polarization moments in the ground state are lim-
ited to rank ��2Jg. We can understand this restriction by
examining Eq. �4�. Because the excited-state hyperfine shifts
have been eliminated from the expression and the electric
dipole operator does not act on the nuclear spin space, all
traces of the hyperfine interaction in the excited state have
been removed from Eq. �4�. This is indicated by the fact that,
in the last line of the equation, the nuclear spin does not
appear in the state vectors describing excited states. Thus the
excited state only couples to the electronic spin of the ground
state so that there is no mechanism for coupling two ground-
state nuclear spin states. This means that any polarization
moment present in the ground state must be supported by the
electronic spin only.

Considering now the case in which the excited-state hfs is
resolved and the ground-state hfs is unresolved, opposite to
the case considered so far, we find no similar restriction. It is
clear from Eq. �3� that the polarization produced in a ground-
state hyperfine level is independent of all of the other
ground-state levels—only one ground-state level Fg appears
in the equation. If the excited-state hfs is resolved, then like-
wise only one excited-state level Fe appears. Thus pumping
on a transition Fg→Fe produces the same polarization in the
level Fg as pumping on a completely isolated Fg→Fe tran-
sition, regardless of any nearby �unresolved� ground-state
hyperfine levels. Any polarization moment up to rank �
=2Fg can be produced, subject to the restriction ��2 in the
lowest-order approximation.

In fact, these results can be obtained without the need for
any calculations. It is clear that if all the hyperfine splittings
are set to zero, the nuclear spin is effectively noninteracting
and can be ignored. In this case, only polarization moments
that can be supported by the electronic spin Jg can be pro-
duced in the ground state. In particular, if we consider polar-
ization of a given �degenerate� ground-state hyperfine level,
we must have ��2Jg. If the ground-state hyperfine splitting
is increased, this conclusion must remain unchanged because
the light only couples the ground states to the excited states;
to lowest order it does not make any difference what is going
on in the other ground-state hyperfine levels. If the excited-
state hyperfine splitting is then increased, the various Fg
→Fe hyperfine transitions become isolated; for an isolated
transition the limit on the ground-state polarization moments
is ��2Fg. Thus we see that the limit ��2Jg on the ground-
state polarization moments occurs when the excited state hfs
is unresolved, and this limit does not depend on whether or
not the ground-state hfs is resolved.

The total angular momentum Fg can be significantly
larger than Jg. For example, Cs has I=7 /2 and Jg=1 /2 so
that the maximum value of Fg is 4. Thus polarization mo-
ments up to rank eight can be produced in the ground state
by depopulation pumping if the excited-state hfs is resolved,
but only up to rank one if it is unresolved �28�. To second
order in the light field the ground-state polarization that can

be created is limited to at most rank two in any case. How-
ever, the question of whether rank-two polarization can be
created is an important one: ground-state alignment is crucial
for nonlinear magneto-optical effects with linearly polarized
light, as we discuss in Sec. III.

This situation is illustrated for linearly polarized light
resonant with an alkali D1 line �Jg=Je=1 /2� in Figs. 2 and 3.
We choose I=1 /2 for simplicity, and the quantization axis is
taken along the direction of the light polarization. In Fig. 2
the hfs is completely resolved. Part �a� of the figure shows
light resonant with the Fg=1→Fe=0 transition. Atoms are
pumped out of the �Fg=1,m=0� sublevel, producing align-
ment in the Fg=1 state. �Linearly polarized light in the ab-
sence of other fields can only produce even-rank moments,
and an F=1 state can only support polarization moments up
to rank two; therefore, the anisotropy shown in Fig. 2 must
correspond to alignment.� If light is resonant with the Fg
=1→Fe=1 transition, as in part �b�, the �Fg=1,m= �1� sub-
levels are depleted, producing alignment with sign opposite
to that in Fig. 2�a�. This can be contrasted with the case in
which the excited-state hyperfine structure is completely un-
resolved, shown in Fig. 3. Here, all the Zeeman sublevels of
the Fg=1 state are pumped out equally—the �Fg=1,m=0�
sublevel on the Fg=1→Fe=0 transition, and the �Fg=1,m
= �1� sublevels on the Fg=1→Fe=1 transition. �The rela-
tive pumping rates, which can be found from terms of the

m 1 m 0 m 1

Fg 0

Fg 1

Fe 0

Fe 1
m 1 m 0 m 1

a b

FIG. 2. �Color online� Excitation with z-polarized light on the
�a� Fg=1→Fe=0 and �b� Fg=1→Fe=1 transitions of a totally re-
solved Jg=1 /2→Je=1 /2 transition with I=1 /2. Alignment is pro-
duced in the Fg=1 hyperfine level in both cases. Relative atomic
populations are indicated by the number of dots displayed above
each ground-state level. Relative transition strengths are indicated
by the widths of the arrows—here the transition strengths are all the
same.

m 1 m 0 m 1

Fg 0

Fg 1

Fe 0
Fe 1

FIG. 3. �Color online� As Fig. 2 but with excited-state hfs un-
resolved; light is resonant with the Fg=1→Fe transition group. No
alignment is produced in the Fg=1 ground state.
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sum in Eq. �3�, are all the same.� Thus no imbalance is cre-
ated in the Fg=1 sublevel populations, and no polarization is
created in this state.

The same principle is illustrated for nuclear spin I=3 /2 in
Fig. 4. The excited-state hfs is unresolved, and light is reso-
nant with the Fg=2→Fe transitions. In this case, the m
= �1 ground-state sublevels are pumped on two different
transitions. The total transition strength connecting each Fg
=2 sublevel to the excited state is the same, and so no po-
larization is produced in the Fg=2 state.

The conclusions of this section must be modified when
polarization produced in the ground state by spontaneous
emission from the excited state is taken into account. We
now consider the effect of this mechanism on the ground-
state polarization �Sec. II B�.

B. Excited state and repopulation pumping

Through second order in the incident light field �first or-
der in light intensity�, there is one additional contribution to
the ground-state polarization besides the one considered in
Sec. II A: that due to atoms being pumped to the excited
state and then returning to the ground state via spontaneous
emission �repopulation pumping�. We first consider polariza-
tion produced in the excited state. The general form of the
excited-state density matrix is �26�

�rs � �
k

ê · drkê
� · dksG�� − �rk� , �10�

where r and s are excited states and k is a ground state.
Comparing this expression to the formula for ground-state
depopulation pumping �Eq. �1��, we find that, as one would
expect, the roles of the ground-state and excited state have
been reversed. This means that the results of Sec. II A, with
Fg and Fe interchanged, can be applied to the excited-state
polarization. In this case, there is a limit ��2Je on the po-
larization moments that can be produced in the excited state,
that occurs only when the ground-state hfs is unresolved.
The restriction does not depend on whether or not the
excited-state hfs is resolved. There is the additional limit �
�2 for low light power.

When the polarized atoms in the exited state decay due to
spontaneous emission, the polarization can be transferred to

the ground state. This contribution to the ground-state den-
sity matrix is given by �26�

�mn
�repop� � �

sr

dmr · dsn�rs, �11�

with �rs as given above. The fact that this formula has no
reference to individual transition frequencies leads us to ex-
pect that the polarization transfer should be independent of
the hyperfine splittings. Indeed, writing this expression out
for the case under consideration gives

�Fgm,Fgm�
�repop�

� � �− 1�p�Fgm�dp�Fem���Fem����Fem��

� �Fem��d−p�Fgm�� , �12�

and the only restriction to be obtained is m�−m=m�−m�
�excited-state 	m equals ground-state 	m� �32,33�. �Trans-
forming to the uncoupled basis does not result in any addi-
tional limits.� In other words, if the polarization moment can
be supported in the ground state, it can be transferred from
the excited state via spontaneous emission.

Combining these results, we see that there is a similar
restriction on polarization created in the ground state by re-
population pumping as the one on polarization created by
depopulation pumping. However, the restriction occurs in the
opposite case. When the ground state is unresolved the po-
larization produced by repopulation pumping must have �
�2Je. This limit does not depend on whether the excited-
state hfs is resolved.

We now illustrate the foregoing for a system with Jg=Je
= I=1 /2 pumped with linearly polarized light. In Fig. 5 both
the ground- and excited-state hfs is resolved, and light is
tuned to the Fg=1→Fe=1 transition. In part �a� of the figure,
the pump light produces polarization in the Fe=1 excited
state. In part �b� the excited atoms spontaneously decay. This
creates polarization in the Fg=1 ground state, because more
atoms are transferred to the �Fg=1,m=0� sublevel than to the
�Fg=1,m= �1� sublevels. �In this and the following two fig-
ures, we do not show the atoms that decay to the Fg=0
state.� Figure 6 is the same but with light tuned to the Fg
=0→Fe=1 transition; polarization is also created in the Fg
=1 ground state in this case.

m 2 m 1 m 0 m 1 m 2

Fg 1

Fg 2

Fe 1
Fe 2

FIG. 4. �Color online� Excitation with z-polarized light on the
Fg=2→Fe transition group of a D1 transition with unresolved
excited-state hfs. The nuclear spin is I=3 /2. No alignment is pro-
duced in the Fg=2 hyperfine level. The width of each arrow repre-
sents the relative transition strength, which can be obtained from
terms of the sum in Eq. �3�.

m 1 m 0 m 1
Fg 0

Fg 1

Fe 0

Fe 1

m 1 m 0 m 1

a b

FIG. 5. �Color online� Level diagram for a D1 transition with
resolved hfs for an atom with I=1 /2 showing �a� optical excitation
and �b� spontaneous decay with linearly polarized light resonant
with the Fg=1→Fe=1 transition. The branching ratio for each al-
lowed decay is the same, leading to an excess of atoms in the �Fg

=1,m=0� sublevels over the populations of the �Fg=1,m= �1�
sublevels by a ratio of 2:1.
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In Fig. 7 the ground-state hfs is now unresolved, while the
excited-state hfs remains resolved. In this case, both ground-
state hyperfine levels are pumped by the light, and equal
populations are produced in the sublevels of the Fe=1 state,
as shown in part �a� of the figure. As seen in part �b�, the
excited-state atoms spontaneously decay in equal numbers to
the Fg=1 sublevels so that no polarization is produced in the
Fg=1 state.

Note that in the opposite case, with unresolved excited-
state hfs and resolved ground-state hfs, spontaneous decay is
not prevented from producing polarization in the Fg=1
ground state. In this case, atoms are pumped into the Fe=0
state, as well as the Fe=1 state, as shown in Fig. 8�a�. Since
the �Fe=0,m=0� state decays isotropically, the decay from
this state does not cancel out the polarization created by de-
cay from the Fg=1 state �Fig. 8�b��. Thus we see that it is the
ground-state hfs and not the excited-state hfs that needs to be
resolved in order for polarization to be produced in the
ground state due to spontaneous decay.

To summarize the results obtained so far, to lowest order
in the excitation light, polarization can be either produced in
the ground state directly through absorption or transferred to
the ground state by spontaneous emission. To this order, po-
larization moments due to both of these mechanisms must
have rank ��2. In addition, if the excited-state hfs is unre-
solved, there is a limit ��2Jg on the ground-state polariza-
tion due to depopulation but no additional limit on the polar-
ization due to repopulation. On the other hand, if the ground-
state hfs is unresolved, there is a limit ��2Je on the ground-
state polarization due to repopulation but no additional limit
on polarization due to depopulation. Thus, unless both the

excited-state and ground-state hyperfine structure is unre-
solved, one or the other of the mechanisms is capable of
producing polarization of all ranks ��2.

C. Light absorption

The absorption A of a weak probe light beam is given in
terms of the ground-state density matrix by �26�

A � �
mnr

ê · drm�mnê� · dnrG�� − �rm� �13�

or

A � � �Fem�ê · d�Fgm���Fgm����Fgm��

��Fgm��d · ê��Fem�G�� − �FeFg
� , �14�

where all quantities are as defined above. Using the approxi-
mation, as in Secs. II A and II B, that the light is resonant
with an unresolved transition group and far detuned from all
other transitions, this formula reduces to

A � � �Fem�ê · d�Fgm���Fgm����Fgm���Fgm��d · ê��Fem� ,

�15�

where the sum over Fg and Fe includes only those combina-
tions that are in the unresolved resonant transition group.

We now investigate the dependence of the absorption on
the ground-state polarization in various cases. Consider the
case in which the ground-state hfs is completely resolved,
and the excited-state structure is unresolved. The light is
tuned to a unresolved transition group consisting of transi-
tions between one ground-state hyperfine level Fg and all of
the excited-state levels. The sum in Eq. �15� over the excited
states is then a closure relation and can be replaced with a
sum over any complete basis for the excited state, in particu-
lar, the uncoupled basis. We also insert closure relations to
expand the ground states �Fgm�� and �Fgm�� in the uncoupled
basis. We obtain

A � � �− 1�q�+q�eq��e
��q��ImIJemJ�d−q��ImI�JgmJ��

��ImI�JgmJ��Fgm���Fgm����Fgm���Fgm��ImI�JgmJ��

� �ImI�JgmJ��d−q��ImIJemJ�

m 1 m 0 m 1
Fg 0

Fg 1

Fe 0
Fe 1

m 1 m 0 m 1

a b

FIG. 8. �Color online� As Fig. 5 but with unresolved excited-
state hfs; light is tuned to the Fg=1→Fe transition group. Three
decay channels transfer atoms to the �Fg=1,m=0� sublevels, while
the �Fg=1,m= �1� sublevels are each fed by two decay channels.
Since all the branching ratios are the same, the resulting population
imbalance is 3:2.

m 1 m 0 m 1
Fg 0

Fg 1

Fe 0

Fe 1

m 1 m 0 m 1

a b

FIG. 6. �Color online� As Fig. 5, but with light tuned to the
Fg=0→Fe=1 transition. In this case an excess of atoms results in
the m= �1 states so that the polarization has the opposite sign as
that in Fig. 5.

m 1 m 0 m 1Fg 0
Fg 1

Fe 0

Fe 1

m 1 m 0 m 1

a b

FIG. 7. �Color online� As Fig. 5 but with unresolved ground-
state hfs; light is tuned to the Fg→Fe=1 transition group. The
contributions to the ground-state polarization illustrated in Figs. 5
and 6 cancel so that no ground-state polarization is produced.
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= � �− 1�q�+q�eq��e
��q��JemJ�d−q��JgmJ���ImIJgmJ��Fgm��

��Fgm����Fgm���Fgm��ImIJgmJ���JgmJ��d−q��JemJ� ,

�16�

where only one nuclear-spin summation variable remains in
the last line. The dipole matrix element selection rules and
Clebsch-Gordan conditions require that

m� = mI + mJ�, mJ� = mJ + q�,

m� = mI + mJ�, mJ = mJ� + q� �17�

must be satisfied in order for a term in the sum to contribute
to the absorption. These conditions can be combined to yield
�m�−m��= �q�+q���2. Thus only coherences with �	m��2
�and polarization moments with ��2� can affect the lowest-
order absorption signal. The reason for this is analogous to
the reason that polarization moments of maximum rank two
can be created with a lowest-order interaction with the light.
Absorption occurs when an atom is transferred to the excited
state, i.e., when population �rank zero polarization� is created
in the excited state. Thus, to be observed in the signal, a
ground-state atomic PM must be coupled to a �=0 excited-
state PM by a spin-one photon, which can support polariza-
tion moments up to rank two. The triangle condition for ten-
sor products then implies that the rank of the atomic
polarization moment must be no greater than two.

Another restriction on the coherences that can affect ab-
sorption can be found from Eq. �17� by using the fact that
�mJ���Jg and �mJ���Jg. We find

�m� − m�� = �mJ� − mj�� � 2Jg. �18�

In other words, only polarization moments with ��2Jg can
affect the absorption signal, regardless of the value of Fg.
Evidently, it is the excited-state hfs that determines which
ground-state polarization moments can be detected in ab-
sorption, whether or not the ground-state hfs is resolved.

Considering the case in which both the excited- and
ground-state hfs is entirely unresolved can lend some insight
into this result. In this case, every combination of Fg and Fe
enters in the sum in Eq. �15�. If the ground-state hyperfine
splitting is sent to zero, the sum must be extended to include
matrix elements of � between different hyperfine levels. This
means that all of the sums in Eq. �15� can be replaced with
sums over uncoupled basis states, giving

A � � �− 1�q�+q�eq��e
��q��ImIJemJ�d−q��ImI�JgmJ��

��ImI�JgmJ����ImI�JgmJ���ImI�JgmJ��d−q��ImIJemJ�

= � �− 1�q�+q�eq��e
��q��JemJ�d−q��JgmJ��

��ImIJgmJ����ImIJgmJ���JgmJ��d−q��JemJ� . �19�

Since the hyperfine interaction has been effectively elimi-
nated, the absorption no longer depends on the nuclear spin:
the complete density matrix does not enter but rather the
reduced density matrix

�mJ�mJ�
�J� = �

mI

�mImJ�,mImJ�
�20�

that is averaged over the nuclear spin mI. The reduced den-
sity matrix can only support polarization moments up to rank
�=2Jg so any PM in � with higher rank cannot affect the
absorption. Considering a density matrix that is nonzero only
within one ground-state hyperfine level Fg, we see that po-
larization moments with rank greater than two will not con-
tribute to the signal. Since the other ground-state hyperfine
levels are unoccupied, it makes no difference what the
ground-state hyperfine splitting is, so we regain the result
that, even if the ground-state hfs is resolved, only polariza-
tion moments with ��2Jg can affect the absorption of light
if the excited-state hfs is unresolved.

There is no corresponding restriction on the polarization
moments that can affect absorption when the ground-state
hfs is unresolved and the excited-state hfs is resolved. In-
deed, we can consider the case in which only one ground-
state hyperfine level Fg is populated: the absorption is then
exactly as if the transition Fg→Fe were completely isolated.
For such an isolated transition, the only limit on detectable
polarization moments is ��2 for the low-power case.

As in the previous subsections, we illustrate this result for
a D1 transition for an atom with I=1 /2 subject to linearly
polarized light. In Fig. 9 both the ground- and excited-state
hfs is resolved, and the light is resonant with the Fg=1
→Fe=1 transition. In part �a� there is no polarization in the
Fg=1 ground state: atoms are equally distributed among the
Zeeman sublevels. Light is absorbed by atoms in the �Fg
=1,m= �1� sublevels. In part �b� there are the same total
number of atoms in the Fg=1 state, but they are collected in
the m=0 sublevel. The population is the same, but the Fg
=1 state now also has alignment. In this particular case there
is no absorption because the atoms are all in the m=0 dark
state. Thus, in this situation, the rank-two polarization mo-
ment has a strong effect on the absorption signal.

Figure 10 shows the same system, but with unresolved
excited-state hfs. In this case there is no dark state; all of the
atoms interact with the light. The distribution of the atoms
among the Zeeman sublevels does not affect the light absorp-
tion, and so the rank two polarization moment is not detect-
able in the absorption signal.

m 1 m 0 m 1

Fg 0

Fg 1

Fe 0

Fe 1
m 1 m 0 m 1

a b

FIG. 9. �Color online� D1 transition for an atom with I=1 /2
subject to linearly polarized light resonant with the Fg=1→Fe=1
transition. In part �a� the Fg=1 ground state is unpolarized and there
is light absorption. In part �b� the Fg=1 state has the same total
population but is aligned, and there is no absorption.
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D. Fluorescence

Finally, we consider which excited-state polarization mo-
ments can be observed in fluorescence. Assuming broadband
detection, the intensity of fluorescence into a particular po-
larization ê is given in terms of the excited-state density
matrix by

I � �
rsm

ê� · dmr�rsê · dsm. �21�

Because the sums in r and s go over all excited states, and m
runs over all ground states, we can write Eq. �21� for our
case in terms of the uncoupled-basis states. This gives

I � � �− 1�q�+q��e��q�eq��ImIJgmJ�d−q��ImI�JemJ��

��ImI�JemJ����ImI�JemJ���ImI�JemJ��d−q��ImIJgmJ� , �22�

resulting in the restrictions

mJ� = − q� + mJ, mJ = − q� + mJ�,

mI = mI� = mI�, �23�

on the terms that can contribute to the fluorescence. This
indicates that the nuclear polarization cannot affect the fluo-
rescence signal, and so only the electronic excited-state po-
larization of rank ��2Je can be observed. In addition, only
coherences with �mJ�−mJ��= �q�+q���2 can be observed. This
rule has appeared earlier as a consequence of the low-light-
power assumption; because spontaneous decay is not in-
duced by an incident light field, in this case the rule is exact.
This means that no matter the value of Je and what polariza-
tion moments exist in the excited state, only polarization of
rank ��2 can be observed in fluorescence.

E. Summary

In this section, we have shown that, when the ground- or
excited-state hfs is unresolved, there are restrictions on the
rank of the polarization moments that can be created or de-
tected by light. Some of these restrictions may at first seem
counterintuitive, but they can be obtained from very basic
considerations. For example, the two facts that nuclear spin
can be ignored if the hfs is completely unresolved and that
lowest-order depopulation pumping of a given hyperfine
level does not depend on ground-state hyperfine splitting
lead directly to the result that polarization moments pro-

duced by depopulation pumping are subject to a limit of �
�2Jg when the excited-state hfs is unresolved. Various pro-
cesses of creation and detection of polarization are subject to
different restrictions �Table I�. In particular, the two pro-
cesses that can create ground-state polarization—
depopulation and repopulation pumping—are subject to re-
strictions under different conditions. Consequently, unless
the hfs is entirely unresolved, there is always a mechanism
for producing polarization limited in rank only by the total
angular momentum, rather than the electronic angular mo-
mentum.

III. PARTIALLY RESOLVED HYPERFINE STRUCTURE:
NONLINEAR MAGNETO-OPTICAL EFFECTS

Now let us examine the more general case of partially
resolved hyperfine transitions. For this study, we will look at
the quantitative dependence on hyperfine splitting of nonlin-
ear optical rotation—rotation of light polarization due to in-
teraction with a Jg→Je transition group in the presence of a
magnetic field. In this case, the effect of ground-state atomic
polarization is brought into starker relief: in the experimental
situation that we consider, both the creation and detection of
ground-state polarization is required in order to see any sig-
nal whatsoever. When linearly polarized light is used, as is
supposed here, the lowest-order effect depends on rank-two
atomic alignment. Thus, for the alkali-metal atoms, the ques-
tion of the dependence of the effect on hyperfine structure
arises because, as discussed in the previous section, both the
creation and the detection of alignment in the Jg=1 /2 ground
state can be suppressed due to unresolved hfs. �In fact, a
higher-order effect can occur wherein alignment is created,
the alignment is converted to orientation, and the orientation
is detected �22–24�. However, the conversion of alignment to
orientation is an effect of tensor ac Stark shifts, which can be
shown by arguments similar to those in Sec. II to suffer
suppression due to unresolved hfs in the same way as does
the direct detection of alignment.�

In the Faraday geometry, linearly polarized light propa-
gates in the direction of an applied magnetic field, and the
rotation of the light polarization direction is measured. A
number of magneto-optical effects can contribute to the op-

m 1 m 0 m 1

Fg 0

Fg 1

Fe 0
Fe 1 m 1 m 0 m 1

a b

FIG. 10. �Color online� As Fig. 9, but with unresolved excited-
state hfs. In this case there is no difference in the absorption seen
for an �a� unpolarized and �b� aligned Fg=1 ground state.

TABLE I. Summary of the results of this section. For each quan-
tity, the restriction on the rank � of the polarization that can be
created or detected is given in the third column. The restriction
holds under conditions �ground- or excited-state hfs unresolved�
described in the second column. For fluorescence with broadband
detection the restriction holds regardless of whether the hfs is
resolved.

Unresolved Limit on �

Ground-state pol. �depop.� Excited hfs �2Jg

Ground-state pol. �repop.� Ground hfs �2Je

Excited-state pol. Ground hfs �2Je

Absorption Excited hfs �2Jg

Fluorescence �2Je
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tical rotation, including the linear Faraday effect, the
Bennett-structure effect, and various effects depending on
atomic polarization �“coherence effects”� �9�. Here we are
concerned with optical rotation due to several different forms
of the ground-state coherence effect, in which the atomic
velocities are treated in three different ways. First we con-
sider the atoms to have no velocity spread, and analyze the
Doppler-free “transit effect,” as for an atomic beam with
negligible transverse velocity distribution �34�. We then con-
sider the case in which atoms have a Maxwellian distribution
but do not change their velocities in between pumping and
probing—this corresponds to the transit effect for buffer-gas-
free dilute atomic vapors �13�. Finally, we treat the case in
which atoms undergo velocity-changing collisions between
pumping and probing, as for buffer-gas cells �35� or the wall-
induced Ramsey effect �“wall effect”� in antirelaxation-
coated vapor cells �36�. Figure 11 illustrates the transit and
wall effects in a vapor cell. We examine the dependence of
these effects on the size of the hyperfine splittings as they
vary from much smaller than the natural width to much
greater than the Doppler width.

Throughout this section we consider formulas for the op-
tical rotation signal valid to lowest order in light power, un-
der the assumption that the ground-state relaxation rate 
 is
much smaller than both the excited-state natural width � and
the hyperfine splittings. For the Doppler-free case a single
analytic formula can be applied to both resolved and unre-
solved hfs �i.e., no assumption need be made about the rela-
tive size of the hyperfine splittings and the natural width�.
For the Doppler-broadened cases, analytic results can be ob-
tained in various limits, which together describe the signal
over the entire range of hyperfine splittings.

We first focus on the simplest case: the D1 line �Jg=Je
=1 /2� for an atom with I=1 /2. This is a somewhat special
case because one of the two ground-state hyperfine levels has
Fg=0 and consequently can neither support atomic align-
ment nor produce optical rotation. We then consider the dif-
ferences that arise when considering higher nuclear spin and
also the D2 line �Jg=1 /2 and Je=3 /2�. Finally, results for the
“real-world” alkali-metal atoms commonly used in experi-
ments are presented. Some details of the calculation and gen-
eral formulas for arbitrary Jg, Je, and I are presented in the

Appendix. These formulas are generalizations of those given
in Ref. �13�; related earlier work includes that of Refs.
�25,28�.

A. Doppler-free transit effect

We consider nonlinear Faraday rotation on a Jg→Je
atomic transition for an atom with nuclear spin I. We can
limit our attention to the ground-state coherence effects by
using a “three-stage” model for Faraday rotation �13�, in
which optical pumping, atomic precession, and optical prob-
ing take place sequentially, and the light and magnetic fields
are never present at the same time. In this case, the linear and
Bennett-structure effects, which require the simultaneous ap-
plication of light and magnetic fields, do not occur. Such a
model can be realized in an atomic beam experiment, but it
is also a good approximation to a vapor cell experiment that
uses low light power and small enough magnetic fields so
that the coherence effects are dominant.

The calculation is performed using second order perturba-
tion theory in the basis of the polarization moments
���q��F1F2� of the density matrix �Appendix, Sec. 1�. The
three stages of the calculation are as follows. In stage �a�, a
x-directed light beam linearly polarized along z is applied,
and we calculate optical pumping through second order in
the optical Rabi frequency. In stage �b�, the light field is
removed, and a x-directed magnetic field is applied. We cal-
culate the effect of this field on the atomic polarization. Fi-
nally, in stage �c�, the magnetic field is turned off, and the
light field is applied once more to probe the atomic polariza-
tion. The nonlinear optical rotation is found to lowest order
in the probe-light Rabi frequency �Appendix, Sec. 2�.

Because the magnetic field is neglected during the optical
pumping stage, the atomic ground-state polarization that is
produced in this stage is entirely along the light polarization
direction, i.e., it has polarization component q=0. Since lin-
early polarized light has a preferred axis but no preferred
direction, it cannot, in the absence of other fields, produce
atomic polarization with a preferred direction, i.e., polariza-
tion with odd rank �. Also, we have seen in Sec. II that, to
lowest order in the light power, optical pumping cannot pro-
duce polarization moments with ��2. Thus the only
ground-state polarization moment with rank greater than zero
that is produced at lowest order has �=2 and q=0. We first
consider the D1 line �Jg=Je=1 /2� for an atom with I=1 /2.
In this case, the only ground-state hyperfine level that can
support the ��20��FgFg� moment has Fg=1. �Due to the as-
sumption that the hyperfine splittings are much greater than
the ground-state relaxation rate, we can ignore ground-state
hyperfine coherences throughout the discussion.� From Eq.
�A10�, the value of this moment is found to be

��20��11� =
�s

12	6

�L��0,1� � − L��1,1� ��

+
R

3
�L��1,0� � − L��1,1� ��� , �24�

where �s= �Jg�d�Je�2E0
2 / ��
� is the reduced optical-pumping

saturation parameter �E0 is the optical electric field ampli-

W
Ramsey e

Laser beam

Magnetic
field

Antirelaxation-coated vapor cell

Transit effect

ffect
all-induced

FIG. 11. The transit and wall optical-rotation effects. Both ef-
fects occur in an anti-relaxation-coated vapor cell and can be dis-
tinguished by their greatly different magnetic resonance widths.
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tude�, R is the branching ratio for the transition Je→Jg, and
�FeFg

� is the transition frequency between excited-state and
ground-state hyperfine levels in the frame “rotating” at the
Doppler-shifted light frequency �: �FeFg

� =�FeFg
−�+k ·v,

where �FeFg
is the transition frequency in the laboratory

frame, � is the light frequency, k is the wave vector, and v is
the atomic velocity. We also write �FeFg

� =−	FeFg
+k ·v,

where 	FeFg
is the light detuning from resonance. We have

defined the Lorentzian line profile

L���� =
��/2�2

��/2�2 + ��2 . �25�

Equation �24� is written as the sum of two terms, each
surrounded by square brackets. The first term is the contri-
bution to the polarization due to depopulation pumping dis-
cussed in Sec. II A. This term is itself a sum of contributions
due to pumping on the Fg=1→Fe=0 transition and the Fg
=1→Fe=1 transition. These two contributions are of oppo-
site sign as illustrated in Fig. 2. Pumping on either transition
produces alignment in the Fg=1 ground state; the sign of the
corresponding polarization moment depends on whether
there is more population in the m=0 sublevel or the m
= �1 sublevels. We saw in the discussion of Sec. II A that
when the excited state hfs is unresolved, polarization with
rank ��2Jg cannot be created by depopulation pumping
�Fig. 3�. We see here that as �0,1 approaches �1,1, i.e., as the
excited-state hyperfine splitting goes to zero, the contribu-
tions from the two transitions cancel and this term goes to
zero. For the Doppler-broadened atomic ensemble discussed
in Sec. II, the hfs was considered unresolved when the hy-
perfine splittings were smaller than the Doppler width. Since
Eq. �24� describes a single velocity group, the relevant width
here is the natural width �.

The second term of Eq. �24� is the contribution to the
ground-state polarization due to repopulation pumping dis-
cussed in Sec. II B. This term is also composed of two con-
tributions of opposite sign: one due to pumping on the Fg
=1→Fe=1 transition and one due to pumping on the Fg
=0→Fe=1 transition. The two contributions are illustrated
in Figs. 5 and 6, which show the origin of the opposite signs.
In Sec. II B we found that depopulation pumping cannot cre-
ate polarization moments with rank ��2Je when the
ground-state hfs is unresolved �Fig. 7�. We see here that this
term of Eq. �24� goes to zero when �1,0 approaches �1,1, i.e.,
as the ground-state hyperfine splitting goes to zero.

In the second and third stages of the model of the coher-
ence effect, the ground-state polarization precesses in a mag-
netic field and is probed by light with the same polarization
as the pump light considered in the first stage. From Eq.
�A22� we find that the normalized optical rotation d
 per
path length d� is proportional to the polarization produced in
the first stage and is given by

�0
d


d�
=

1

4
	3

2
�L��0,1� � − L��1,1� ��x1��20��11� , �26�

where

xFg
=

�
/2��Fg

�
/2�2 + �Fg

2 �27�

is the magnetic-resonance line-shape parameter, with �Fg
=gFg

�BB as the Larmor frequency for the ground-state hy-
perfine level Fg �gFg

is the Landé factor for the ground state
Fg, and �B is the Bohr magneton� and

�0 = − 
 1

I
dI
d�
�−1

=
2�

Rn�2

�2Jg + 1�
�2Je + 1�

�28�

is the unsaturated resonant absorption length assuming to-
tally unresolved hyperfine structure, where I is the light in-
tensity, n is the atomic density, and � is the light wavelength.
The branching ratio R enters here because it factors into the
transition strength.

The contributions to the optical rotation signal from the
Fg=1→Fe=0 transition and the Fg=1→Fe=1 transition
have opposite signs. To understand this, it is helpful to think
of the optically polarized medium as a polarizing filter �13�.
When pumping on a 1→0 or 1→1 transition, the medium is
pumped into a dark �nonabsorbing� state for that transition
�Fig. 2�, corresponding to a polarizing filter with its trans-
mission axis along the input light polarization axis ê �Fig.
12�a��. The Larmor precession induced by the magnetic field
causes the transmission axis of the filter to rotate so that it is
no longer along ê. This in turn causes the output light polar-

a
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e
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e
e
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FIG. 12. �Color online� Illustration of the rotating polarizer
model for optical rotation. �a� Optical pumping on a Fg=1→Fe

=0 or Fg=1→Fe=1 transition causes the medium to act as a po-
larizing filter with transmission axis along the input light polariza-
tion ê. �b� When the transmission axis rotates due to Larmor pre-
cession, the output light polarization ê� follows the transmission
axis and so rotates in the same sense as the Larmor precession. �c�
If polarization produced by pumping on one transition is probed on
the other, the polarization functions as a polarizing filter with trans-
mission axis perpendicular to the input light polarization. �Attenu-
ation of the light beam is not indicated.� �d� When the medium
polarization rotates, the output light polarization tends to rotate to-
ward the transmission axis, in the opposite sense to the Larmor
precession in this case.
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ization axis ê� to rotate. The polarization of light passing
through a polarizing filter tends to rotate toward the trans-
mission axis so that in this case the optical rotation is in the
same sense as the Larmor precession �Fig. 12�b��. Now, com-
pare the polarization produced when pumping on a 1→0 or
1→1 transition, as shown in Fig. 2. We see that the dark
state for each transition is a bright �absorbing� state for the
other. This means that if we choose one or the other of these
states, it will function as just described for one of the transi-
tions but will function as a polarizing filter with its transmis-
sion axis perpendicular to ê for the other transition �Fig.
12�c��. When the axis of the filter rotates in this case, the fact
that the output light polarization tends to rotate toward the
transmission axis, means that here the optical rotation is in
the other direction, in the opposite sense to the Larmor pre-
cession �Fig. 12�d��. In other words, for a particular sign of
the rank-two polarization moment, the optical rotation will
have one sign when probed on one transition and the oppo-
site sign when probed on the other, as indicated by Eq. �26�.
Because the observation of optical rotation requires the de-
tection of rank-two polarization moments, we might expect,
analogously to the discussion in Sec. II C, that it is sup-
pressed when the excited-state hyperfine splitting goes to
zero. Equation �26� shows that the two contributions indeed
cancel when �0,1 approaches �1,1.

Equation �26� and the two components of Eq. �24� are
plotted as a function of light detuning from the Fg=1→Fe
=1 transition in Fig. 13, for particular values of the ground-
and excited-state hyperfine coefficients Ag and Ae. �For J= I
=1 /2, the hyperfine coefficient A is equal to the splitting
between the two hyperfine levels.� Here and below numerical
values of frequencies are given in units of �. As discussed
above, each spectrum consists of two peaks of equal magni-
tude and opposite sign. For the spectrum of alignment due to

depopulation and the spectrum of rotation for a given amount
of alignment, the peaks are separated by the excited-state
hyperfine splitting, so that they cancel as this splitting goes
to zero. For the spectrum of alignment due to repopulation,
the peaks are separated by the ground-state hyperfine split-
ting; they cancel as the ground-state splitting goes to zero.

In this subsection we are analyzing a Doppler-free system,
i.e., we assume that the atoms all have the same velocity,
which we take to be zero for simplicity. Then the observed
optical rotation signal is found by simply substituting Eq.
�24� into Eq. �26�. We first consider the case in which the
ground-state hfs is well resolved. The rotation signal is plot-
ted in Fig. 14 for large ground-state hyperfine splitting and
various excited-state splittings Ae. The components of the
rotation signal due to depopulation �dashed� and repopula-
tion �solid� are plotted in the left-hand column, and the total
signal is plotted on the right. As the previous discussion in-
dicates, the rotation signal decreases as the excited-state hy-
perfine splitting Ae becomes smaller, with the component due
to depopulation decreasing faster than the component due to
repopulation. This is also seen in Fig. 15, which shows the
maximum magnitude of the rotation spectrum as a function
of Ae �for each value of Ae, the signal is optimized with
respect to detuning�. Thus, for small splittings, the compo-
nent due to repopulation dominates. To lowest order in Ae,
the signal is given by

�0
d


d�
=

Ae�sx1R��/2�4	1

144���/2�2 + 	1
2�3 , �29�

i.e., linear in Ae, with a modified dispersive shape that falls
off far from resonance as 1 /	1

5, where 	1 is the detuning
from the center of the Fg=1→Fe transition group.

The previous discussion also explains why the two peaks
in the component due to depopulation seem to cancel as they
overlap, even though they have the same sign: the factors in

�10 0 10

0 � 01 � 0 0 � 11 � 1

Detuning

R
ot

at
io

n

A
lig

nm
en

t
A

lig
nm

en
t
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=1 transition of �top� the components of ground-state alignment due
to depopulation �dashed� and repopulation �solid� �Eq. �24�� and
�bottom� optical rotation for a given amount of alignment �Eq.
�26��. Gray vertical lines show Fg→Fe transition resonance fre-
quencies. Parameter values in units of � are 
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the signal due to the creation and detection of alignment
cancel individually �Fig. 13�; it is only in their product that
the two peaks have the same sign.

We now consider the case in which both the ground- and
excited-state hyperfine splittings are small, so that all of the
hfs is unresolved. To lowest order in Ag and Ae we have

�0
d


d�
= Ae
Ae −

R

3
Ag� �sx1��/2�4	2

24���/2�2 + 	2�4 , �30�

where 	 is the light detuning from the line center of the D1
transition. As we expect, the component of the signal due to
polarization produced by repopulation is proportional to Ag
for small hyperfine splitting. The component of the signal
resulting from depopulation-induced polarization also enters
at this order. The optical rotation spectrum in this case is
double-peaked and falls off as 1 /	6 �Fig. 16�.

B. Doppler-broadened transit effect

We now consider an atomic ensemble with a Maxwellian
velocity distribution, but a low rate of velocity-changing col-
lisions so that the atomic velocities do not change between

optical pumping and probing. This is the case for an atomic
beam experiment, or for the “transit effect” in a dilute-vapor
cell. Because the atoms have a fixed velocity, the signal from
each velocity group can be found individually and then
summed to find the total signal. Thus the signal from the
Doppler-broadened transit effect is found by multiplying the
Doppler-free signal found in the previous subsection by a
Gaussian weighting function representing the Doppler distri-
bution along the light propagation direction and then inte-
grating over atomic velocity. We can perform this integral
analytically in different limiting cases.

We first consider the commonly encountered experimental
case in which the hyperfine splitting is much greater then the
natural line width of the excited state, i.e., the Doppler-free
spectrum is well resolved. In this case, for a given light fre-
quency and atomic velocity, the light acts on at most one
transition between hyperfine levels. Thus the excited-state
hyperfine coherences can be neglected, and the cancellation
effects due to the overlap of resonance lines do not appear.
As found in Eq. �A24�, the Doppler-free rotation spectrum
then appears as a collection of peaks, one centered at each
optical resonance frequency, each with line-shape function
f��FeFg

� �=L��FeFg
� �2, i.e., the square of a Lorentzian line

shape. �One Lorentzian factor is due to optical pumping, the
other to probing.�

In this case, the Doppler-broadened signal is found by
making the replacement f → fDB, where the velocity integral
for fDB takes the form

fDB�	FeFg
� =� dvkf�− 	FeFg

+ kBvk�G�vk� , �31�

where

G�vk� =
kB

�D
	�

e−�kBvk/�D�2
�32�

is the normalized distribution of atomic velocities along the

light propagation direction k̂, kB is the Boltzmann constant,
and �D is the Doppler width. This integral can be evaluated
in terms of the error function. Under the assumption �
��D that we will employ here, the integral can be approxi-
mated by replacing f with a properly normalized delta func-
tion, resulting in

fDB�	FeFg
� �

	�

4

�

�D
e−�	FeFg

/�D�2
. �33�

The Doppler-broadened spectrum, given explicitly by Eq.
�A25�, thus consists of a collection of resonances, each with
Gaussian line shape. For the D1 line with I=1 /2, we have

�0
d


d�
=

�sx1

576
��3 + R�e−�	1,1/�D�2

+ 3e−�	0,1/�D�2
� . �34�

Here �0 is the absorption length for the Doppler-broadened
case, given by

�0 =
4	�

Rn�2

�D

�

�2Jg + 1�
�2Je + 1�

. �35�

Equation �34� is valid for Ae ,Ag ,�D��. Note that all the
terms in this expression have the same sign; thus no cancel-
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lation occurs when the resonances overlap. This is because
the Doppler-free resonances all have the same sign when the
Doppler-free spectrum is well resolved �Fig. 14� so when the
Doppler-broadened spectrum samples more than one reso-
nance, the contributions from each resonance add.

The same approach can be generalized to describe the
case in which some or all of the hyperfine splittings are on
the order of or smaller than �. In this case, the Doppler-free
spectrum is not composed entirely of peaks with a shape
given by f��FeFg

� �. Nevertheless, as long as each resonance or
group of resonances has frequency extent much less than the
Doppler width, we can approximate it as a delta function
times a coefficient given by the integral of the Doppler-free
spectrum over the resonance. For the D1 line with I=1 /2 and
Ae ,���D�Ag, this procedure yields �Eq. �A26��

�0
d


d�
=

Ae
2�sx1�6 + R�e−	1,1

2 /�D
2

576��2 + Ae
2�

. �36�

The rotation in this case goes as Ae
2 for small Ae; the term

linear in Ae �Eq. �29�� is odd in detuning and consequently
cancels in the velocity integral.

Since Eq. �34� applies when Ae�� and Eq. �36� applies
when Ae��D, we have that—if �D is sufficiently larger than
�—the two formulas together describe the signal over the
entire range of Ae to excellent approximation, as verified by
a numerical calculation. Figure 17 shows the maximum of
the rotation spectrum as a function of the excited-state hy-
perfine splitting. As discussed above, as Ae is reduced, there
is no suppression of the optical rotation signal when the
Doppler-broadened hfs becomes unresolved. Only when the
Doppler-free spectrum for a particular velocity group be-
comes unresolved is there suppression as described in the
previous subsection.

Spectra for the Doppler-broadened transit effect are
shown in Fig. 18 for large Ag and various values of Ae, and
for Ag and Ae varied together in Fig. 19.

In the case in which both Ae and Ag are small, the
Doppler-free rotation spectrum is entirely of the same sign
�see Eq. �30� and the bottom plot of Fig. 16�. The Doppler-
broadened signal thus behaves similarly to the Doppler-free
signal because no additional cancellation takes place upon

integrating over the velocity distribution. The signal for the
D1 line with I=1 /2 and Ag ,Ae ,���D is given by

�0
d


d�
= Ae
Ae −

R

3
Ag� �sx1

96�2e−	2/�D
2

. �37�

C. Wall effect

We now consider systems in which the atomic velocities
change in between optical pumping and probing. This is the
case for the “wall effect” in antirelaxation-coated vapor cells:
atoms are optically pumped as they pass through the light
beam and then retain their polarization through many colli-
sions with the cell walls before returning to the beam and
being probed �Fig. 11�. A similar situation occurs in vapor
cells with buffer gas.

We assume that the atomic velocities are completely ran-
domized after optical pumping. Then the density matrix for
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each velocity group is the same; to lowest order in light
power, we can find the velocity-averaged polarization by in-
tegrating perturbative expression �A10� over velocity with
the Gaussian weighting factor �Eq. �32��. Since we are now
describing the average over all of the atoms in the cell and
not just the illuminated region of the cell, we take 
 to be the
average ground-state relaxation rate for an atom in the cell
rather than the transit rate through the light beam. We also
multiply the polarization by the illuminated fraction of the
cell volume, Villum. /Vcell �assuming this fraction is small�, to
account for the fact that the light pumps only some of the
atoms at a time.

For the specific case of the D1 line for an atom with I
=1 /2, Eq. �A10� takes the form, given in Eq. �24�, of a linear
combination of Lorentzian functions L��FeFg

� �. This simple
form arises because, due to the selection rules for this tran-
sition, no coherences are formed between excited-state hy-
perfine levels. For a general system this is not the case; how-
ever, if the excited-state hyperfine splitting is greater than �,
the excited-state hyperfine coherences are suppressed, and all
resonances once again have Lorentzian line shapes. Thus,
assuming that ���D, the velocity integral can be accom-
plished by replacing L��FeFg

� � by

� dvkL�− 	FeFg
+ kvk�G�vk� �

	�

2

�

�D
e−�	FeFg

/�D�2
. �38�

The polarization in this case is given by �Eq. �A27��

��20��11� =
�s

	�

24	6

�e−�	0,1/�D�2

− e−�	1,1/�D�2
�

+
R

3
�e−�	1,0/�D�2

− e−�	1,1/�D�2
�� , �39�

where the saturation parameter for the wall effect is defined
by

�s =
�R

2

�


�

�D

Villum.

Vcell
. �40�

We make this changed definition because, in the wall effect,
light of a single frequency illuminating just part of the cell
effectively pumps all velocity groups in the entire cell.

The signal due to each velocity group is given in terms of
��20��1� by Eq. �26�; integrating over velocity to find the total
signal, we obtain �Eq. �A28��

�0
d


d�
=

1

4
	3

2
�e−�	0,1/�D�2

− e−�	1,1/�D�2
�x1��20��11� . �41�

The spectrum of the signal due to the wall effect is quite
different than the spectrum of the Doppler-broadened transit
effect signal, and is in a sense more similar to that of the
Doppler-free transit effect �37�. Equations �39� and �41� have
the same form as the Doppler-free Eqs. �24� and �26�, with
Lorentzians of width � replaced by Gaussians of width �D.
Thus the rotation signal produced by the wall effect has simi-
lar spectra and dependence on hyperfine splitting as the
Doppler-free transit effect, but with scale set by the Doppler
width rather than the natural width. This is illustrated in Figs.
20 and 21 for the case of large ground-state hyperfine split-

ting. Figure 20 shows the optical rotation spectrum for vari-
ous values of Ae, and Fig. 21 shows the maximum of the
rotation spectrum as a function of Ae. These figures can be
compared to Figs. 14 and 15 for the Doppler-free transit
effect. In particular, we see the same phenomenon of two
resonance peaks of the same sign appearing to cancel as they
overlap �observation of this effect in anti-relaxation-coated
vapor cells is discussed in Ref. �37� and in buffer-gas cells in
Ref. �35��. The explanation for this is the same as in the
Doppler-free case. Also as in the Doppler-free case, the ro-
tation is linear in Ae to lowest order, and this linear term is
due to polarization produced by spontaneous emission:

�0
d


d�
=

	�

288
�sx1R

Ae	1

�D
2 e−2�	1/�D�2

. �42�

Spectra for the case in which Ae and Ag are varied together
are shown in Fig. 22, and are also similar to the Doppler-free
transit effect �Fig. 16�. When both Ae and Ag are small, the
signal to lowest order in these quantities is given by

�0
d


d�
= Ae
Ae −

R

3
Ag��sx1	2

48�D
4 e−2	2/�D

2
. �43�

D. Higher nuclear spin and the D2 line

When nuclear spins I�1 /2 are considered, several com-
plications arise. The clearest of these is that the two ground
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FIG. 21. As Fig. 15, but for the wall effect. Parameters are the
same as in Fig. 17.
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states now have angular momenta Fg= I�
1
2 �1 so that they

can both support atomic alignment and produce optical rota-
tion. A more subtle difference is that, with higher angular
momenta in the excited state, coherences between the excited
state hyperfine levels can be created when the excited-state
hyperfine splitting is on the order of the natural width or
smaller. �Ground-state hyperfine coherences can be neglected
as long as the ground-state hyperfine splitting is much larger
than the ground-state relaxation rate.� This can change the
optical rotation spectrum and also causes the symmetry be-
tween the Doppler-free transit and wall effects discussed
above to be partially broken, as we see below.

However, many of the results obtained above for the I
=1 /2 system are a consequence of the general arguments
discussed in Sec. II and thus hold for any nuclear spin. In
particular, the dependence of the optical rotation signal on
the hyperfine splitting for large ground-state and small
excited-state splitting �Eqs. �29�, �36�, and �42�� and for both
ground- and excited-state hyperfine splitting small �Eqs.
�30�, �37�, and �43�� remains the same. We have, for large Ag
and small Ae and for a particular transition group, the follow-
ing three expressions. For the Doppler-free transit effect,

�0
d


d�
� Ae�sxFg

R
��/2�4	Fg

���/2�2 + 	Fg

2 �3 , �44�

for the Doppler-broadened transit effect,

�0
d


d�
� Ae

2�sxFg

e−	Fg

2 /�D
2

��2 + Ae
2�

, �45�

and for the wall effect,

�0
d


d�
� Ae�sxFg

R
	Fg

e−2�	Fg
/�D�2

�D
2 . �46�

For Ag and Ae both small, we have, for the Doppler-free
transit effect,

�0
d


d�
� Ae
Ae −

R

3
Ag� �s��/2�4	2

���/2�2 + 	2�4 , �47�

for the Doppler-broadened effect,

�0
d


d�
� Ae
Ae −

R

3
Ag� �s

�2e−	2/�D
2

, �48�

and for the wall effect,

�0
d


d�
� Ae
Ae −

R

3
Ag��s	

2

�D
4 e−2	2/�D

2
. �49�

To illustrate the differences that arise when the nuclear
spin is increased, we plot �analogously to Figs. 15, 17, and
21� in Fig. 23 the maximum of the rotation spectra for large
Ag as a function of Ae for the Doppler-free transit, Doppler-
broadened transit, and wall effects. Three values of the
nuclear spin are used, I=1 /2, 3/2, and 5/2, and for I=3 /2
and 5/2 the rotation on the Fg= I�1 /2→Fe lines is plotted
separately. Rotation due to polarization produced by the de-
population and repopulation mechanisms is plotted, as well
as the total rotation signal. In many cases these two contri-
butions are of opposite sign, so the details of the total signal
can depend on how closely the two contributions cancel each
other. �The cancellation tends to be more complete for the
Fg= I−1 /2 lines.� However, the qualitative features of these
plots follow, in large part, the pattern exhibited in the I
=1 /2 case. One exception is the behavior of the wall effect
plot for Ae in the neighborhood of the natural width. As
mentioned above, when I�1 /2, excited-state hyperfine co-
herences can form when the excited-state hyperfine splitting
becomes small. This leads to “interference” effects when the
Doppler-free resonance lines overlap that do not occur when
the Doppler-broadened resonance lines in the wall effect
overlap. This breaks the symmetry between the wall effect
and the Doppler-free transit effect that is found in the I
=1 /2 case.

We now discuss the Jg=1 /2→Je=3 /2 D2 transition. The
presence of three hyperfine levels in the excited state leads to
additional features in the dependence of the signal on the
hyperfine splitting �Fig. 24�. However, the fact that the
ground-state electronic momentum is still Jg=1 /2 means that
the dependence of the signal on the excited-state hyperfine
splitting as Ae goes to zero remains the same, for the reasons
discussed in Sec. II. Thus, to lowest order in Ae, the rotation
signals on the D2 line for large Ag are given by Eqs.
�44�–�46�. �We set the hyperfine coefficient Be to zero for
simplicity.�

Considering the signals obtained when both the excited-
and ground-state hyperfine splittings are small, we expect
somewhat different behavior for the contribution due to po-
larization produced by repopulation pumping than in the D1
case. This is because the excited-state electronic angular mo-
mentum is Je=3 /2 so that production of rank �=2�2Je
atomic alignment in the ground state by spontaneous emis-
sion is allowed even when the ground-state hfs is unresolved
�Sec. II B�. The lowest-order dependence on hyperfine split-
ting for the D2 line is given by

�500 0
�0.005

0

0.005

�500 0

0

2

0

10

Detuning

N
or

m
al

iz
ed

ro
ta

tio
n

��103
�

Ag � 20, Ae � 1

Ag � 400, Ae � 20

Ag � 4000, Ae � 200

FIG. 22. As Fig. 19, but for the wall effect.

LIGHT-INDUCED POLARIZATION EFFECTS IN ATOMS … PHYSICAL REVIEW A 80, 053406 �2009�

053406-15



�0
d


d�
� Ae�Ae − R
2Ae +

1

3
Ag�� �50�

for each of the three effects, with the spectral line shapes
remaining as in Eqs. �47�–�49�. Note that there is now a term
that depends on polarization due to repopulation that does
not go to zero as Ag goes to zero.

E. Alkali-metal atoms

We now examine the consequences of the preceding dis-
cussion for the alkali-metal atoms commonly used in nonlin-
ear magneto-optical experiments. In Fig. 25 the maximum of
the spectrum of optical rotation is plotted for the D1 and D2
lines of several alkali-metal atoms. The Doppler-broadened
transit effect is shown in Fig. 25�a� and the wall effect is
shown in Fig. 25�b�. �Numerical convolution was used to

obtain these results because the alkali-metal atoms do not all
satisfy the conditions under which the analytic formulas
were derived.� The nuclear spins, hyperfine splittings, ex-
cited state lifetimes, and Doppler widths all vary between the
different alkali-metal atoms. However, focusing our attention
on the hyperfine splittings, which have the greatest degree of
variation, we can see the correspondence of these results to
the preceding discussion. In particular, we have seen that the
magnitude of the Doppler-broadened transit effect is largely
independent of the hyperfine splitting when the splittings are
greater than the natural width of the transition. This is gen-
erally the case for the alkali-metal atoms, leading to the rela-
tive constancy of the magnitude of the transit effect among
the alkali-metal atoms. For the wall effect, on the other hand,
we have found that the magnitude of the effect diminishes
when the hyperfine splitting becomes less than the Doppler
width. In the alkali-metal atoms the excited state hyperfine
splitting is generally on the order of or smaller than the Dop-
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FIG. 23. Maximum of the normalized optical rotation spectra �0 / ��sxFg
�d
 /d� for the Doppler-free transit, Doppler-broadened transit,

and wall effects on the D1 line for I=1 /2, 3/2, and 5/2. We assume �D=100, 
�1, Ag��D in units of �. The maxima for the Fg

= I�1 /2→Fe transitions are plotted separately. Each plot shows rotation due to polarization produced by depopulation �dot-dashed line�,
rotation due to polarization produced by repopulation �dashed line�, and total rotation �solid line�. The sharp features seen in some of the
plots occur when two terms contributing to the largest resonance cancel. In general, since all resonances are not canceled at the same time,
the maximum of the spectrum does not go to zero.

AUZINSH, BUDKER, AND ROCHESTER PHYSICAL REVIEW A 80, 053406 �2009�

053406-16



pler width, and the general trend is that the ratio of hyperfine
splitting to Doppler width increases as the atomic mass num-
ber increases. This accounts for the general upward trend in

Fig. 25�b�. The trend is not completely consistent: the hyper-
fine splitting of K is smaller than that of Na, which is re-
flected in the plot of the wall effect.
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FIG. 25. Maximum of the spectrum of normalized optical rotation for the �a� Doppler-broadened transit effect and �b� wall effect for
various alkali-metal atoms. Circles indicate the D1 line and triangles indicate the D2 line. Room temperature Maxwellian velocity distribu-
tions are assumed. Normalized rotation is defined here as �0 / ��sxI+Jg

��d
 /d��, where �0 in this case is the unsaturated absorption length at
the detuning that gives maximum absorption. The normalized magnitude of unsuppressed optical rotation is nominally on the order of unity;
however, this is to some degree dependent on the normalization convention chosen. For example, if the maximum matrix element of dz is
used in the definition of �s rather than the reduced matrix element, the values in this plot are increased by a factor of �6.
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Fg=3 systems for the Doppler-broadened transit effect, the two contributions to optical rotation nearly cancel, with the consequence that the
approximations used in obtaining the analytic formulas for the total Doppler-broadened signal begin to break down. Numerical convolution
is employed in these cases.
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IV. CONCLUSION

In experiments involving light-induced polarization in the
alkali-metal atoms, the effect of partially resolved hyperfine
structure is of practical importance. We have addressed this
question from both descriptive and quantitative standpoints.
We have formulated rules describing various restrictions on
the rank of atomic polarization moments that can be created
or detected by light in cases when either the ground- or
excited-state hyperfine structure is completely unresolved.
We have also studied the particular situation of nonlinear
Faraday rotation under various experimental conditions in
more generality and presented analytic formulas giving the
results of optical rotation measurements when the hfs is un-
resolved, partially resolved, or completely resolved.
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APPENDIX: NONLINEAR MAGNETO-OPTICAL
ROTATION WITH HYPERFINE STRUCTURE

1. Perturbation theory with polarization moments

The time evolution of the atomic density matrix � under
the action of a time-independent Hamiltonian H is given by
the Liouville equation, which can be derived from the
Schrödinger equation �with phenomenological relaxation
terms added by hand�. Setting �=c=1, the Liouville equa-
tion can be written

�̇ = − i�H,�� −
1

2
��,�� + � + Tr�F�� , �A1�

where the square brackets denote the commutator and the
curly brackets the anticommutator, � is a Hermitian relax-
ation matrix that accounts for relaxation mechanisms such as
transit relaxation due to atoms leaving the region of interest
and intrinsic relaxation of excited states due to spontaneous

emission, � accounts for repopulation mechanisms, such as
transit repopulation, that do not depend on �, and F is the
spontaneous emission operator, accounting for repopulation
of ground states due to spontaneous emission from excited
states. �We neglect other relaxation and repopulation mecha-
nisms, such as spin-exchanging collisions, which may re-
quire the inclusion of additional terms.� The spontaneous
emission operator, defined by �30,31�

Fmn
sr =

4

3
�rm

3 dmr · dsn, �A2�

connects a pair of excited states �s� , �r� to a pair of ground
states �m� , �n�; the trace in Eq. �A1� is taken over the excited-
state pair.

We can expand the operators appearing in the Liouville
equation in terms of the polarization operators Tq

����F1F2�
according to

A = � A��q��F1F2�Tq
����F1F2� , �A3�

where F1,2 runs over all pairs of states in the system. �Here F
is understood to represent the total angular momentum quan-
tum number as well as any additional quantum numbers nec-
essary to distinguish between two states with the same total
angular momentum.� The expansion coefficients A��q��F1F2�
can be found from the Wigner-Eckart theorem, along with
the orthonormality condition

Tr�Tq
����F1F2��Tq�

�����F1�F2���
†� = �����qq��F1F1�

�F2F2�
�A4�

and the phase convention

�Tq
����F1F2��† = �− 1�F1−F2+qT−q

����F2F1� = T��q��F1F2� . �A5�

There are several equivalent expressions for the expansion
coefficients; one such form is

A��q��F1F2� = �
mm�

�− 1�F1−F2+q	 2� + 1

2F2 + 1

��F1m�,− q�F2m��AF1m,F2m�. �A6�

The set of expansion coefficients for the density matrix
are known as polarization moments. Performing the expan-
sion of each operator and using appropriate tensor product
and sum rules, the equation of motion for the polarization
moments is found from the Liouville equation to be

�̇��q��F1F2� = − i�− 1�F1+F2+� � 	�2�� + 1��2�� + 1����q���q���q�
�� �� �

F2 F1 F3
�

�
�H���q���F1F3� −
i

2
����q���F1F3������q���F3F2� − ����q���F1F3��H���q���F3F2� +

i

2
����q���F3F2���

+ ���q��F1F2� +
4

3
�0

3 � �F1�d�Fe����q��FeFe���Fe��d�F2��− 1�Fe+Fe�+�+1
� F2 F1

1 Fe Fe�
� , �A7�

where all variables not appearing on the left-hand side are summed over �the variables Fe and Fe� appearing in the last term
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relate to spontaneous emission and run over only those states of higher energy than F1,2�. Here the arrays enclosed in curly
brackets are the 6j symbols.

We now suppose that the total Hamiltonian H=H0+V, where H0 is diagonal and V is a time-independent perturbation. We
also assume that � and � are diagonal. More precisely, we assume that only ��00��FF�, ��00��FF�, and H�00��FF� are nonzero
�for arbitrary F�. Taking the steady-state limit in Eq. �A7� and expanding to second order in the perturbation V, we find for a
ground-state polarization moment

���q��FgFg� =



i�̃FFNg
���0�q0

	2Fg + 1 − �− 1�2Fg+��+��	�2�� + 1��2�� + 1����q���q���q�

�
�� �� �

Fg Fg F�
� �̃FgF� + �̃F�Fg

�̃FgFg
�̃FgF��̃F�Fg

V���q���F�Fg�V���q���FgF�� − i
4

3
�0�− 1�2F1�+2F2�+�+��+��	�2�� + 1��2�� + 1�

����q���q���q�
�� �� �

F2� F1� F�
�
� Fg Fg

1 F1� F2�
�

��F2��d�Fg��Fg�d�F1��
�̃F1�F� + �̃F�F2�

�̃F1�F��̃F1�F2�
�̃F�F��̃F�F2�

V���q���F1�F��V���q���F�F2��� . �A8�

Here we have neglected the possibility of cascade decays and
assumed that V does not couple a state to itself. We also have
assumed that � repopulates all ground-state sublevels
equally; i.e., �Fm,Fm=
 /Ng, where 
 is the ground-state re-
laxation rate and Ng is the total number of ground-state sub-
levels. The complex energy splitting �̃F1F2

is given by

�̃F1F2
= EF1

− EF2
−

i

2
��F1

+ �F2
� , �A9�

where EF= �2F+1�−1/2H0
�00��FF� is the unperturbed energy

and �F= �2F+1�−1/2��00��FF� is the total relaxation rate of a
state F.

2. Doppler-free transit effect

We now apply the results obtained in Appendix, Sec. 1 to
the three-stage calculation described in Sec. III A. In stage
�a�, we consider a ẑ-polarized optical electric field �
=E0 Re�êei�k·r−�t��, where E0 is the optical electric field am-

plitude, ê= ẑ is the polarization vector, k̂= x̂ is the wave vec-
tor, and � is the optical frequency. We let V represent the
electric-dipole Hamiltonian in the rotating-wave approxima-
tion: V�=− 1

2dzE0. �Here the prime refers to the rotating
frame.� We assume that the magnetic field is absent in this
stage. From Eq. �A8� we find

�a
�20��FgFg� = −	2

3�
Fe

�− 1�Fg−Fe�s
�2Fe + 1��2Fg + 1�
�2I + 1��2Jg + 1� 
�− 1�2I+2Jg
 1 1 2

Fg Fg Fe
�
 Je Fe I

Fg Jg 1
�2

L��FeFg
� �

+ R �
Fg�Fe�

�− 1�Fg�−Fe��2Je + 1��2Fg� + 1��2Fe� + 1�
 1 1 2

Fe Fe� Fg�
�
Fg Fg 2

Fe Fe� 1
�

�
 Je Fe I

Fg Jg 1
�
 Je Fe I

Fg� Jg 1
�
 Je Fe� I

Fg Jg 1
�
 Je Fe� I

Fg� Jg 1
�L��FeFg�

� �L��Fe�Fg�
� �

L�	�FeFg�
� �Fe�Fg�

� � � , �A10�

where all variables are as defined in Sec. III A. We have
evaluated matrix elements using the Wigner-Eckart theo-
rem and have used the relation �see, for example, Ref.
�38��

R� =
4

3

�3

2Je + 1
�Jg�d�Je�2. �A11�

The unperturbed energies can be evaluated with
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EJFM = EJ +
1

2
KIJFAJ

+
3

8

KIJF�KIJF + 1� −
4

3
I�I + 1�J�J + 1�

I�2I − 1�J�2J − 1�
BJ, �A12�

where KIJF=F�F+1�− I�I+1�−J�J+1� and AJ and BJ are the
hyperfine coefficients. The last term is zero for J�1 /2 or I
�1 /2.

In the case in which the excited-state hfs is well resolved
in the Doppler-free spectrum ��FeFe�

���, Eq. �A10� reduces
to

�a
�20��FgFg� = −	2

3�
Fe

�− 1�Fg−Fe�s
�2Fe + 1��2Fg + 1�
�2I + 1��2Jg + 1� 
�− 1�2I+2Jg
 1 1 2

Fg Fg Fe
�
 Je Fe I

Fg Jg 1
�2

L��FeFg
� �

+ �
Fg�

R�− 1�Fg�−Fe�2Je + 1��2Fg� + 1��2Fe + 1�
 1 1 2

Fe Fe Fg�
�
Fg Fg 2

Fe Fe 1
�

�
 Je Fe I

Fg Jg 1
�2
 Je Fe I

Fg� Jg 1
�2

L��FeFg�
� �� . �A13�

In stage �b�, the ground-state density matrix, which is ini-
tially in the state found in stage �a�, evolves under the influ-
ence of a magnetic field Bx̂. We will require only the value
of the polarization moment �b

�21��FgFg�. Using the Hamil-
tonian HB=−� ·B in Eq. �A7� and solving for the steady
state, we find

�b
�21��FgFg� = i

	3

2	2
xFg

�a
�20��FgFg� , �A14�

where the magnetic-resonance line-shape parameter xFg
is

defined in Eq. �27�.
In stage �c� the ground-state polarization is probed. The

effect of the atoms on the light polarization as the light
traverses the atomic medium can be found in terms of coher-
ences between ground and excited states using the wave
equation:

�E
��2 −

�E
�t2 = 4�

�P

�t2 , �A15�

where � is the distance along the light propagation direction,
and P=n Tr �d is the medium dipole polarization �n is
atomic density�, which can be written in terms of the
rotating-frame density matrix �� as

P = n�
mp

2 Re��pm� dmpei�k·r−�t�� , �A16�

where m runs over ground states and p runs over excited
states. Using the parametrization of a general optical electric
field in terms of the polarization angle 
 and ellipticity �,

E = E0 Re�ei�k·r−�t+����cos 
 cos � − i sin 
 sin ��ê1

+ �sin 
 cos � + i cos 
 sin ��ê2�� , �A17�

where ê1,2 are orthogonal transverse unit vectors, we obtain

for optical rotation in the case of linear polarization

d


d�
= −

4��n

E0
� Im��pm� dmp · �k̂ � ê�� . �A18�

Using first-order perturbation theory for the optical coher-
ences and neglecting coherences between nondegenerate
ground states, we obtain the optical rotation for weak probe
light in terms of the ground-state density matrix:

d


d�
= − 2��n Im�ê · � · �k̂ � ê�� , �A19�

where we have defined

� = �
pmn

dpn�nmdmp

�̃pm�
. �A20�

Expanding the tensor � in terms of the ground-state polar-
ization moments, we obtain

� = �
FgFe�q�q�

�− 1�Fg+Fe+�

�̃FeFg
�

�̂−q��̂−q��1q�1q���,q� + q��

�
 1 1 �

Fg Fg Fe
���Fg�d�Fe��2���,q�+q���FgFg� , �A21�

where �̂q are the spherical basis vectors.
Evaluating Eq. �A19� for our case and using Eq. �A14�

gives

�0
d


d�
= −

3	3

4	2
�

FgFe

�− 1�Fg+Fe�2Fg + 1��2Fe + 1��2Jg + 1�

�
 1 1 2

Fg Fg Fe
�
 Je Fe I

Fg Jg 1
�2

L��FeFg
� �xFg

��a
�20��FgFg� , �A22�
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where the unsaturated absorption length for the Jg→Je tran-
sition is defined in Eq. �28�. Substituting in Eq. �A10� results

in the complete expression for optical rotation for the
Doppler-free transit effect:

�0
d


d�
=

3

4
�s �

FgFeFe�

�− 1�2Fg+Fe�−Fe
�2Fe + 1��2Fe� + 1��2Fg + 1�2

�2I + 1� 
 1 1 2

Fg Fg Fe�
�
 Je Fe� I

Fg Jg 1
�2

xFg

�
�− 1�2I+2Jg
 1 1 2

Fg Fg Fe
�
 Je Fe I

Fg Jg 1
�2

L��FeFg
� �L��Fe�Fg

� � + R �
Fg�Fe�

�− 1�Fg�−Fe��2Je + 1��2Fg� + 1��2Fe� + 1�

�
 1 1 2

Fe Fe� Fg�
�
Fg Fg 2

Fe Fe� 1
�
 Je Fe I

Fg Jg 1
�
 Je Fe I

Fg� Jg 1
�
 Je Fe� I

Fg Jg 1
�

�
 Je Fe� I

Fg� Jg 1
�L��FeFg�

� �L��Fe�Fg�
� �L��Fe�Fg

� �

L�	�FeFg�
� �Fe�Fg�

� � � . �A23�

For completely resolved hfs ��FeFe�
,�FgFg�

���, this reduces to

�0
d


d�
=

3

4
�s �

FgFe

�− 1�2Fg
�2Fe + 1�3�2Fg + 1�3

�2I + 1� 
 1 1 2

Fg Fg Fe
�
 Je Fe I

Fg Jg 1
�4

xFg
�L��FeFg

� ��2
 �− 1�2I+2Jg

�2Fe + 1��2Fg + 1�
 1 1 2

Fg Fg Fe
�

+ R�− 1�Fg−Fe�2Je + 1�
 1 1 2

Fe Fe Fg
�
Fg Fg 2

Fe Fe 1
�
 Je Fe I

Fg Jg 1
�2� . �A24�

3. Doppler-broadened transit effect

The procedure used to obtain the optical rotation signal in the Doppler-broadened case is described in Sec. III B. When the
ground- and excited-state hyperfine splittings are all much greater than the natural width ��FeFe�

,�FgFg�
,�D��� we have,

applying the integration procedure to Eq. �A24�,

�0
d


d�
=

3

8
�s �

FgFe

�− 1�2Fg
�2Fe + 1�3�2Fg + 1�3

�2I + 1� 
 1 1 2

Fg Fg Fe
�
 Je Fe I

Fg Jg 1
�4

e−�	FeFg
/�D�2

xFg

 �− 1�2I+2Jg

�2Fe + 1��2Fg + 1�
 1 1 2

Fg Fg Fe
�

+ R�− 1�Fg−Fe�2Je + 1�
 1 1 2

Fe Fe Fg
�
Fg Fg 2

Fe Fe 1
�
 Je Fe I

Fg Jg 1
�2� , �A25�

where the unsaturated absorption length for the Doppler-broadened case is given by Eq. �35�.
In another limit in which the ground-state hyperfine splittings are much greater than the natural width and the excited-state

splittings are much less than the Doppler width ��FeFe�
,���D, ���FgFg�

�, we have

�0
d


d�
=

3

8
�s �

FgFeFe�

�− 1�2Fg+Fe�−Fe
�2Fe + 1��2Fe� + 1��2Fg + 1�2

�2I + 1� 
 1 1 2

Fg Fg Fe�
�
 Je Fe I

Fg Jg 1
�2
 Je Fe� I

Fg Jg 1
�2

xFg

� 
�− 1�2I+2Jg
 1 1 2

Fg Fg Fe
� + R�

Fe�

�− 1�Fg−Fe��2Je + 1��2Fg + 1��2Fe� + 1�
 1 1 2

Fe Fe� Fg
�
Fg Fg 2

Fe Fe� 1
�

� 
 Je Fe� I

Fg Jg 1
�2 2�4 + �2�2 + �FeFe�

2 ��FeFe�
�Fe�Fe�

2��2 + �FeFe�
2 ���2 + �Fe�Fe�

2 � � e−�	Fg
/�D�2

�2

�2 + �FeFe�
2 . �A26�

4. Wall effect

The procedure for obtaining the signal in the wall effect case is described in Sec. III C. For excited-state hyperfine splittings
much greater than the natural width ����FeFe�

,�D�, we have for the ground-state polarization
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�a
�20��FgFg� = −	�

6 �
Fe

�− 1�Fg−Fe�s
�2Fe + 1��2Fg + 1�
�2I + 1��2Jg + 1� 
 Je Fe I

Fg Jg 1
�2
�− 1�2I+2Jg
 1 1 2

Fg Fg Fe
�e−�	FeFg

/�D�2

+ R�
Fg�

�− 1�Fg�−Fe�2Je + 1��2Fg� + 1��2Fe + 1�
 1 1 2

Fe Fe Fg�
�
Fg Fg 2

Fe Fe 1
�
 Je Fe I

Fg� Jg 1
�2� , �A27�

where the saturation parameter for the wall effect is defined by Eq. �40�. The optical rotation signal is then given by

�0
d


d�
= −

3	3

4	2
�

FgFe�

�− 1�Fg+Fe��2Fg + 1��2Fe� + 1��2Jg + 1�
 1 1 2

Fg Fg Fe�
�
 Jg Fg I

Fe� Je 1
�2

e−�	Fe�Fg
/�D�2

xFg
�a

�20��FgFg�

=
3	�

8
�s �

FgFeFe�

�− 1�2Fg+Fe�−Fe
�2Fe + 1��2Fe� + 1��2Fg + 1�2

�2I + 1� 
 1 1 2

Fg Fg Fe�
�
 Je Fe I

Fg Jg 1
�2
 Je Fe� I

Fg Jg 1
�2

� xFg
e−�	Fe�Fg

/�D�2
�− 1�2I+2Jg
 1 1 2

Fg Fg Fe
�e−�	FeFg

/�D�2
+ R�

Fg�

�− 1�Fg�−Fe�2Je + 1��2Fe + 1��2Fg� + 1�
 1 1 2

Fe Fe Fg�
�

�
Fg Fg 2

Fe Fe 1
�
 Je Fe I

Fg� Jg 1
�2

e−�	FeFg�
/�D�2� . �A28�
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