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We develop a complete analytical description of the time evolution of squeezed states of a charged particle
under the Fock-Darwin �FD� Hamiltonian and a time-dependent electric field. This result generalizes a relation
obtained by Infeld and Plebański for states of the one-dimensional harmonic oscillator. We relate the evolution
of a state-vector subjected to squeezing to that of state which is not subjected to squeezing and for which the
time evolution under the simple harmonic oscillator dynamics is known �e.g., an eigenstate of the Hamil-
tonian�. A corresponding relation is also established for the Wigner functions of the states, in view of their
utility in the analysis of cold-ion experiments. In Appendix A, we compute the response functions of the FD
Hamiltonian to an external electric field, using the same techniques as in the main text.
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I. INTRODUCTION

The study of the time evolution of a nonrelativistic
charged particle in homogeneous magnetic and electric fields
has a long history in physics. In a quantum context, the treat-
ment of the problem goes back to Darwin �1�, who consid-
ered the evolution of a Gaussian wave packet in a magnetic
field, and Fock �2� who obtained the eigenenergies and
eigenstates of a charged particle in an isotropic harmonic
potential, subjected to a magnetic field normal to the plane of
motion.

If one takes a particle of charge −e and mass m, moving in
the xy plane in an harmonic potential of frequency �0 and
subjected to a magnetic field B=Bez, the Hamiltonian de-
scribing the system is given, in the symmetric gauge where
A= 1

2B�r by

Ĥ0 =
1

2m
��p̂x −

eB

2
ŷ�2

+ �p̂y +
eB

2
x̂�2� +

1

2
m�0

2�x̂2 + ŷ2� ,

�1�

where the operators x̂ , p̂x , ŷ , p̂y obey the canonical commuta-
tion relations.

This simple problem has applications in the context of the
quantum Hall effect �3�, where disorder and the Coulomb
interaction also play a crucial role. Another field for which
the study of this Hamiltonian has proved fruitful is that of
quantum dots, where the simple Hamiltonian given by Eq.
�1� seems to give a good account of the I-Vg curves obtained
when a gate voltage is applied to the quantum dot �4� with
corrections due to the asymmetry of the confining potential
and to the Coulomb interactions also playing a role. For

some types of quantum dots, such as InAs/GaAs quantum
dots, the agreement between the theoretical and experimental
results seems to hold for magnetic fields up to 15 T �5�.
Furthermore, the simplicity of Hamiltonian �1� allows for the
exact treatment of the problem of the orbital magnetism of
noninteracting fermions in a 2d harmonic potential �6,7�.

The study of the evolution of Gaussian wave packets also
goes back to the first days of quantum mechanics. This study
was first undertaken by Schrödinger �8�, Kennard �9�, and
also by Darwin �1� in the context of the harmonic oscillator
of a free particle and of a particle in constant electric and
magnetic fields. This problem continues to attract attention to
the present day in many contexts, see the review by Dodonov
�10�.

Schrödinger considered the time evolution of a minimal
uncertainty state, i.e., a coherent state of the harmonic oscil-
lator in the terminology of Glauber �11�. These states have a
wide range of applications in quantum optics �see, e.g., �12��,
where they act as the quasiclassical states of the electromag-
netic field and in quantum field theory, where they are the
basis of the phase-space path integral �13�. Such states and
their derivatives have become important in quantum infor-
mation processing in recent years in the context of the ma-
nipulation of cold atoms in traps. It has become possible to
reconstruct the Wigner function of a coherent state of the
center of mass of an harmonically bound ion �14�.

Kennard has considered the evolution of a more general
wave packet of the harmonic oscillator, what is now known
as a squeezed state. Important early contributions are those
of Husimi �15� and Infeld and Plebański �16,17�. Infeld and
Plebański introduced the so-called squeezing operator and
established a relation between the evolution of initial states
for which the time evolution is known �“unsqueezed” states�
and states which are derived from such initial states by the
application of the squeezing operator �squeezed states�. The
generalization of this relation to the Fock-Darwin �FD�*jaime.santos@fisica.uminho.pt
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Hamiltonian in an homogeneous time-dependent electric
field is the main result of the present paper. Stoler �18,19�
proved that squeezed-coherent states are unitarily equivalent
to coherent states, thus being minimal uncertainty states, but
that their minimal character is not preserved by time evolu-
tion although the uncertainty periodically assumes the mini-
mum value compatible with Heisenberg’s uncertainty rela-
tion. He also showed that the squeezing operator as currently
written in terms of quadrature operators is exactly of the
form given by Infeld and Plebański. Squeezed states play a
proeminent role in quantum optics, see again �12�. Recently,
they have also become important in quantum information
processing both in a quantum optics context and also through
the manipulation of cold atoms �20–29�. Reference �30�
gives an up-to-date report of the state of quantum informa-
tion processing using cold atoms and photons.

Besides the paper of Darwin already referred, the time
evolution of states of a nonrelativistic particle in homoge-
neous electric and magnetic fields was also considered by
Malkin, Man’ko, Trifonov, and Dodonov �31–35�, who con-
sidered the dynamics of a particle in an homogeneous elec-
tromagnetic field in terms of coherent states, obtaining an
explicit representation of the Green’s function, and studied
the invariants of the system; by Lewis and Riesenfeld �36�,
who also considered the invariants of such a system; and by
Kim and Weiner �37�, who considered the evolution of
Gaussian wave packets in a magnetic field, subjected to an
isotropic harmonic potential �i.e., the Fock-Darwin Hamil-
tonian� but also to saddle-point potentials, which are relevant
for tunneling problems.

The structure of this paper is as follows: in the next sec-
tion, we review the notion of squeezing operator and gener-
alize the relation of Infeld and Plebański to states evolving
under the Fock-Darwin Hamiltonian. In Sec. III, with a view
to applications in the manipulation of cold atoms, we use the
relation obtained to establish a relation between the Wigner
function of different states and apply it to the special case of
squeezed-coherent states. In Sec. IV, we present our conclu-
sions. In Appendix A, we present a derivation of the finite
frequency permittivity and conductivity of the FD Hamil-
tonian that uses the same operator methods that are used in
the main text but which lies somewhat outside of the scope
of the main text. Finally, in Appendix B, we derive the origi-
nal Infeld-Plebański relation through elementary means.

II. EVOLUTION OF SQUEEZED STATES
UNDER THE FD HAMILTONIAN

We consider the time evolution of the state 	�̄t
 that obeys

the time-dependent Schrödinger equation i��t	�̄t
= Ĥ�t�	�̄t
,
where Ĥ�t�= Ĥ0+ Ĥ1�t�, with Ĥ0 being given by Eq. �1� and

where the interaction Hamiltonian Ĥ1�t� of the charge with
the external electric field is given, in the Schrödinger picture,

by Ĥ1�t�=e�Ex�t�x̂+Ey�t�ŷ�.
If one now expands the squares and groups the different

terms of Eq. �1�, one obtains

Ĥ0 =
1

2m
�p̂x

2 + p̂y
2� +

1

2
m�R

2�x̂2 + ŷ2� +
�L

2
L̂z, �2�

where �L= eB
m is the gyration frequency and �R

2 =�0
2+�L

2 /4,

with L̂z= x̂p̂y − ŷp̂x being the angular momentum component
along the z axis. One should note that one can write

Ĥ0= ĥ0+
�L

2 L̂z, where ĥ0 is the Hamiltonian of the isotropic
harmonic oscillator with frequency �R and also that

�ĥ0 , L̂z�=0.

Given the state vector 	�̄t
, one can define the correspond-

ing state vector 	�t
=eiĤ0t/�	�̄t
, in the interaction representa-
tion, such that the two vectors coincide at t=0. This state

vector evolves according to the Hamiltonian Ĥ1
int�t�

=eiĤ0t/�Ĥ1�t�e−iĤ0t/�, which given that ĥ0 and L̂z in Ĥ0 com-
mute, one can also write as

Ĥ1
int�t� = eiĥ0t/�ei�LtL̂z/2�Ĥ1�t�e−i�LtL̂z/2�e−iĥ0t/�. �3�

If one now applies the time-dependent rotation, encoded by

L̂z to Ĥ1�t�, followed by the dynamics of the isotropic har-

monic oscillator, encoded in ĥ0, one obtains for Ĥ1
int�t�:

Ĥ1
int�t� = e�Ex��t��x̂ cos��Rt� + p̂x sin��Rt�� + Ey��t��ŷ cos��Rt�

+ p̂y sin��Rt��� , �4�

where

Ex��t� = Ex�t�cos��L

2
t� + Ey�t�sin��L

2
t� , �5�

Ey��t� = − Ex�t�sin��L

2
t� + Ey�t�cos��L

2
t� , �6�

are the components of the electric field in the rotated frame.
The wave equation for 	�t
 can be formally integrated in

terms of time-ordered products of the integral of Ĥ1
int�t�, i.e.,

	�t
=T exp�− i
�0

t duĤ1
int�u��	�̄0
. Since the commutator of the

operators Ĥ1
int�u� at different times is a c number, one can

write the time-ordered operator above as

T exp�−
i

�
�

0

t

duĤ1
int�u��

= exp�−
i

�
�

0

t

duĤ1
int�u��

� exp�−
1

2�2�
0

t

du�
0

u

dv�Ĥ1
int�u�,Ĥ1

int�v��� , �7�

where the second term on the right-hand side is a phase
factor.

Collecting the several terms, one obtains for the evolution

of 	�̄t


SANTOS, PERES, AND DOS SANTOS PHYSICAL REVIEW A 80, 053401 �2009�

053401-2



	�̄t
 = exp� ie2

2�m�R
�

0

t

du�
0

u

dv sin��R�u − v��

��Ex��u�Ex��v� + Ey��u�Ey��v���
�exp�−

i�Lt

2�
L̂z�exp�−

i

�
ĥ0t�

�exp�−
i

�
�

0

t

duĤ1
int�u��	�̄0
 . �8�

One now assumes, following Infeld and Plebański �17�, that

the initial state 	�̄0
 is related to a certain initial state 	�0
, for
which the time evolution under the isotropic harmonic oscil-

lator Hamiltonian ĥ0 is known, by

	�̄0
 = exp� i

�
�Px

0x̂ + Py
0ŷ − X0p̂x − Y0p̂y��

�exp� i

2�
r�p̂ · r̂ + r̂ · p̂��	�0
 , �9�

where the first operator is a translation operator in phase
space, with X0 ,Y0 , Px

0 , Py
0 being arbitrary real constants, and

the second operator is the squeezing operator, with r being a
real constant that indicates the degree of squeezing.

Substituting Eq. �9� into Eq. �8� one can combine the

operators e−�i/��0
t duĤ1

int�u� and e�i/���Px
0x̂+Py

0ŷ−X0p̂x−Y0p̂y�, since the
commutator of their exponents is a c number. This operation
merely generates a phase factor, coming from the commuta-
tor. One can then commute the resulting operator to the left-

hand side, through e−i�LtL̂z/2�eiĥ0t/�, using the time evolution

of x̂ , p̂x , ŷ , p̂y under ĥ0 and under the time-dependent rotation
around the z axis. Combining the resulting phase factors and
operators, we obtain

	�̄t
 = exp�−
ie

2�
�

0

t

du�Ex�u�xc�u� + Ey�u�yc�u���
�exp� i

�
�px

c�t�x̂ + py
c�t�ŷ − xc�t�p̂x − yc�t�p̂y��

� exp�−
i�Lt

2�
L̂z�exp�−

i

�
ĥ0t�

�exp� i

2�
r�p̂ · r̂ + r̂ · p̂��	�0
 . �10�

where xc�t�, yc�t�, px
c�t�, and py

c�t� are the classical solutions
of the equations of motion for the Fock-Darwin problem
with initial positions X0 and Y0 and initial momenta Px

0 and
Py

0. These solutions are given by

xc�t� = �X0 cos��L

2
t� − Y0 sin��L

2
t��cos��Rt�

+
1

m�R
�Px

0 cos��L

2
t� − Py

0 sin��L

2
t��sin��Rt�

−
e

2m�R
�

0

t

du�Ex�u��sin��+�t − u�� + sin��−�t − u���

+ Ey�u��cos��+�t − u�� − cos��−�t − u���� , �11�

yc�t� = �X0 sin��L

2
t� + Y0 cos��L

2
t��cos��Rt�

+
1

m�R
�Px

0 sin��L

2
t� + Py

0 cos��L

2
t��sin��Rt�

−
e

2m�R
�

0

t

du�− Ex�u��cos��+�t − u�� − cos��−�t

− u��� + Ey�u��sin��+�t − u�� + sin��−�t − u���� ,

�12�

and

px
c�t� = �Px

0 cos��L

2
t� − Py

0 sin��L

2
t��cos��Rt�

− m�R�X0 cos��L

2
t� − Y0 sin��L

2
t��sin��Rt�

−
e

2
�

0

t

du�Ex�u��cos��+�t − u�� + cos��−�t − u���

− Ey�u��sin��+�t − u�� − sin��−�t − u���� , �13�

py
c�t� = �Px

0 sin��L

2
t� + Py

0 cos��L

2
t��cos��Rt�

− m�R�X0 sin��L

2
t� + Y0 cos��L

2
t��sin��Rt�

−
e

2
�

0

t

du�Ex�u��sin��+�t − u�� − sin��−�t − u���

+ Ey�u��cos��+�t − u�� + cos��−�t − u���� . �14�

One can read the classical dielectric permittivity of the
system from Eqs. �11� and �12�, and one obtains the same
results as in Appendix A, which shows that the quantum and
classical results are identical, as one would expect for a lin-
ear system. The classical velocities vx

c�t� ,vy
c�t� can be easily

computed by derivation of Eqs. �11� and �12� with respect to
time or, using the relations vx

c�t�= 1
m �px

c�t�− eB
2 yc�t�� and

vy
c�t�= 1

m �py
c�t�+ eB

2 xc�t��, from Eqs. �11�–�14�. One can then
read the classical conductivity of the system from the result-
ing expression, and this result again coincides with that of
Appendix A, i.e., the classical and quantum results are iden-
tical. Finally, one can also show, after derivation of the ve-
locity expressions with respect to time, that the solution
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given by Eqs. �11� and �12� obeys the classical equations of
motion in two dimensions r̈=− e

m �E�t�+ ṙ�B�−�0
2r, with B

=Bez.
The left most operator in Eq. �10� is again a translation

operator in phase space. If one considers the wave function

in the coordinate representation, �̄�x ,y , t�= �x ,y 	 �̄t
, and one
applies this translation operator to �x ,y	, followed by the

rotation operator e−i�LtL̂z/2�, one obtains the following result:

�̄�x,y,t� = exp�−
i

2��px
c�t�xc�t� + py

cyc�t�

+ e�
0

t

du�Ex�u�xc�u� + Ey�u�yc�u����
� exp� i

�
�px

c�t�x + py
c�t�y��

��Rt
−1 · �r − rc�t��	e−iĥ0t/�eir�p̂·r̂+r̂·p̂�/2�	�0
 ,

�15�

with rc�t� being the classical solutions of the equations of
motion �11� and �12� and Rt being the rotation matrix in two
dimensions by an angle of �Lt /2.

For the wave function in the momentum representation

�̄�px , py , t�= �px , py 	 �̄t
, one obtains, applying the transla-

tion operator to �px , py	, followed again by the rotation op-
erator,

�̄�px,py,t� = exp� i

2��px
c�t�xc�t� + py

cyc�t�

− e�
0

t

du�Ex�u�xc�u� + Ey�u�yc�u����
� exp�−

i

�
�pxxc�t� + pyyc�t���

��Rt
−1 · �p − pc�t��	e−iĥ0t/�eir�p̂·r̂+r̂·p̂�/2�	�0
 ,

�16�

with pc�t� being the classical solutions of the equations of
motion �13� and �14�.

One can now apply the relation of Infeld and Plebański

�17�, relating the evolution of �x ,y	e−iĥ0t/�eir�p̂·r̂+r̂·p̂�/2�	�0

to that of �x ,y	e−iĥ0t/�	�0
 and the evolution of

�px , py	e−iĥ0t/�eir�p̂·r̂+r̂·p̂�/2�	�0
 to that of �px , py	e−iĥ0t/�	�0
, to
Eqs. �15� and �16�, respectively. This relation is derived by
elementary means in Appendix B.

One obtains for Eq. �15� the result

�̄�x,y,t� = �r
−1�t�exp�−

i

2��px
c�t�xc�t� + py

cyc�t� + e�
0

t

du�Ex�u�xc�u� + Ey�u�yc�u����
� exp� i

�
�px

c�t�x + py
c�t�y��exp� im�R sinh�2r�sin�2�Rt�

2��r
2�t�

��x − xc�t��2 + �y − yc�t��2���„Rt
−1 · �r − rc�t��/�r�t�,�r… ,

�17�

where �r�t�=�e−2r cos2��Rt�+e2r sin2��Rt� and �r= 1
�R

arctan�e2r tan��Rt��.
For Eq. �16�, one obtains

�̄�px,py,t� = �−r
−1�t�exp� i

2��px
c�t�xc�t� + py

cyc�t� − e�
0

t

du�Ex�u�xc�u� + Ey�u�yc�u����exp�−
i

�
�pxxc�t� + pyyc�t���

�exp�−
i sinh�2r�sin�2�Rt�

2�m�R�−r
2 �t�

��px − px
c�t��2 + �py − py

c�t��2���„Rt
−1 · �p − pc�t��/�−r�t�,�−r… , �18�

where �−r�t�=�e2r cos2��Rt�+e−2r sin2��Rt� and �−r

= 1
�R

arctan�e−2r tan��Rt��. Expressions �17� and �18�
constitute the main result of this paper and generalize
those of Infeld and Plebański as presented in �17� to
states evolving under the Fock-Darwin Hamiltonian sub-
jected to a time-dependent electric field in the plane of the
system.

III. WIGNER FUNCTION FOR A SQUEEZED STATE

One can also establish a relation between the Wigner
function of a state subjected to squeezing in the presence of
electric and magnetic fields and the Wigner function of an
“unsqueezed” state evolving under the isotropic harmonic
oscillator dynamics.
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The Wigner function is defined as �38�

D�r,p,t� =
1

�2���2� d2ve−ip·v/��̄��r − v/2,t��̄�r+v/2,t� . �19�

The Wigner function gives, after integration with respect to
the momentum p or to the coordinate r, the coordinate or
momentum distribution function of the system and can be
considered a quantum generalization of the Boltzmann dis-
tribution function. However, the Wigner function is not a
bonafide distribution since it can assume negative values.

Substituting the result of Eq. �17� into Eq. �19�, one ob-
tains, after a substitution of variable on v

D�r,p,t� = D0„Rt
−1 · �r − rc�t��/�r�t�,Rt

−1 · u�r,p,t�,�r… , �20�

where u�r ,p , t�=�r�t��p−pc�t��−m�R sinh�2r�sin�2�Rt��r
−rc�t�� /�r�t� and where D0�r ,p , t� is the Wigner function of
the unsqueezed initial state �0�x ,y� evolving under the iso-
tropic harmonic oscillator dynamics in the absence of mag-
netic or electric fields.

If the unsqueezed initial state 	�0
 in Eq. �9� is the
vacuum of the isotropic harmonic oscillator, then the state
	�̄0
 is a squeezed-coherent state, evolving under the Fock-
Darwin Hamiltonian. In the context of cold ion experiments,
one can produce squeezed states of the ion center of mass,
either by quenching of the trap frequency or parametric am-
plification �25�, as well as multichromatic excitation of the
ion �24,26,29�.

In this case, D0�r ,p , t�= �1 /�2�2�e−m�Rr2/�−p2/�m�R, and we
obtain for the Wigner function of the squeezed-coherent state
the result

D�r,p,t� =
1

�2�2e−�m�R�−r
2 �t�/���r − rc�t��2−��r

2�t�/�m�R��p − pc�t��2+�2/��sinh�2r�sin�2�Rt��p−pc�t��·�r−rc�t��, �21�

which represents an asymmetric Gaussian whose shape is
preserved by the dynamics of the system, rotating in phase
space with its center determined by the solutions of the clas-
sical equations of motion �Eqs. �11�–�14��. Note that for r
=0, i.e., for a coherent state, the Wigner function decouples
into a product of functions that depend only on the coordi-
nates or the momenta. Also, note that result �21� is strictly
positive, but this is not the case in general, e.g., if we had
taken 	�0
 to be an excited state of the harmonic oscillator.

A group of still pictures of the x , px section of the Wigner
function �21� is shown in Figs. 1–4 for a system subjected to
a right-handed circularly polarized wave, incident along the

zz axis and aligned with the xx axis at t=0. The intensity of
the field is E0=100 V m−1, with frequency equal to 	
=1.42�109 Hz. The harmonic frequency of the trap is �0
=7.04�107 Hz and the mass of the particle m=1.50
�10−26 kg is that of a 9Be+ ion, with the applied magnetic
field being B=6.60 T, which gives a gyration frequency
�L=7.06�107 Hz and �R=7.88�107 Hz �39�. Finally, the
squeezing parameter r=0.35.

The integration of expression �21� with respect to p
or r yields the coordinate or momentum distribution.
The wave packets in coordinate or position space
are centered around the classical solutions of the equa-

�5

0

5
x

�5

0

5

px

0.0
0.1
0.2
0.3

D�x,px ,t�

FIG. 1. �Color online� x and px section of Wigner function of
squeezed-coherent state as given by Eq. �21� at t=0, evolving under
the Fock-Darwin Hamiltonian. The length of the x, px axis is, re-
spectively, 10−8 m and 10−26 kg ms−1 and the Wigner function was
multiplied by �2.

�5

0

5
x

�5

0

5

px

0.0
0.1
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FIG. 2. �Color online� Same as 1 at time t=� / �2�R�.
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FIG. 3. �Color online� Same as 1 at time t=3� / �4�R�.
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FIG. 4. �Color online� Same as 1 at time t=5� / �4�R�.
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tions of motion, the uncertainty in, e.g., x, px being given
by �
x2
t= �� /2m�R��cos2��Rt�e−2r+sin2��Rt�e2r�, �
px

2
t
= ��m�R /2��cos2��Rt�e2r+sin2��Rt�e−2r�, i.e., the uncertain-
ties oscillate with period 2� /�R. Their product is given by

�
x2
t�
px
2
t =

�2

4
�1 + sinh2�2r�sin2�2�Rt�� �

�2

4
, �22�

in agreement with Heisenberg’s uncertainty relation. Note
that the uncertainty in x and px oscillate in opposition, i.e.,
one increases while the other is decreasing. Also note that,
unlike a coherent state, the squeezed-coherent state is not a
minimum uncertainty state for these two canonical variables
except when t=n� /2�R �19�.

IV. CONCLUSIONS

In this paper, we have considered the time evolution of
general squeezed states evolving under the Fock-Darwin
Hamiltonian in an homogeneous time-dependent electric
field. We have generalized a relation of Infeld and Plebański
between the time evolution of states of the harmonic oscilla-
tor subjected to squeezing and states not subjected to squeez-
ing, for which the time evolution is known, to states evolving
under the FD Hamiltonian in two dimensions. A correspond-
ing relation was also established for the Wigner functions of
the states. Finally, in Appendix A, we computed the response
functions of the FD Hamiltonian to an external electric field
using the same techniques as in the main text.
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APPENDIX A: CALCULATION OF THE DIELECTRIC
PERMITTIVITY AND OPTICAL CONDUCTIVITY

We will first indicate how to diagonalize Hamiltonian �1�
in the operator representation. The diagonalization of this
Hamiltonian and the determination of its eigenfunctions was
first obtained by Fock �2�.

Introducing the annihilation and creation operators
âx , ây , âx

† , ây
† through x̂= �� /2m�R�1/2�âx+ âx

†�, p̂x
= i��m�R /2�1/2�âx− âx

†�, ŷ= �� /2m�R�1/2�ây + ây
†�, and p̂y

= i��m�R /2�1/2�ây − ây
†�, one can write such Hamiltonian in

the form

Ĥ0 = ��R�âx
†âx + ây

†ây + 1� +
�L

2
L̂z, �A1�

with L̂z= i��ây
†âx− âx

†ây� being the only operator that is non-
diagonal in the annihilation and creation operators in the
above expression. Introducing the “circular polarization” op-
erators â+ , â− , â+

† , â−
† through âx= 1

�2
�â++ â−�, ây = i

�2
�â+− â−�,

âx
†= 1

�2
�â+

† + â−
†�, and ây

†=− i
�2

�â+
† − â−

†� �40�, one has L̂z

=��â+
†â+− â−

†â−� and one can write Ĥ0 as

Ĥ0 = ��+â+
†â+ + ��−â−

†â− + ��R, �A2�

where �+=�R+�L /2 and �−=�R−�L /2. The energy levels
are now given in terms of the occupation numbers of the
modes +,− by E=��+n++��−n−+��R.

We will now compute the dielectric permittivity and op-
tical conductivity of the system in the quantum regime by

considering the Hamiltonian Ĥ�t� of the system interacting
with an homogeneous time-dependent electric field, as given
in Sec. II. Expressing the operators x̂ and ŷ in terms of
â+ , â− , â+

† , â−
†, we have the following expression for the inter-

action Hamiltonian Ĥ1�t�:

Ĥ1�t� = e��/2m�R�1/2�E+�t�â+ + E−�t�â+
† + E−�t�â− + E+�t�â−

†� ,

�A3�

where E+�t�= 1
�2

�Ex�t�+ iEy�t�� and E−�t�= 1
�2

�Ex�t�− iEy�t��.
If 	�t
 is a solution of the time-dependent Schrödinger

equation, one defines, as above, the state vector 	�t

=eiĤ0t/�	�t
, in the interaction representation, such that the
two vectors coincide at t=0, when the field is turned on.
Given that in the interaction representation the annihilation

and creation operators contained in Ĥ1�t� evolve in time

through multiplication by a phase factor e�i��t, Ĥ1
int�t� is

given by

Ĥ1
int�t� = e��/2m�R�1/2�E+�t�e−i�+tâ+ + E−�t�ei�+tâ+

†

+ E−�t�e−i�−tâ− + E+�t�ei�−tâ−
†� . �A4�

One can now write, as in Sec. II, the formal solution 	�t

=T exp�− i

�0
t duĤ1

int�u��	�0
. The time-ordered operator
above is then written using identity �7�, the second term in
this product being a phase factor that can be discarded when
computing expectation values.

We can write for 	�t
 the result

	�t
 = e−iĤ0t/�e�z+�t�â+
†−z+

��t�â+�+�z−�t�â−
†−z−

��t�â−�	�0
 , �A5�

with z��t� being given by

z+�t� = −
ie

�2m��R
�

0

t

duE−�u�ei�+u, �A6�

z−�t� = −
ie

�2m��R
�

0

t

duE+�u�ei�−u, �A7�

and where we have discarded the phase factor referred

above. The operator D̂�z+ ,z−�=e�z+�t�â+
†−z+

��t�â+�+�z−�t�â−
†−z−

��t�â−� is
the displacement operator for the annihilation and creation

operators, i.e., D̂†â�D̂= â�+z� and D̂†â�
† D̂= â�

† +z�
� . There-

fore, using the above representation of 	�t
, one can show

that the average value of any operator Â�â+ , â+
† , â− , â−

†�, in the
Schrödinger representation, is given by
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�Â
t = ��t	Â�â+, â+
†, â−, â−

†�	�t


= ��0	D̂†Â�â+e−i�+t, â+
†ei�+t, â−e−i�−t, â−

†ei�−t�D̂	�0


= ��0	Â��â+ + z+�t��e−i�+t,�â+
† + z+

��t��ei�+t,�â−

+ z−�t��e−i�−t,�â−
† + z−

��t��ei�−t�	�0
 . �A8�

In particular, if Â=+
�â+++â+

† +−
�â−+−â−

†, i.e., for a linear
function of the annihilation or creation operators, such as
x̂ , ŷ , p̂x , p̂y, which is the case that will concerns us below, one
has that

��Â
t = +
�z+�t�e−i�+t + +z+

��t�ei�+t + −
�z−�t�e−i�−t

+ −z−
��t�ei�−t, �A9�

where ��Â
t= �Â
t− �Â
t
0 is the difference between the aver-

age value in presence and absence of the applied electric
field.

Using this result, one can easily show that the induced
polarization in the system Px�t�=−e��x̂
t and Py�t�=−e��ŷ
t
is given by Pi�t�=0

t du�ij�t−u�Ej�u�, where the permittivity
of the system is given by

�xx�t� = �yy�t� =
e2

2m�R
�sin��+t� + sin��−t�� , �A10�

�xy�t� = − �yx�− t� =
e2

2m�R
�cos��+t� − cos��−t�� .

�A11�

The first equality between the permittivities follows from
rotational invariance around the z axis and the second from
linear response theory.

The induced current jx�t�=−e��v̂x
t and jy�t�=−e��v̂y
t is

related to Px�t� and Py�t� by jx�t�= Ṗx�t�, jy�t�= Ṗy�t� and
given that �ij�0�=0, one easily obtains for the conductivity,
defined by ji�t�=0

t du�ij�t−u�Ej�u�, the result �ij�t�= �̇ij�t�.
Hence,

�xx�t� = �yy�t� =
e2

2m�R
��+ cos��+t� + �− cos��−t�� ,

�A12�

�xy�t� = �yx�− t� = −
e2

2m�R
��+ sin��+t� − �− sin��−t�� .

�A13�

As above, one can also compute the conductivity from the
definition of v̂x= 1

m �p̂x− eB
2 ŷ� and v̂y = 1

m �p̂y + eB
2 x̂� since all the

operators involved are linear in the annihilation and creation
operators. Note that, since �++�−=2�R and �xx�0�=�yy�0�
=e2 /m, a result which agrees with the f-sum rule for a single
quantum particle. It is interesting to consider this system in
two limits, namely, B→0 �simple harmonic oscillator� and
�0→0 �particle in a magnetic field�. In the first case, �+

=�−=�0 and one obtains �xx�t�=�yy�t�= e2

m cos��0t�, �xy�t�
=�yx�−t�=0 �this result is obvious, given the lack of trans-
verse response if B=0�. In the second case, �+=�L, �−=0,

and �R=�L /2. One has that �xx�t�=�yy�t�= e2

m cos��Lt� and
�xy�t�=�yx�−t�=− e2

m sin��Lt�.
Finally, let us consider the case in which a constant elec-

tric field is turned on at t=0. In that case, one obtains at large
times t→� that the current ji= �̃ij�s→0+�Ej, where �̃ij�s� is
the Laplace transform of �ij�t�. Performing the integrals, one
obtains �̃xx�0�= �̃yy�0�=0. The limit s→0 requires a bit of
care in the transverse conductivity case since �̃xy�s�
=−�̃yx�s�=−e2 /2m�R��+

2 / ��+
2 +s2�−�−

2 / ��−
2 +s2��. We obtain

�̃xy�0�=−�̃yx�0�=0 if �0�0. However, we obtain �̃xy�0�
=−�̃yx�0�=−e /B in the �0=0 case ��−=0�. This result is
physically simple to understand if one realizes that, when a
harmonic force is present, a constant electric field merely
displaces the force center, whether a constant magnetic field
is present or not �a shift in the origin of the coordinates
merely contributes a constant term to the vector potential that
can be simply gauged away�. Therefore, one will not observe
a response of the velocity to the electric field in that case.
However, in the absence of an harmonic force, the electric
field “pulls” on the gyration radius center as if it were a free
particle and one does observe a transverse response.

One should again note that the quantum and classical re-
sults obtained for the susceptibilities computed above and
those obtained from the classical equations of motion
�11�–�14� are identical and, moreover, that the response to
the electric field is purely linear. This result follows from the
fact that the classical equations of motion and their quantum
counterparts, the Ehrenfest equations, are linear and can
therefore be solved with respect to the field and the initial
conditions. In this respect, the system behavior is trivial.
However, the equality of results between the classical and
quantum cases is limited to operators that are linear combi-
nations of the coordinates and momenta. In the case of non-
linear operators, one can still use the methods discussed in
this appendix to study their time evolution. Furthermore, if
one is interested in the evolution of wave functions, as dis-
cussed in the main text, one should keep the phase factors
that were discarded in the computation of average values.

APPENDIX B: INFELD-PLEBAŃSKI IDENTITY

We give here an elementary demonstration of the relation

of Infeld and Plebański �16�. If Ŝr=eir�p̂·r̂+r̂·p̂�/2� is the squeez-
ing operator introduced above, it is easy to show �19� that

Ŝrr̂Ŝr
†= r̂er and Ŝrp̂Ŝr

†= p̂e−r, i.e., Ŝr is a scale transformation
operator that preserves the volume of phase space. Using
these identities, one can show that

Ŝr	r
 = e−rd/2	re−r
 , �B1�

Ŝr	p
 = erd/2	per
 , �B2�

where d is the space dimension �two in this case�.
We now wish to consider the wave function of a squeezed

state evolving under the isotropic harmonic oscillator ĥ0, i.e.,

the matrix element �x ,y	e−iĥ0t/�Ŝr	�0
 �the discussion in mo-
mentum space is completely analogous�. Inserting a com-
plete set of position eigenstates, one can write this quantity
as
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�̄�x,y,t� = �
−�

+� �
−�

+�

dx0dy0Kr�x,y,x0,y0;t��0�x0,y0� ,

�B3�

where Kr�x ,y ,x0 ,y0 ; t�= �x ,y	e−iĥ0t/�Ŝr	x0 ,y0
. Using identity
�B1�, one has that

Kr�x,y,x0,y0;t� = e−rK�x,y,x0e−r,y0e−r;t� , �B4�

where K�x ,y ,x0 ,y0 ; t�= �x ,y	e−iĥ0t/�	x0 ,y0
 is the isotropic
harmonic oscillator propagator. Note, however, that Eq. �B4�
is valid for an arbitrary one-particle Hamiltonian. The har-
monic oscillator propagator is given by �41�

K�x,y,x0,y0;t� =
m�R

2�i� sin��Rt�
exp� im�R

2�
�cot��Rt��x2 + y2

+ x0
2 + y0

2� −
2�xx0 + yy0�

sin��Rt� �� . �B5�

Now, introducing the scaled variables x̃=x /�r�t� and ỹ

=y /�r�t�, with �r�t�=�e−2r cos2��Rt�+e2r sin2��Rt� and �r

= 1
�R

arctan�e2r tan��Rt��, one can show, using Eq. �B4�, that

Kr�x,y,x0,y0;t� = �r
−1�t�eim�R�r

−2�t�sinh�2r�sin�2�Rt��x2+y2�/2�

�K„x/�r�t�,y/�r�t�,x0,y0;�r… . �B6�

Substituting Eq. �B6� into Eq. �B3�, one obtains

�̄�x,y,t� = �r
−1�t�eim�R�r

−2�t�sinh�2r�sin�2�Rt��x2+y2�/2�

��„x/�r�t�,y/�r�t�,�r… , �B7�

which is the Infeld-Plebański relation used in the main text.
Since the expression for the propagator in momentum space
is entirely analogous to Eq. �B5�, the steps are identical to
those above, except that r is replaced by −r. One obtains

�̄�px,py,t� = �−r
−1�t�e−i�−r

−2�t� sinh�2r�sin�2�Rt��px
2+py

2�/2�m�R

��„px/�−r�t�,py/�−r�t�,�−r… . �B8�
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