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We investigate the scattering of intense laser radiation on free electrons using a semiclassical relativistic
approach. The laser field is described as an ideal pulse with a finite duration, a fixed direction of propagation,
and indefinitely extended in the plane perpendicular to it. This allows the use of Volkov solutions and leads to
a transition amplitude which is a product of a three-dimensional delta function with a linear combination of
three one-dimensional integrals that we evaluate numerically. We give the general expression of the emitted
photon spectrum as a function of frequency and direction valid for any initial geometry of the electron-laser
beam scattering and for arbitrary shape, duration, and polarization of the laser pulse averaged over the initial
electron spin and summed over the emitted photon and ejected electron polarizations. At a fixed photon
scattering angle, one obtains a continuous frequency distribution with a succession of maxima located near the
discrete values corresponding to the monochromatic case. We present results for head-on collisions and circu-
larly polarized laser pulses. Our figures illustrate the dependence of the photon spectrum on pulse parameters
�duration, shape, and maximum intensity� and the role of the initial electron energy. For a few-cycle linearly
polarized pulse we also explore the effect of the carrier-envelope phase.
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I. INTRODUCTION

Low intensity electromagnetic radiation scattering on free
electrons, the usual Compton scattering, is explained by the
interaction of an electron with a single photon. The interest
in the modifications of the process in the case of an intense
radiation beam, expressed in several papers published soon
after the laser was invented, has been almost constantly
present in the literature since. A recent paper �1� by Ehlotzky
et al. gives details on the main moments in the evolution of
the theoretical studies and on the experimental progress on
this and other related processes. An extensive bibliography is
also contained in an even more recent paper �2� devoted to
the theoretical quantitative description of the effect in the
case of the head-on collision of a circularly polarized mono-
chromatic plane wave with an energetic electron.

The name attached to the process in which a photon is
emitted as a result of the interaction of an electron with an
intense electromagnetic radiation field is nonlinear Compton
scattering. The process is named sometimes harmonic gen-
eration, especially when the classical description is adopted
�3� or nonlinear Thomson scattering �4� in the nonrelativistic
regime �low energy electrons, low laser frequency�. The re-
lationship between the Thomson and Compton scattering in
the high intensity regime was considered by Gao �5�. In the
case of an electromagnetic monochromatic plane wave, the
semiclassical theory, based on a classical description of the
laser field and a quantum description of the photon emission,
supports the possibility of describing the process as the si-
multaneous absorption of a number of photons N, with the
integer N, taking any positive value. As a consequence, at a
fixed detection direction, the emitted photon spectrum con-
tains more than one frequency. The name laser Compton
scattering is used especially when the contribution from N

=1 is investigated being practically the only one detectable;
strong field effects, as the frequency shift with respect to the
Compton line, are nevertheless less studied in this case, the
experimental interest being oriented toward the possibility of
building x-ray sources with remarkable performances in
terms of monochromaticity and polarization �6�.

The first experimental detection of nonlinear Compton
scattering, due to Englert and Rinehart �7�, is the observation
of the second harmonic �N=2� working with electrons in the
keV range and with a Q-switched Nd:YAG laser. In the ex-
periment performed at SLAC �8�, using 46.6 GeV electrons
and terawatt pulses from a Nd:glass laser at 1054 and 527
nm wavelengths, the scattered electrons were detected and
the measured signal was interpreted as due to the contribu-
tion of up to N=4 photons. In the experiment �9� performed
at Brookhaven National Laboratory, Accelerator Test Facility
�BNL-ATF�, using a 60 MeV electron beam and a CO2 laser
with the wavelength of 10.6 �m, the photon spectrum was
investigated for energies lower than 6.5 keV. Agreement with
the calculations based on semiclassical theory was found.
Another recent experiment �10� reports the detection of the
second harmonics using a low energy electron beam
�10 keV� and an intense laser with the peak intensity of 4
�1015 W /cm2, but disagreement with theory.

The usual treatment of laser assisted or induced processes
is the semiclassical description mentioned before in which
the external electromagnetic field is treated classically but
the atomic system is described within the frame of quantum
mechanics and, if spontaneous photon emission takes place,
as in Compton scattering, or �e+ ,e−�, pairs are created, the
electron interacts also with the quantized electromagnetic
field. In the case of an electron in the field of a monochro-
matic electromagnetic plane wave, the emitted frequency
spectrum is discrete, its lines being dependent on the detec-
tion direction characterized by the unity vector n�, according
to the equation �1,11,12�*boca@barutu.fizica.unibuc.ro
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�N� =
N��E1 − cp1 · n�

E1 − cp1 · n� + �N�� + ŨP��1 − n · n��
, N = 1,2, . . . ,

�1�

where � is the frequency of the external field propagating in
the direction of the unity vector n, p1, and E1, the initial
electron momentum and energy, m, the electron mass, c, the
velocity of the light and

ŨP =
mc2

E1 − cp1 · n
UP, UP =

aL
2

4
mc2,

aL
2 =

8�r0

mc�2 I . �2�

Here r0 is the electron classical radius and I is the radiation
intensity. The quantity denoted by UP is the ponderomotive
energy of the electron in the field and it is proportional to the
laser intensity. Frequency spectrum �1� follows from the con-
servation laws of the total four momentum for the interaction
of the electron with N, quanta associated with the external
field leading to a scattered electron and an emitted photon, in
which laser dressed energies and momenta are used for the
electron �24�. For N=1, and weak fields aL

2�1, the fre-
quency reduces to that of the Compton line. The expression
of the photon distribution for a circularly polarized mono-
chromatic electromagnetic wave can be found even in
textbooks �13�.

The parameter aL, defined in Eq. �2�, dependent on both
intensity and frequency, and independent of the Planck con-
stant, is used to characterize different regimes for the exter-
nal field. The value of aL for the experiment �8� at SLAC is
of the order of 1. The regime aL�1 is reached at high inten-
sities and low frequencies.

The main calculations on the nonlinear Compton effect,
based on the semiclassical formalism and modeling the ex-
ternal electromagnetic field by a monochromatic plane wave,
besides the first ones �11,12�, are those published by
Ehlotzky and co-workers through the years, part of them
presented in their review paper �1�. Comparisons between
results based on Klein-Gordon and Dirac equations reveal
cases in which spin effects matter. The paper �2� adds new
and systematic results to the monochromatic case. The pho-
ton spectra for several values of a parameter connected with
the intensity are depicted in a movielike sequence of plots.
For other details on the literature and previous calculations
of Compton effect the two papers �1,2� are recommended.

For the monochromatic case there are many calculations
in which the electron interaction with the field is treated clas-
sically �3,14–17�. A unique analytic result is due to
Goreslavski et al. �16� who have obtained, by a direct ana-
lytic calculation, a closed form for the photon angular distri-
bution corresponding to any initial configuration of the elec-
tron and laser beams. They have reobtained the same result
as the classical limit of the quantum expression, which is a
series for which the summation cannot be performed analyti-
cally.

Only a few papers have gone beyond the monochromatic
case and the majority of them are calculations based on clas-

sical electromagnetism. We quote only the most recent ones
�18,19�.

Our paper goes beyond the monochromatic case describ-
ing the intense external electromagnetic field as a radiation
pulse. The calculation is done in semiclassical relativistic
theory. The same formalism was adopted by Narozhnyi and
Fofanov �20� for a circularly polarized laser pulse. During
the analytic calculation they made approximations justified
for the case of very long pulses; we shall refer to these while
presenting our method in Sec. III. Narozhnyi and Fofanov
have then calculated the photon spectral angular distribution
for the case of head-on collision of an ultrarelativistic elec-
tron with a laser field with frequency �=1.17 eV and aL
equal to 1, 1.5, and 2, an intensity range in which only the
first few harmonics of the laser effectively appear in the
spectrum. They have noticed details of the structure of the
peaks that they can explain using their analysis based on the
stationary phase approximation. When working in the condi-
tions adopted by Narozhnyi and Fofanov, our calculations
confirm their observations and numerical results.

In Sec. II we briefly go through the formalism leading to
the general formulas �14� and �15� of the transition amplitude
for nonlinear Compton scattering in terms of Volkov solu-
tions expressed as a four-dimensional integral. In the mono-
chromatic case this integral is a series of products of four �
functions. In the case of a laser pulse, by a convenient choice
of the variables, only three of the four integrals can be per-
formed analytically and, as shown in Sec. III, the amplitude
is reduced to form �18� in which three � functions appear,
multiplying a factor containing three one-dimensional inte-
grals �Eq. �25��. Their evaluation is all that is needed in the
numerical calculation. Although one of these integrals is di-
vergent, we argue that it can be written as the sum of a term
that does not contribute and a convergent integral. Then in
Sec. IV we write the expressions of the relevant cross
sections.

Our numerical results are presented in Sec. V. First, we
define the “effective” pulse duration, denoted by 	̃p, that we
use in order to calculate the transition rate of the nonlinear
Compton effect. Then we present spectral-angular distribu-
tions for the frequency �=0.043 a.u. and very high field
intensity �maximum intensity during the pulse of the order of
1019 W /cm2�. We consider two situations: �i� the initial elec-
tron at rest and �ii� the initial ultrarelativistic electron coun-
terpropagating with the intense pulse. For the very intense
laser field, many harmonics �up to N�100� contribute to the
spectrum and the corresponding peaks are broad and overlap;
on the other hand, in the case of relatively low intensity, only
the first few harmonics are visible and the individual peaks
are well defined, their shape depending on the shape of the
laser pulse. Next, we show that for very short pulses it is
possible to detect the signature of the absolute phase of the
laser pulse in the spectral angular distribution. Finally, we
discuss the nonrelativistic limit and the retardation effects on
the photon spectrum.

Appendixes A and B contain general equations implied by
the formalism. Appendix C describes the situation of the di-
vergent integral we meet. Finally, in Appendix D we refer to
the monochromatic case and we give details on how this
limit follows from our equations.
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II. BRIEF REVIEW OF THE QUANTUM DESCRIPTION
OF NONLINEAR COMPTON SCATTERING

The semiclassical formalism we adopt is identical to that
used before �11,12�, i.e., a hybrid theory in which the elec-
tron interacts with an external electromagnetic field de-
scribed classically by a four-vector potential A, and with the
quantized electromagnetic field Ac, written as in Eq. �A1�.
Laser Compton scattering is identified with the spontaneous
emission of a photon by an electron interacting with the
external field.

In our work the laser pulse is modeled as an electromag-
netic field that propagates in a fixed direction, characterized
by the unity vector n, has a finite extension in the direction
of propagation, but extends to infinity in the plane perpen-
dicular to this direction. We use a fixed reference system
with the z axis along n. Such a field is described by a vector
potential A, orthogonal to n, and depending only on the vari-
able


 = t − z/c . �3�

In the following we shall use the four vectors

n = �1,n�, ñ = �1,− n�, n2 = ñ2 = 0, n · ñ = 2. �4�

Then one has 
=n ·x /c, where x is the position four-vector.
The shape of A�
� will come into play later, as in the ab-
sence of the quantized field, the Dirac equation admits exact
solutions for any A�
�. These solutions, named Volkov so-
lutions, are reproduced in Appendix B. We shall assume that
the vector potential decreases rapidly and is practically zero
outside of a finite range of the variable.

In the hybrid approach described before, the Dirac Hamil-
tonian is

H = c� · �P − eA�
� − eAc�x�� + e�c�x� + mc2� + H0,c,

�5�

where e0 is the electron charge, P, the momentum opera-
tor, H0,c is the Hamiltonian of the free electromagnetic quan-
tized field and � and � are the usual Dirac matrices. In the
following we use the � matrices

�0 = �, � = �� , �6�

which have the property ��
† =�0���0, �=0, . . . ,3. Using

them in the Hamiltonian, the term corresponding to the in-
teraction with the quantized electromagnetic field is

Hint = ec�0Âc, Âc �
�c

c
�0 − Ac · � �7�

and is treated as a weak perturbation. All the remaining terms
represent the “free” system consisting of the electron in the
laser field and the quantized electromagnetic field without
interaction. The evolution operator for this system is denoted
by U0.

The initial and final states are

��1�− ��� =
1

	V
��i1

�p1��exp
 i

�
p1 · r� � �0� , �8�

��2���� =
1

	V
��i2

�p2��exp
 i

�
p2 · r� � �1k2,s2

� , �9�

where in each state the first factor is a free electronic solution
of the Dirac equation with fixed momentum and spin; the
spinor ��i�p�� is a solution of Eq. �B5�. The symbols �0� and
�1k2,s2

� denote the vacuum and one-photon Fock state, respec-
tively.

In the transition amplitude

M1→2 = ��2����U��,− ����1�− ��� , �10�

with U, the evolution operator of the whole system, we treat
in the first order of perturbation theory the interaction of the
electron with the quantized electromagnetic field, which is
responsible for the photon emission, and we use the action of
the free evolution operator U0, on the initial and final states,
leading to the Volkov states ��i�p ;x�� defined in Eq. �B4�,

U0�t,− ����1�− ��� = ��i1
�p1;x�� � �0� � ��1�t�� , �11�

��2����U0��,t� = ��i2
�p2;x�� � �1k2,s2

� � ��2�t�� . �12�

Thus, we obtain

M1→2 =
ec

i�


−�

�

dt��2�t���0Âc��1�t�� . �13�

After replacing the initial and final states and the expression
of the quantized field �A1� in the transition amplitude, one
obtains

M1→2 =
ec

i�
	 �

2�0�2V
T1→2 �14�

with

T1→2 = 
−�

�

dt��̄i2
�p2;x��ŝ2 exp�ik2 · x���i1

�p1;x�� , �15�

where we have used the notations ��̄�= ����0 and ŝ2=s2 ·�
= �s2�0�0−s2 ·�. The subscripts 2 and 1 correspond to the
final and initial states characterized by the four-momentum
p2 and p1, respectively, and by the spin index i2 and i1, re-
spectively. We shall use real polarization four vectors s2.

III. ONE-PHOTON TRANSITION AMPLITUDE BETWEEN
TWO VOLKOV SOLUTIONS IN THE CASE OF A

LASER PULSE

A. General structure of the matrix T1\2

We describe here the quantity T1→2, defined in Eq. �15�,
which is proportional to the transition amplitude, as was
shown at the end of the previous section. In more detail,
using expressions �B4� of the two Volkov solutions, with
notations explained in Appendix B, the function we have to
evaluate is a quadruple integral over the variables r, and t,
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T1→2 =
1

V


−�

�

dt dr��̄i2
�p2���̄i2

�p2;
�ŝ2�i1
�p1;
�

���i1
�p1��exp�−

i

�
�x · �p1 − p2 − �k2� + F�p1;
�

− F�p2;
��� , �16�

where the function F�p ;
��F1�p ;
�, with F1, defined in
Eq. �B7� with the sign factor �1=1. Defining the new vari-
ables of integration r� �the position in the plane perpendicu-
lar to the propagation direction� 
= t−z /c, and 
̃= t+z /c,
and using the property

x · �p1 − p2 − �k2� =
c

2

̃n · �p1 − p2 − �k2� +

c

2

ñ · �p1 − p2

− �k2� − r� · �p1� − p2� − �k2�� , �17�

one can directly perform the integrals over r� and 
̃ obtain-
ing three one-dimensional � functions,

T1→2 = IA�2,1�
�2���3

V
��p1� − p2� − �k2��

���n · �p1 − p2 − �k2�� , �18�

where

IA�2,1� = 
−�

�

d
Q21�
�exp�−
i

�
� c

2

ñ · �p1 − p2 − �k2�

+ F�p1;
� − F�p2;
��� �19�

and

Q21�
� � ��̄i2
�p2���̄i2

�p2;
�ŝ2�i1
�p1;
���i1

�p1�� . �20�

B. Simplified form of matrix elements Q21

In the algebraic calculations implied by the summation
over the spins of the incident and scattered electrons, a par-
ticular choice of the polarization four vector s2 is suitable
�12�. Starting from any polarization four vector s2 �orthogo-
nal on k2 and of norm −1�, one builds another polarization
vector

s̃2 = s2 −
s2 · k1

k1 · k2
k2 �21�

whose properties are

s̃2 · s̃2 = s2 · s2 = − 1, s̃2 · k2 = s2 · k2 = 0, s̃2 · k1 = 0,

�22�

i.e., this new polarization four vector is orthogonal on both
k1 and k2. In our calculation k1 is proportional to n defined in
Eq. �4�. In the following we shall assume that such a choice
was made, and, by direct calculation one obtains easily

Q21�
� = ��̄i2
�p2��ŝ2��i1

�p1��

−
e

2n · p1
��̄i2

�p2��ŝ2Â�
�n̂��i1
�p1��

−
e

2n · p2
��̄i2

�p2��n̂Â�
�ŝ2��i1
�p1�� . �23�

Next we shall define two new four vectors

nx � �0,ex�, ny = �0,ey� ,

nx · ny = 0, nx · nx = ny · ny = − 1, �24�

where ex and ey are the unity vectors of the x axis and y axis,
respectively, of the reference system and we introduce the
integrals

B�2,1� � 
−�

�

d
 exp�−
i

�
� c

2

ñ · �p1 − p2 − �k2� + F�p1;
�

− F�p2;
��� , �25�

A�2,1� � − 
−�

�

d

eA�
�

mc
exp�−

i

�
� c

2

ñ · �p1 − p2 − �k2�

+ F�p1;
� − F�p2;
��� . �26�

With Eqs. �18�, �19�, and �23�, the final expression of transi-
tion amplitude �14� becomes

M1→2 = − iec	 1

2�0�2�

�2���3

V3/2 ��p1,� − p2,�

− �k2,���„n · �p1 − p2 − �k2�…Q�2,1� , �27�

where

Q�2,1� = �B�2,1���̄i2
�p2��ŝ2��i1

�p1�� + �mc�Ax�2,1�

�� 1

2�n · p2�
��̄i2

�p2��n̂n̂xŝ2��i1
�p1��

+
1

2�n · p1�
��̄i2

�p2��ŝ2n̂xn̂��i1
�p1��� + �mc�Ay�2,1�

�� 1

2�n · p2�
��̄i2

�p2��n̂n̂yŝ2��i1
�p1��

+
1

2�n · p1�
��̄i2

�p2��ŝ2n̂yn̂��i1
�p1���� �28�

and Ax�2,1� and Ay�2,1� are the two Cartesian components
of the integral A�2,1� defined in Eq. �26�.

Up to now we did not specify the explicit form of the
external electromagnetic pulse described by the vector poten-
tial A. In the following we shall consider the case
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A�
� = A0f�
��ex cos��/2�cos��
� − ey sin��/2�sin��
�� .

�29�

The laser polarization is described by the parameter � ��=0
and � correspond to linear polarization, �=�� /2, to circu-
lar polarization� and the unity vectors ex and ey are chosen
along the axes of the ellipse associated with the state of
polarization. In the monochromatic case f =1 and � is the
laser frequency. In the case of a laser pulse the function f is
the pulse envelope. This function is significantly different
from zero only in a finite interval �
in ,
f�. The maximum
amplitude reached by the electric field of the pulse is �A0.

Before going further, we show precisely the differences
between our approach and that of Narozhnyi and Fofanov
�20� who have made approximations valid only in the case
�	�1, where the parameter 	 is a measure of the pulse
duration: they start with an approximation of the exponential
factor in the Volkov solution �B4�, as in their Eq. �8�, and
continue with a Fourier expansion over an interval �
 ,

+2��, for the integrand of the integral which represents the
transition amplitude for which they take then a zeroth-order
approximation in 1 /�	. We work with analytic expressions
�27� and �28� without making further approximations. Some
remarks on the integrals B and A are necessary and we con-
tinue with them before we describe the next operations that
lead to the cross sections.

C. Properties of the integrals B(2 ,1), and A(2 ,1)

In the monochromatic case the integrands of the integrals
B�2,1� and A�2,1� in Eqs. �25� and �26� are periodic func-
tions of 
 and so is the function Q�2,1� in Eq. �28�. This
allows each integral to be expanded in a Fourier series and
each term is found to be proportional to a one-dimensional �
function. The coefficients depend on the laser intensity and
polarization. They are proportional to Bessel functions for
circular polarization, which represents the simplest situation.
For illustration, such an expansion is given in Appendix D
for the case of the integral B.

Here we work with these integrals for the case of a finite
pulse. Due to the presence of the vector potential in front of
the exponential in the integrand of A, this integral has finite
limits 
in and 
f. This is not the case of the integral B�2,1�
for which the integrand does not vanish at −� or �. The
situation is complicated by the fact that the behavior of the
integrand is different at the two limits. We discuss this inte-
gral in Appendix C and we justify that what is needed for the
evaluation of the probability of the process is the convergent
integral

B̃�2,1� =
2

ñ · ��k2 + p2 − p1�


in


f �1

2

 1

n · p1
−

1

n · p2
�e2A2�
�

− eA�
� · 
 p1

n · p1
−

p2

n · p2
��exp�−

i

�
� c

2

ñ · �p1

− p2 − �k2� + F�p1;
� − F�p2;
���d
 . �30�

IV. NONLINEAR COMPTON SCATTERING CROSS
SECTIONS

We define a transition rate by dividing the probability of
photon emission and simultaneous electron scattering by a
quantity 	̃p, which is meant to be an effective duration of the
laser pulse,

d�4��1→2 =
�M1→2�2

	̃p

Vdk2

�2��3

Vdp2

�2���3 . �31�

For some pulse shapes the definition of 	̃p appears to be a
matter of convention. In Sec. V we shall give the definition
of this quantity for the pulses we use in our calculation.

The square of the � functions in the transition rate is
treated by the usual procedure,

�2�p1� − p2� − �k2���2
„n · �p1 − p2 − �k2�…

= ��p1� − p2� − �k2���„n · �p1 − p2 − �k2�…
V

�2���3 .

�32�

The differential cross section is obtained by dividing the
above rate by the relative average flux of the ingoing elec-
trons and photons. In the case of a monochromatic laser field
its expression is �21�

J =
�0�A0

2

2�

n · p1

m
. �33�

In the monochromatic case and for weak fields the cross
section obtained this way reduces to the linear Compton ef-
fect cross section. We use the same expression for the case of
a laser pulse with a finite duration described by vector po-
tential �29�; in this case, A0 will be the amplitude of the
vector potential A at the pulse peak intensity and � the cen-
tral frequency of the pulse. However, this is a matter of
choice just as is the use of the effective duration 	̃p.

A. Most differential cross section

Using the previous results, the most differential cross sec-
tion corresponding to the situation in which the initial elec-
tron spin is fixed and both final electron spin and emitted
photon polarization are detected is

d�4��pol = r0
2 2

�

c3

	̃p

�mc�2

�eA0�2

mc

n · p1

�Q�2,1��2

��2
��p1� − p2�

− �k2���„n · �p1 − p2 − �k2�…dk2dp2. �34�

In order to get the cross section for unpolarized initial elec-
trons and no final electron polarization detection, we use
relation �A2�, with the result

1

2 �
spins

�Q�2,1��2 =
1

2�p1�0�p2�0��B̃�2�2�p2 · s2��p1 · s2�

+ �p1 · p2� − �mc�2� + 2�mc�2�A · s2�2

− �A · A��
�mc�2

2

��k2 · n�2

�n · p1��n · p2�
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+ �mc�Re�B̃��2�A · s2��s2 · �p1 + p2��

+ A · �p1 + p2� −
�p1 · n�
�p2 · n�

�p2 · A�

−
�p2 · n�
�p1 · n�

�p1 · A���� �35�

where, for the sake of compactness, we have introduced a
four vector A�2,1� attached to the integral A�2,1� in Eq.
�26� defined as A�2,1�� (0,A�2,1�).

We sum now over the emitted photon polarization using
formula �A3� with the result

1

2 �
spins,s2

�Q�2,1��2

=
1

2�p1�0�p2�0�2�B̃�2
 �p1 · k1��p2 · k2� + �p1 · k2��p2 · k1�
k1 · k2

− �mc�2� + 
 ��k2 · n�2

�n · p1��n · p2�
+ 2��− �mc�2�A · A��

+ 2�mc�
�n · p1��n · p2�

�k2 · n
Re�B̃�
A · p1

n · p1
−

A · p2

n · p2
����

� ��Q�2� . �36�

Finally, the differential cross section with unpolarized par-
ticles can be written as

d�4��unpol = r0
2��4���p1� − p2� − �k2��

��„n · �p1 − p2 − �k2�…dk2dp2, �37�

with

��4� �
2

�

c3

	̃p

�mc�2

�eA0�2

mc

n · p1

��Q�2�
��2

. �38�

B. Spectral-angular distribution of the emitted photon

By integrating the most differential cross section �37�
over the final electron momentum p2, one obtains the differ-
ential cross section relevant to the case in which only the
emitted photon energy and direction are detected. The inte-
gral can be analytically calculated using the three � functions
present in the expression of d�4��unpol. The conservation laws
implied by them,

n · �p1 − p2 − �k2� = 0, p1� − p2� − �k2� = 0 , �39�

lead to the solution p2= p̃2, where

p̃2� = p1� − �k2�, p̃2z =
�mc�2 + p2�

2

2n · �p1 − �k2�
−

n · �p1 − �k2�
2

.

�40�

Then the product of the three � functions becomes up to a
factor a 3D � function,

��p1� − p2� − �k2���„n · �p1 − p2 − �k2�… =
�p̃2�0

n · p̃2

��p2 − p̃2� .

�41�

Using the above results the doubly differential cross section
can be written as

d2�� = r0
2���4� �p̃2�0

n · p̃2
�

cons

dk2 � r0
2��2���2,n��d�2d�2,

�42�

where the index “cons” means that everywhere in expression
�38� of ��4� the conservation rule �40� must be applied. From
here, by integrating over the emitted photon frequency, we
can get an angular distribution d� /d�2, or, integrating over
the photon direction, a frequency spectrum d�� /d�2.

We mention also the nonrelativistic limit. In the dipole
approximation, when vector potential �29� is replaced by the
function dependent on time only

A�t� = A0f�t��ex cos��/2�cos��t� − ey sin��/2�sin��t�� ,

�43�

the most differential cross section has the structure

d�NR,DA
�4� = r0

2�NR,DA
�4� ��p1 − p2 − �k2�dk2dp2. �44�

The main difference between the nonrelativistic and relativ-
istic result �37� comes from the conservation law implied by
the � function. In the nonrelativistic case the sum of the final
electron momentum and the emitted photon momentum is
equal to the initial electron momentum, while in the relativ-
istic case this is true only for the momenta components or-
thogonal to the direction of the propagation n of the laser
pulse; for the z components a more complicated Eq. �40�
involving also the four vector n has to be satisfied.

By integrating the previous expression over the electron
momentum we obtain the photon doubly differential cross
section, which will be written as

d2��,NR,DA = r0
2�NR,DA

�2� ��2,n��d�2d�2. �45�

V. NUMERICAL RESULTS FOR EMITTED PHOTON
SPECTRAL AND ANGULAR DISTRIBUTIONS

All the results we present refer to the case of head-on
collisions and unpolarized particles. The quantity we have
calculated is the photon distribution ��2�, defined in Eq. �42�,
a function of the emitted frequency �2, and the emitted pho-
ton direction. It has the dimension of time/solid angle and it
will be given in atomic units. We pointed out previously that
we use a reference system with z axis along the laser propa-
gation direction and x axis along one of the axes of the
polarization ellipse of the laser. In the case of circular polar-
ization and head-on collision the z axis is an axis of symme-
try. All our graphs will present ��2� as a function of the
emitted photon frequency �2 with a fixed direction of the
emitted photon.

We consider only one laser frequency, �=0.043 a.u.
�1.17 eV. All the figures, except for Fig. 4, refer to an
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initial electron at rest. The laser pulse intensity is character-
ized by the parameter �= �e�A0 / �mc�, where A0 is the maxi-
mum amplitude of the vector potential in Eq. �29�; for the
case of a monochromatic pulse one has ��aL, with aL, de-
fined in Eq. �2�. At the chosen frequency, �=1 corresponds
to a maximum intensity of the pulse of 1.2�1018 W /cm2

and �	̃p=5 for an effective pulse duration of 2.8 fs.
Our presentation, which is more exploratory than system-

atic, is focused on the influence of the pulse duration and
shape on the photon emission. In Eq. �31� we have defined
the most differential cross section using the “effective dura-
tion” of the pulse 	̃p. The concrete choice for this parameter
will be discussed in what follows.

We start with results for a pulse with very short �less than
one cycle� turn-on and turn-off and a relatively long �at least
five optical cycles� flat region; in the following we shall
name such a pulse a “rectangular” one. In this case the ob-
vious choice for the effective pulse duration 	̃p is the length
	c of the constant part of the pulse. In Fig. 1 we present ��2�

for the case of an electron initially at rest; the laser pulse is
circularly polarized, �=5 �this corresponds to the maximum
intensity of 3�1019 W /cm2� and the emitted photon angle
is �=9° with respect to the initial direction of the laser pulse.
Results are given for three values of pulse duration: 	c=5T
�dotted line�, 10T �dashed line�, and 20T �full line�, where
T=2� /�, is the laser period. The range in which the spec-
trum is represented, �2� �0.5,5� eV, is split in four smaller
intervals, each of them represented in one of the four plots.
One can see that the spectrum consists of well-defined
maxima located at the same positions as in the monochro-
matic limit given by Eq. �1� and marked by gray lines; each
plot contains one of the first four maxima. We can attach an
integer label N starting from 1 to each peak; when the pulse
duration increases the maxima become higher and sharper as
expected. The amplitude of the successive peaks decreases
rapidly �note the different scales on the ordinate�, but their
shape, at constant 	c, is almost independent of N. We have
checked that for different values of 	c�5T the area under

each peak, which we shall denote in the following by �̃N
�2� is

practically the same for all the graphs centered on the same
frequency �N� , and it is equal to the value of the monochro-
matic cross section �N

�2�, defined in Eq. �D13�, calculated for
the same conditions. We have also checked the agreement
between �N

�2� and �̃N
�2� for the case of rectangular pulses with

	c�5T for all the intensities and scattering geometries pre-
sented in our figures. This check is in fact one of the tests of
the correctness of our results.

We remark the simplicity of the situation met in the case
of the rectangular pulse: the maxima are centered on the
position of the lines corresponding to the monochromatic
limit, even for very short pulses. The frequency distribution
around each peak is always symmetric with respect to the
maximum and the peaks have practically no structure.

In the following we consider two pulses for which the
constant region of the envelope f�
� of vector potential �29�
is absent, the pulse consisting only of two “wings,” a Gauss-
ian pulse with the envelope

fG�
� = exp�− 
2/	2� �46�

and the hyperbolic secant pulse

fsech�
� =
1

cosh�
/	�
. �47�

In both cases it is obvious that the envelope has negligible
values except for a finite duration, proportional to the param-
eter 	, in the expression of the envelope, and, as a conse-
quence, the factor 	̃p �the effective pulse duration� used in
Eq. �31� should be chosen as 	̃p=�	. The choice of the con-
stant factor � is a matter of convention. We explain our
choice in the following. We have found, by calculating ��2�

with a fixed arbitrary value of the proportionality constant �,
and different values of 	, that the area under each peak tends
to a constant value when 	, increases, as in the case of a
rectangular pulse. For a particular case �electron at rest, �
=0.01, circular polarization, �=0.1 and N=1� we have ad-
justed � by imposing the condition that the area under the
peak corresponding to the limit of very long pulse denoted
by �̃1

�2� takes the value �1
�2� in Eq. �D13�. Using this criterion

we have obtained for a Gaussian pulse �G=0.63 and for the
sech pulse �sech=0.98. We mention here that this choice of
the parameter � ensures in fact very good agreement between
�N

�2� and �̃N
�2� for an initial electron at rest, for any scattering

angle, and for a large number of vales of N, in the intensity
range ��1. The agreement is poor for higher intensities, but
we do not see a reason to expect otherwise.

With the choice made for 	̃p, we present results that illus-
trate the influence of the pulse shape on the spectral distri-
bution. In Fig. 2�a� is represented ��2� in the same conditions
as in Fig. 1, i.e., �=5, circular polarization and the initial
electron at rest. The pulse is rectangular in the upper plots,
Gaussian in the middle plots, and sech in the lower plots. In
the left part of the figure the emission angle of the photon is
�=9° and to the right �=18°; the pulse duration is �	c
=20� for the flat pulse, �	=30 for the Gaussian pulse, and
�	=20 for the sech pulse.
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FIG. 1. �Color online� ��2� at �=9° for a circularly polarized
rectangular pulse with �=5 and different durations: 	c=5T, dotted
�red� line; 	c=10T, dashed �green� line; and 	c=20T full �blue� line.
The initial electron is at rest.
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Figure 2�b� corresponds to identical conditions as Fig.
2�a�, but longer pulses: �	c=40� for the flat pulse, �	=75
for the Gaussian pulse, and �	=50 for the sech pulse. One
can see, as already remarked in Fig. 1, that in all cases the
peaks obtained for a rectangular pulse have no structure and
become sharper and higher when the pulse duration in-
creases. By contrast, the Gaussian and sech pulses lead to
wider peaks with structures which become richer when the
scattering angle or the pulse duration increases. A general
feature for all cases presented �different pulse shapes and
durations� is the much faster decrease in the successive
maxima in the spectrum for �=9° than for �=18°.

In the figures presented up to now the successive peaks
have a relatively fast decrease with the order N. In order to
cover a larger domain of emitted frequencies �2, we have
evaluated the angular distribution d� /d�2, in the monochro-
matic case and have found that it has a maximum at �=27°.
Then, for this angle, and for a Gaussian pulse with �	=30,
we have represented ��2� in Fig. 3�a�. The range of the fre-
quency we have chosen, �2�70 eV, contains the first 100
maxima. The inset presents in more detail the interval �2
�10 eV and, for comparison, we have represented also the
spectrum for a rectangular pulse with 	c=10T. As in the pre-
vious figures, for the rectangular pulse the maxima are very
sharp and regular and are located at the corresponding posi-
tions of the lines in the monochromatic case marked with
gray lines. For the Gaussian pulse, in the region �2
�10 eV the peaks have wide structures such that they over-
lap; the peaks of high order �N�50� have lower amplitude

and less structure, still their width is of the same order of
magnitude as the distance between them and their positions
do not coincide with the lines obtained in the monochromatic
case.

In Fig. 3�b� we present the same type of situation, now for
�=15 �an intensity nine times larger than in Fig. 3�a��; the
value of the scattering angle, �=9°, was found using the
same criterion as in the previous case. For this intensity the
decrease in the amplitude of the peaks is slower but their
variation is less monotonic than in the previous case. Also, in
the frequency range �2�10 eV, the spectrum for a Gauss-
ian pulse is even more irregular than in the case �=5.

A situation discussed in the literature is that of an initial
electron with very high energy; it is convenient in this case
to introduce the dimensionless parameter �=Ep1

/mc2. If �
�1 and � is of the order of unity, the angular distribution of
the emitted photon d� /d�2 is very sharp, being confined
within a cone with the angle of the order of 1 /�, around the
initial electron direction �8�, and the emitted photon has very
large energy. In Fig. 4�a� we present results for the case
studied before by Narozhnyi and Fofanov �20�: the initial
electron with �=105 �this value corresponds to the initial
energy Ep1

=51.1 GeV� propagates in the opposite direction
with a circularly polarized laser pulse with frequency �
=0.043 and �=1, the photon being emitted at an angle
��−e=1 /�, with respect to the initial electron direction, i.e.,
�=�−1 /�. We have considered again the two laser pulses,
sech �left plots� and Gaussian �right plots�; for the sech pulse
we have chosen �	=50 �upper plots�, 100 �middle plots�,
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FIG. 2. �a� ��2� for �=5 and initial electron at rest. Left: �=9°; right: �=18°. Rectangular pulse with �	c=20� �upper plots�, Gaussian
pulse with �	=30 �middle plots�, and sech pulse with �	=20 �lower plot�; �b� the same as �a� but �	c=40� �rectangular pulse, upper plots�,
�	=75 �Gaussian pulse, middle plots�, and �	=50 �sech pulse, lower plots�.

MADALINA BOCA AND VIORICA FLORESCU PHYSICAL REVIEW A 80, 053403 �2009�

053403-8



and 200 �lower plots�; for the Gaussian case the lengths are
�	=75, 150, and 300. The spectrum peaks have a very rich
structure consisting of oscillations which become faster
when the pulse length increases; the envelope of these oscil-
lations is almost independent of the pulse length but changes
with the pulse shape. This envelope of the peaks appears to
be a characteristic of the pulse shape. The structure of each
peak is more blueshifted than redshifted. Narozhny and Fo-
fanov have determined approximate expressions for the left-
hand and right-hand limits of each peak. Our numerical cal-
culation confirms their predictions. The mentioned authors
did not show the details of the structure of the peaks as they
made averages over a small range of frequencies, having in
mind a particular value for the resolution of a spectrometer.

In Fig. 4�b� the photon spectral distribution ��2� is repre-
sented in the same conditions as in Fig. 4�a� but for a smaller
angle ��−e=1 / �2��. Now the peaks are wider, but the char-
acteristic shape of the first peak, dependent on the pulse en-
velope, is unchanged. The amplitudes of the higher order
peaks compared with that of the first peak are smaller than in
the case �a�; this property is in agreement with the results we

have obtained in the monochromatic case �not reproduced
here�.

We conclude the discussion of Fig. 4 by emphasizing that
it illustrates clearly the behavior of the frequency spectrum
with the increase in the pulse duration: the structure of the
peaks extends to a finite energy region which practically
does not change with the increase in 	; only the number of
oscillations and the values of the maxima increase. At a
given intensity and emitted photon angle, the peak has a
characteristic envelope and the area under it has a well de-
fined limit.

Next, we shall refer to the case of very short pulses con-
taining about 15 or less oscillations of the carrier; we con-
sider a laser field linearly polarized and we allow the carrier-
envelope phase �CEP� �0 to change. The vector potential
describing this situation has the form

A�
� = exA0f�
�sin��
 + �0� . �48�

We can expect that, if the pulse is relatively long and many
oscillations of the electromagnetic field are contained in the
pulse, the value of the phase �0 does not influence the re-
sults; on the other hand, if we have a very short pulse, �0 can
significantly change the results. Several studies on the effect
of the CEP have been done in the case of the ionization of an
atom in the laser field �22�.

In order to illustrate the effect of the phase, we present in
Fig. 5 the values of ��2�, for a sech pulse, and two values of
CEP: �0=−� /2 �left plots� and �0=� /2 �right plots�. The
laser frequency is �=0.043 a.u. and the maximum intensity
is 3�1019 W /cm2 ��=5�; the range of the emitted fre-
quency chosen ��2�1.6 keV� corresponds in the mono-
chromatic limit to N�230. The initial electron is at rest and
the polar angles of the direction of observation of the emitted
photon are �=27° and 
=0. We have chosen four durations
of the pulse marked on the graphs: �	=4,6 ,8 ,20. Note that
due to the very fast oscillations one cannot distinguish be-
tween the successive peaks. For the shortest pulse the effect
of �0 is noticeable: for �0=−� /2, a first region ��2
�0.025 keV� consisting of very fast oscillations of rela-
tively high amplitude is followed by a region where ��2� is
very small. By contrast, in the case �0=� /2, the first region
is shorter and it is followed by two smooth and very broad
maxima. When the pulse duration increases, the effect of the
relative phase becomes progressively smaller: for �0=−� /2
the second maximum increases and moves toward lower fre-
quencies, while for �0=� /2 the smooth curves are replaced
by a series of very fast oscillations. In the plots correspond-
ing to �	=20 the thick line represents the values of ��2�

averaged over intervals of 2.72 eV magnitude. Although at
�	=20 the function ��2� presents a series of irregular oscil-
lations with different “shape” for the two values of �0, one
can see that the averaged values are practically identical in
the two cases.

Finally, we discuss the nonrelativistic limit of laser-
induced Compton scattering. The relevant equations are Eqs.
�44� and �45�. By comparing the structure of nonrelativistic
results �Eq. �44�� with the corresponding relativistic expres-
sions �Eq. �37�� one notices that the main difference is the
absence of the laser photon momentum from the conserva-
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FIG. 3. �Color online� �a� ��2� at �=27° for a Gaussian pulse
with �	=30, �=5. Inset: the Gaussian pulse �black line� and a
rectangular pulse with �	c=20� �red line�. �b� The same as �a� but
at �=9° and �=15. The initial electron is at rest.
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tion rules in the former, which is in fact a consequence of the
dipole approximation. Due also to the dipole approximation,
if the laser is circularly polarized, the spectral angular distri-
bution ��2� is always perfectly symmetric with respect to the
laser polarization plane. In order to give an idea of the rela-
tivistic and retardation effects we have chosen a circularly
polarized sech pulse with �	=10 and the case of an initial
electron at rest. The function ��2� is represented in Fig. 6 for
four intensities corresponding to �=2 �a�, 1 �b�, 0.5 �c�, and
0.1 �d�, and in each case for two values of the emitted photon
angle, �=36° ��1 and �=144° ��2. The nonrelativistic re-
sults are represented with full lines; since the two directions
are symmetric with respect to the laser polarization plane, the
corresponding nonrelativistic results are identical so only one
curve is present. The relativistic results for �=�1 are drawn
with dashed lines and those for �=�2 with dotted lines. One
can see that for the highest intensity there is a strong asym-
metry between the two directions, which is a measure of the
retardation effects. The values for the smaller angle �=�1 are
in all cases closer to the nonrelativistic limit. As the field
intensity decreases the relativistic results reduce to the non-
relativistic limit, as should be expected. For �0.5, practi-
cally only the first peak is visible; for �=0.1, we have
checked that the area under the peak agrees with the value
given by the well known Thomson formula, d�T /d�=r0

2

�1+cos2 �� /2.

VI. CONCLUSIONS

In our work we have explored within the semiclassical
approach the nonlinear Compton scattering for an electron
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FIG. 4. ��2� for head-on collision, �=105, �=1; �a� ��−e=1 /�; left: sech pulse with �	=50 �upper plot�, 100 �middle plot�, and 200
�lower plot�; right: Gaussian pulse with �	=75,150,300. �b� The same as �a� but ��−e=1 / �2��.

0

2

4

σ(2
)
(a

.u
.)

0

2

4

σ(2
)
(a

.u
.)

0

2

4

σ(2
)
(a

.u
.)

0 0.05 0.1 0.15
ω2 (keV)

0

2

4

σ(2
)
(a

.u
.)

0 0.05 0.1 0.15
ω2 (keV)

ωτ = 4

ωτ = 6

ωτ = 8

ωτ = 20

FIG. 5. �Color online� ��2� for laser field �48�, �=5, initial elec-
tron at rest, �=27°, 
=0, and �	=4,6 ,8 ,20. Left plots: �0

=−� /2; right plots: �0=� /2. The thick �red� line shows ��2� aver-
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interacting with a laser pulse indefinitely extended in the
plane orthogonal to its fixed direction of propagation. We
have derived an analytic expression for the transition ampli-
tude as the product of three � functions with a linear combi-
nation of three one-dimensional integrals that change with
the electromagnetic pulse. We then have established the ex-
pressions of various cross sections in the case of unpolarized
particles. We have evaluated the photon spectrum at fixed
photon scattering angle for circularly polarized rectangular,
sech, and Gaussian pulses with the frequency of 1.17 eV and
different durations. For long pulses, our calculation is in
agreement with the results presented by Narozhnyi and Fo-
fanov �20� based on their approximations. For short linearly
polarized sech pulses we have illustrated the effect of the
absolute phase of the carrier on the spectrum. Finally, we
have compared relativistic and nonrelativistic calculations
for four pulse intensities.

A more systematic investigation is possible of the
spectral-angular distribution ��2� explored here. Also pos-
sible is the extension of calculations to the photon spectrum
d�� /d�2, or the angular distribution d� /d�2, not studied
here, including comparisons with the monochromatic case
and with calculations based on classical theory. Our method
can be applied to other processes, such as pair creation in a
laser field, for which only the monochromatic case was stud-
ied.
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APPENDIX A: GENERAL EQUATIONS

The quantized electromagnetic field is described by the
operators Ac= ��c /c ,Ac� with the expression

Ac,��x� = �
n,�

	 �

2�0�nV
�an,� exp�− ikn · x�s�,�

+ an,�
† exp�ikn · x�s�,�

� �, x = �ct,r�, � = 0, . . . ,3.

�A1�

Here s� is the polarization four vector, orthogonal to kn, and
normalized to −1, i.e., kn ·s�=0, s� ·s�=−1. The volume V
will disappear from the quantities with physical meaning.

The summation over the electron spins for a 4�4 matrix
� is expressed by the well-known formula �13�

�
i1,i2

���̄i2
�p2�����i1

�p1���2 =
1

4�p1�0�p2�0Tr��p̂2 + mc�

���p̂1 + mc��̄� , �A2�

where �̄=�0�+�0 and the spinors � j�p� are the electronic
solutions of Eq. �B5�.

The summation over photon polarization in the case of
polarization four vectors s2, orthogonal to the photon mo-
mentum k2, and on another four vector k1, with k1

2=0, is
performed by the formula �11�

�
s2

�A · s2��B · s2� = − A · B +
�A · k1��B · k2� + �A · k2��B · k1�

k1 · k2
.

�A3�

APPENDIX B: VOLKOV SOLUTIONS FOR
A LASER PULSE

The Dirac equation for the electron in an external electro-
magnetic field described by the vector potential A,

i�
���x�

�t
= �c� · �P − eA�x�� + mc2����x� , �B1�

has exact solutions in the case of an arbitrary electromag-
netic wave characterized by a fixed direction of propagation
n. In this case the potential depends on only one variable

A�x� = A�
�, 
 = t − n · r/c �B2�

and it is orthogonal to n. Using the four vectors

A � „0,A�
�…, n � �1,n� �B3�

the four solutions associated with the same four vector p
= �E /c ,p�, with E=	m2c4+c2p2, are

� j�p;x� =
1

	V
exp�−

i

�
�� j�p · x� + Fj�p;
���

�� j�p;
�� j�p�, j = 1, . . . ,4 �B4�

where � j is a sign factor equal to 1 for j� �1,2�, and to −1
for j� �3,4�, and � j�p� are the solutions of the equation

�p̂ − � jmc�� j�p� = 0. �B5�

The matrix � j�p ;
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FIG. 6. �Color online� ��2� for a sech pulse with �	=10, and
�=2 �a�, �=1 �b�, �=0.5 �c� and �=0.1 �d�; full �black� line:
nonrelativistic results, �=36°, dashed �blue� line: relativistic results,
�=36°, dotted �red� line: relativistic results, �=144°.
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� j�p;
� = I −
� j

2�n · p�
eÂn̂ , �B6�

and the function in the exponent is

Fj�p;
� =
c

2�n · p�
0




d �� je
2A2� � − 2eA� � · p�� .

�B7�

In the case of a pulse, where the vector potential is different
from 0 for 
� �
in ,
f�, one has 
0=
in. In the monochro-
matic case the indefinite integral can be used, as the choice
of an arbitrary value for 
0 leads only to the modification of
a phase factor in the Volkov solution.

In the nonrelativistic limit and in the dipole approxima-
tion, when the vector potential becomes a function of time
only and p�mc, the Volkov solutions become

�NR,DA�p;r,t� =
1

	V
exp� i

�
p · �r − ��t���

�exp�−
i

�
� p2

2m
t + W�t��� �B8�

with

��t� = −
e

m


t0

t

dt�A�t��, W�t� = 
t0

t

dt�
e2A2�t��

2m
. �B9�

APPENDIX C: THE INTEGRAL B(2 ,1), IN THE CASE
OF A LASER PULSE

We write integral �25� as the limit of a convergent integral

B�2,1� = lim
�→0

B��2,1� , �C1�

where

B��2,1� = 
−�

�

b21�
�d
 ,

b21�
� = exp�−
i

�
�cP̃
 + I21�
� − ��
��� . �C2�

We have used the notations

P̃ =
1

2
ñ · �p1 − p2 − �k2�, I21�
� = F�p1,
� − F�p2,
� ,

�C3�

with F�F1, where F1 is given by Eq. �B7� for � j =1. After
an integration by parts we obtain

B��2,1� = −
1

cP̃ − i�


0

�

d

dI21�
�

d

exp�−

i

�
��cP̃ − i��


+ I21�
��� −
1

cP̃ + i�


−�

0

d

dI21�
�

d

exp�−

i

�
��cP̃

+ i��
 + I21�
��� − i� exp�−
i

�
I21�0�� 2i�

c2P̃2 + �2
.

�C4�

As

dI21�
�
d


=
dF�p1,
�

d

−

dF�p2,
�
d


�C5�

and using expression �B7� of F�p ,
�, one can see that the
first two integrals in Eq. �C4� are convergent in the limit �
→0, so one can take �=0, in the first two terms of Eq. �C4�;
in the last term one recognizes a representation of the Dirac

function ��P̃�. Even more, due to the presence of the factor
��p1,�−p2,�−�k2,�� �(n · �p1− p2−�k2�) in Eq. �27�, the

case P̃=0 never occurs, as the simultaneous equations
n · �p1− p2−�k2�=0, ñ · �p1− p2−�k2�=0 and p1�=p2�

+�k2� are not compatible. Based on the remarks made in
this section, we have adopted replacement �30�.

APPENDIX D: THE MONOCHROMATIC LIMIT

In the monochromatic case the integrands in B�2,1� and
A�2,1� are periodic functions of 
. The integral F in Eq.
�B7� can be done analytically, and we get, for � j =1, and after
some elementary transformations,

F�p2,
� − F�p1,
� = −
ecA0

�
��1 sin �
 + �2 cos �
�

+ 2�0UP�
 +
1

2�
cos � sin�2�
�� ,

�D1�

where we have defined the dimensionless parameters

�x = 
nx · p1

n · p1
−

nx · p2

n · p2
�cos �/2,

�y = 
ny · p1

n · p1
−

ny · p2

n · p2
�sin �/2,

�0 =
mc

2

 1

n · p1
−

1

n · p2
� . �D2�

Using the Anger identity

e−iz sin � = �
N=−�

�

JN�z�e−iN�, �D3�

where JN are Bessel functions of the first kind, the integrand
b21 of B can be written as the series
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b21�
� = exp�−
i

�
�


2
ñ · �p1 − p2 − �k2�

+ 2�0UP
���
N

B�N� exp�iN�
� , �D4�

which leads to the expression of B as a series of � functions,

B =
4��

c
�

N=−�

�

B�N��„ñ · �q1 + N�k1 − q2 − �k2�… . �D5�

In the previous equation B�N� are some generalized Bessel
functions �23�; the initial and final dressed electron four mo-
menta have appeared, with the expressions

qi = pi +
mUp

n · pi
, i = 1,2. �D6�

The other integral A can be calculated using the same
method and has a similar structure; it follows that the tran-
sition amplitude will have the multiphotonic structure

M1→2
monochr = �

N=1

�

M�N���4��p1 + N�k1 − q2 − �k2� . �D7�

Note that in the previous equation only the terms with N
�1 have been included in the sum as the four-dimensional �
function vanishes for N�0. The most differential cross sec-
tion with unpolarized particles becomes

d��4� = r0
2�

N

2
mc

n · p1

�mc�2

e2A0
2

c2�

��2�p1�0�p2�0

�P�N���4��p1 + N�k1 − q2 − �k2�dk2dp2 �D8�

with

P�N� = − 2�mc�2�B�N��2 + �mc�2
2 +
�k2 · n

�n · p1��n · p2�
�

�
�Ax
�N��2 + �Ay

�N��2 −
e2A0

2

�mc�2sin2 �/2�B�N��2�
− cos � Re�B�N�A2x

�N��� , �D9�

where

Ax
�N� =

1

2
�B�N−1� + B�N+1�� , �D10�

Ay
�N� =

1

2i
�B�N−1� − B�N+1�� , �D11�

A2x
�N� =

1

4
�B�N−2� + 2B�N� + B�N+2�� . �D12�

The previous expression is equivalent to that given by Ly-
ulka �23� in his Eq. �13�. As in the case of a finite pulse, by
integrating the fully differential cross section over the elec-
tron momentum one obtains the doubly differential cross sec-
tion of the process in which only the photon energy and
direction are detected,

d�2��� = r0
2 �

N�1
�N

�2����2 − �N� �d�2d�k2
. �D13�

This expression still contains � functions, so, unlike in the
case of a laser pulse, for a fixed observation direction the
emitted spectrum is discrete, the positions �N� of the lines
being given by Eq. �1�. To each frequency one can attach the
value of the function �N

�2� in Eq. �D13�.
In the nonrelativistic limit and in dipole approximation

the structure of the most differential cross section is

d�̃NR,DA
�4� = r0

2 �
N�1

�N;NR,DA
�4� p��p1 − p2 − �k2�

��
 p1
2

2m
+ N�� −

p2
2

2m
− ��2�dk2dp2.

�D14�

It implies the conservation of nonrelativistic momenta and
energy. The laser photon momentum does not appear.
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