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We report on the extension of the recently formulated relativistic convergent close-coupling �RCCC� method
to include the Breit and Møller interactions. The inclusion of these relativistic effects ensures that the RCCC
method is now capable of calculating electron scattering excitation and ionization cross sections for highly
charged ions. We have calculated the polarization of the Lyman-�1 x-ray line emitted by hydrogenlike Ti21+,
Ar17+, and Fe25+ ions excited by electron impact. We find that account of Breit relativistic corrections is
important to resolve the discrepancy between experiment and theoretical calculations. For the much heavier
hydrogenlike U91+ ion where the Møller interaction becomes important we present the estimate of the polar-
ization of the Lyman-�1 x-ray line and performed a calculation of the total ionization cross section.
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I. INTRODUCTION

The recent development of the relativistic convergent
close-coupling �RCCC� method �1,2� enables it to be applied
to electron scattering from heavy targets where relativistic
effects are important in both the target structure and scatter-
ing dynamics. We report on the further extension of the
RCCC method to include the Breit �3–5� and Møller �6�
interactions. The Breit interaction is a relativistic correction
that is added to the Coulomb potential and is valid in the
limit of low energy transfer between the two interacting elec-
trons. The Møller interaction incorporates the Coulomb po-
tential and is obtained as a lowest order QED interaction that
is valid for arbitrary energy transfer between electrons.

Bethe and Salpeter �7� and Greiner �8� highlight that the
Breit interaction is strictly only applicable in the context of
perturbation theory and its use as an interaction potential in
the Dirac equation can lead to the wrong results due to the
mixing of positive and negative energy states. Sucher �9� has
shown that these problems can be rectified with the use of
positive energy projection operators in the interaction terms;
this constitutes working in the no-virtual-pair approximation.
The RCCC method is nonperturbative and relies on solving a
set of coupled relativistic Lippmann-Schwinger equations
derived from the Dirac equation. We, therefore, adopt the
no-virtual-pair approximation in order to include the Breit
and Møller interactions in the RCCC formalism.

Electron impact excitation cross sections for highly
charged hydrogenlike targets have been calculated by Walker
�10�, Moores and Pindzola �11�, and Fontes et al. �12� using
relativistic perturbative first-order methods that compared
Coulomb, Breit, and Møller interactions in the calculations.
Similar first-order calculations that investigate the effects of
the Breit and Møller interaction in electron impact total ion-
ization cross sections for a range of hydrogenlike ions have
been performed by Pindzola et al. �13,14�, Moores and Reed
�15,16�, and Fontes et al. �17,18�.

These calculations and associated development of com-
puter codes have been done to a large degree in response to

series of an electron-beam ion trap �EBIT� experiments �see
�19� for a recent review� that investigated many fundamental
processes involving highly charged ions excited by electron
beams. For example, the experiment of Marrs et al. �20� for
the 1s total ionization cross section of U91+ can be explained
by theory only if the Møller interaction is used instead of the
Coulomb interaction, with the latter underestimating the ex-
periment by nearly 50%.

In addition to measurements of line intensities in EBIT
experiments that lead to determination of various cross sec-
tions there have been numerous performed measurements of
line polarizations. Such measurements play an important role
in plasma diagnostics �21� and serve as sensitive tests of
theoretical methods. In particular, Nakamura et al. �22� have
demonstrated that there is a systematic discrepancy between
measured polarization and results of fully relativistic
distorted-wave calculations �23� for the hydrogenlike Ti21+

ion Lyman-�1 x-ray line. Similar discrepancy has been found
by Robbins et al. �24� for the hydrogenlike Ar17+ and Fe25+

ions. We will demonstrate in this paper that account of the
Breit relativistic corrections is required to achieve agreement
with experiment.

This paper is organized as follows: Sec. II contains an
overview of the RCCC method, and the following Sec. III
describes the inclusion of the Breit and Møller interactions.
Following this, in Sec. IV we present results of our calcula-
tions for the polarization of the Lyman-�1 x-ray line emitted
by hydrogenlike Ti21+, Ar17+, and Fe25+ ions excited by elec-
tron impact. Similar calculations have also been performed
for the much heavier hydrogenlike U91+ ion for which the
total ionization cross section is also presented and compared
with previous first-order perturbative calculations and ex-
periment.

II. RCCC METHOD

The RCCC method has two main parts: first the structure
of the target atom or ion is calculated, and then the relativ-
istic Lippmann-Schwinger equation for the scattering prob-
lem is solved in momentum space. The RCCC method is*c.bostock@curtin.edu.au
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discussed in detail by Fursa et al. �2� and only the main
features of the theory are highlighted here.

A. Relativistic target structure

The relativistic wave function ��r� for the target electron
in a hydrogenlike target is described by the Dirac equation

HT��r� = �c� · p + �m0c2 + VT���r� = ���r� , �1�

where � and � are the Dirac matrices, c is the speed of light,
m0 is the electron mass, and p is the momentum operator. We
use atomic units and take m0=�=1 and c=137.036. We as-
sume a model of a point nucleus with infinite mass. For a
central potential VT the solutions of Dirac equation �1� are
characterized by the relativistic quantum number � and are
given by a four-component spinor �25�

��m�r� =
1

r
� ��

L�r���m

i��
S�r��−�m

� . �2�

Here ��
L�r� and ��

S�r� are the large and small components of
the radial wave function, ��m is a two-component coupled
spin-orbit function, and m is the magnetic quantum number.
The relativistic quantum number � is related to the total an-
gular momentum j and parity �= �−1�l of the orbital via

j = ��� −
1

2
, �3�

l = � � , � 	 0,

− � − 1 � 
 0.
	 �4�

The Dirac Hamiltonian in Eq. �1� is diagonalized using a
Dirac L-spinor basis �26�. Dirac L spinors form a Sturmian
basis which spans both positive energy and negative energy
parts of the Dirac equation spectrum. The target atom wave
function ��m�r� is sought as an expansion

��m�r� =
1

r
� ��

L�r���m

i��
S�r��−�m

� =
1

r
 �
nr

Cnr

L fnr�
L �r���m

i�
nr

Cnr

S fnr�
S �r��−�m� .

�5�

Here Cnr

L and Cnr

S are expansion coefficients, and fnr�
L �r� and

fnr�
S �r� are Dirac L spinors. As described by Fursa et al. �2�,

expansion �5� is substituted into the Dirac equation, Eq. �1�,
allowing the target Hamiltonian to be diagonalized to obtain
the target wave functions and energy levels. In order to stay
within the no-virtual-pair approximation we retain only posi-
tive total energy solutions obtained from the diagonalization.
Excellent agreement is found when the hydrogenlike target
energy levels and wave functions generated with this proce-
dure are checked against the relativistic analytic solutions
�27�, even for Z as high as 100.

B. Relativistic scattering formalism

The Dirac Hamiltonian for the total scattering system con-
sisting of projectile and hydrogenlike target electron is given
by

H = H1 + H2 + V12, �6�

where H1 refers to the projectile Hamiltonian and H2 refers
to the target electron Hamiltonian. In each case

Hi = Ki + Vi = Ki + Z/ri, �7�

where Ki is the free Dirac Hamiltonian and Z is the charge of
the nucleus. V12 in Eq. �6� is the electron-electron potential
which is either Coulomb, Coulomb+Breit, or the Møller in-
teraction. These interactions will be discussed in the next
section.

The total scattering wave function satisfies

�E − H���i
�+�
 = 0, �8�

where the superscript �+� denotes incoming plane- or
Coulomb-wave and outgoing spherical-wave boundary con-
ditions and the initial target state is �i and projectile momen-
tum is ki.

We use the set of target states ��n
N� to perform a multi-

channel expansion of the total wave function,

��i
N�+�
 =

1

2
�1 − P12���i

N�+�
 =
1

2
�1 − P12��

n

�fn,i
N �n

N
 , �9�

where N specifies the total number of states used, fn,i
N are

channel functions, and P12 is the space exchange operator.
The explicit antisymmetrization in Eq. �9� guarantees that the
total wave function satisfies the Pauli exclusion principle.

For a hydrogenlike target ion with asymptotic charge
Zas=Z−1 the asymptotic Hamiltonian of the scattering sys-
tem is defined as

Has = K1 −
Zas

r1
+ H2. �10�

The distorted waves used in the scattering formalism,
�k�
� ,� ,b
, are solutions of the one-electron Dirac equation

�� − Has − U��k�
�,�,b
 = 0, �11�

where U is an arbitrary short-ranged distorting potential, � is
the spin magnetic number, and b is the sign of energy,
�= 
�k= 
c�k2+c2, with the positive sign corresponding to
electrons and the negative sign to positrons �negative energy
electrons�.

The formulation of the close-coupling equations has been
discussed by Fursa et al. �2�. Briefly, a set of coupled
momentum-space Lippmann-Schwinger equations for the T
matrix is derived from Dirac equation �8� with the help of the
Green’s function Gas associated with the asymptotic Hamil-
tonian �10�. Spectral decomposition of the Green’s function
Gas contains both positive and negative total energy terms.
Negative energy terms correspond to closed channels and are
excluded in the RCCC formulation which, therefore, is
equivalent to the no-virtual-pair approximation. Upon
partial-wave expansion we obtain a set of relativistic partial-
wave Lippmann-Schwinger equations for the T matrix
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Tfi
�J�kf� f,ki�i� = Vfi

�J�kf� f,ki�i� + �
n

�
�

�� k2dk

�
Vfn

�J�kf� f,k��Tni
�J�k�,ki�i�

E − �n
N − �k� + i0

, �12�

with the notation as specified in �2�. The resulting form of
the Lippmann-Schwinger equations is the same as for the
nonrelativistic case and involves transitions between positive
energy states only; however, they contain relativistic kine-
matics.

Upon solution of Lippmann-Schwinger equations �12� we
use the obtained T matrix to define the scattering amplitude
Ffi

�f�i��� in the collision frame �z axis is along the incident
momentum of the projectile; � is the angle between scattered
electron momentum and z axis� for a transition from a state
�i with parity �i, angular momentum ji, its projection mi to a
state � f with parity � f, angular momentum j f, its projection
mf as

Fmfmi

�f�i��� = − �
�f�iJ�

iLi−Lfe�� f
+��iCLfMf,1/2�f

jmj CLi0,1/2�i

j��i Cjmj,j fmf

JMJ

�Cj��i,jimi

JMJ YLf

Mf�k f��2Li + 1

4�
Tfi

�J�kf� f,ki�i� ,

�13�

where mj =mi+�i−mf and Mf =mj −� f. The spin-averaged
cross section describing transitions between magnetic sub-
levels is defined as

�mfmi
=

1

2 �
�f�i

�Fmfmi

�f�i����2. �14�

Averaging over initial magnetic sublevels we obtain the cross
section for excitation of a particular magnetic sublevel

�mf
=

1

2ji + 1�
mi

�mfmi
. �15�

Summing over final magnetic sublevels we obtain the stan-
dard integrated cross section

� fi = �
mfmi

�mfmi
. �16�

III. BREIT AND MØLLER INTERACTIONS

In 1929 Breit �3–5� used classical arguments to include
relativistic corrections to the Coulomb potential in helium
fine structure calculations. In the Coulomb gauge the Breit
interaction is of the form

V12
B =

e2

r12
�− �1 · �2 +

1

2
��1 · p1�2 · p2�r12

2 � . �17�

In the above potential the first term on the right-hand side
can be interpreted as a “magnetic” interaction between elec-
tron spins, and the second term on the right-hand side can be
interpreted as a “retardation” term due to the finite propaga-
tion time of the interaction between the electrons.

Møller �6�, in 1932, derived the relativistic Coulomb in-
teraction for electron-electron scattering processes from
quantum electrodynamics. In the Lorentz gauge the Møller
interaction takes the form �8�

V12
M =

e2

r12
�1 − �1 · �2�eiKr12, �18�

where K= �E−E�� /c, and E and E� denote the initial and final
energies of one of the electrons. The form of the interaction
is different if the Coulomb gauge is used; however, Hata and
Grant �28� have shown that the Lorentz and Coulomb gauge
forms for the interaction have equivalent matrix elements
provided the wave functions used are derived from a local
potential, which pertains to the wave functions used in this
work. The Møller interaction incorporates both the Coulomb
interaction and all relativistic corrections, whereas the Breit
interaction given by Eq. �17� must be added to the Coulomb
potential. The Møller interaction depends on the energy
transferred between the electrons and in the limit of low
energy transfer it reduces to the Coulomb plus Breit interac-
tion �8�.

The matrix elements of the Coulomb, Breit, and Møller
interactions have been given by Grant �29� and expressed in
a convenient form for computation by Walker �10�. The cal-
culation of the matrix elements of the Møller interaction,

�ABJM�
e2

r12
�1 − �1 · �2�eiKr12�CDJ�M�
 , �19�

requires the identity

eiKr12

r12
= iK�

�=0

�

�2� + 1�j��Kr
��n��Kr	�

− ij��Kr	��C��1� · C��2� , �20�

where j��Kr
� and n��Kr	� are spherical Bessel and Neu-
mann functions �30�, and r
 ,r	 specify the lesser and
greater of r1 and r2, respectively. For the on-shell matrix
elements K= �EC−EA� /c= �ED−EB� /c. In performing full
RCCC calculations we require off-shell V-matrix elements,
and to obtain these we follow the method outlined by Hata
and Grant �28�,

V12
M = 1/2�V12

M�KAC� + V12
M�KBD�� , �21�

where KAC= �EC−EA� /c and KBD= �ED−EB� /c.
Fontes et al. �12� have performed calculations that show

that the effect of dropping the imaginary part in Eq. �20� is
negligible and is of the order of 2%–3% for 1s−2s,
1s−2p1/2, and 1s−2p3/2 excitation cross sections for a very
highly charged Z=100 hydrogenlike target. Thus, only the
real part of the Møller interaction may then be used.

IV. RESULTS

We present in this section results of our calculations of
electron scattering from hydrogenlike Ti21+, Ar17+, Fe25+, and
U91+ ions. The structure model for all considered ions was
generated by diagonalizing the target Hamiltonian in a Dirac
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L-spinor basis �see �2�� consisting of 17s, 17p, 17d, 17f , and
17g states using an exponential fall off parameter �=Z
where Z is the nuclear charge. Such a model leads to the
states up to principle quantum number n=5 laying in the
bound-state spectrum with the rest providing square inte-
grable discretization of the target continuum.

Close-coupling RCCC calculations have been performed
across a wide energy range by solving Lippmann-Schwinger
equation �12� for �i� Coulomb and then �ii� Coulomb+Breit
interactions. We have found that the full RCCC results are
generally in good agreement ��5%� for all considered target
ions with first-order “Born-Oppenheimer” �BO� calculations
where the exchange of projectile and target electrons is in-
cluded but only the first term on the right-hand side in the set
of Lippmann-Schwinger equations �12� is kept. Given the
apparent lack of interchannel coupling we will normally
present results for first-order BO calculations and give brief
comments for the cases where interchannel coupling plays a
more important role. In all results presented the term “Breit”
implies Coulomb+Breit interactions incorporated together.

A. Polarization of the Lyman-�1 line

Magnetic sublevel excitation cross sections of the 2p3/2
state from the ground 1s1/2 state given by Eq. �15� are re-
quired to determine the polarization of the 2p3/2→1s1/2 line.
These cross sections are related to the polarization by the
following expression:

P =
3��1/2 − �3/2�
3�3/2 + 5�1/2

, �22�

where �mf
is the cross section for excitation to a magnetic

sublevel given by Eq. �15�.
Cascades from the high-lying excited levels �up to n=5�

to the 2p3/2 state can affect the polarization of the
2p3/2→1s1/2 line. We will refer to the cross section and po-
larization obtained without account of cascades as direct and
those obtained with account of cascades as apparent. We take
into account the cascades by considering the contribution to
the 2p3/2 state magnetic sublevel cross section �mf

from an
upper lying state n with cross section �mn

to be

�mf

casc,mn = �mn
b�n, f��j fmf1q�jnmn
2, �23�

where �j fmf1q � jnmn
 is a Clebsh-Gordan coefficient and
b�n , f� is the branching ratio for dipole radiative decay from
the upper level n to the lower level f . By applying this for-
mula to all possible radiative decay paths and summing over
all bound states we obtain an estimate of the total cascade
correction

�mf

app = �mf
+ �

n
�
mn

�mf

casc,mn. �24�

The direct plus cascades values of magnetic sublevel 2p3/2
state �apparent� cross sections �mf

app are then used in calcula-
tion of polarization via Eq. �22�. This scheme has been used
with good results in a number of our previous publications
�31–33�. A more sophisticated account of cascades can be
done via the collision-radiative kinetic model �34,35�. This

model, however, reduces to our approach if all stepwise elec-
tron excitation and deexcitation processes are neglected
which is a good approximation in the case of EBIT experi-
ments due to the low ion density.

In Fig. 1 and Table I we present results of our calculations
for the polarization of Lyman-�1 emission line of Ar17+,
Ti21+, and Fe25+ ions. Our calculations for direct polarization
�no cascade corrections� with Coulomb potential are in good
agreement with previous Coulomb potential distorted-wave
calculations of Reed and Chen �23� and results of distorted-
wave code of Zhang et al. �36� reported by Robbins et al.
�24�. Similarly to previous calculations we found little dif-
ference between the polarizations of the three considered
ions when results are presented in threshold units. The cas-
cades provide approximately equal contributions to each of
the mf =3 /2 and mf =1 /2 magnetic sublevel cross sections,
and the effect of the cascades on polarization of the
Lyman-�1 line proved to be minor. This can be seen in Fig. 1
by comparing Coulomb potential direct and apparent polar-
izations. We estimate that cascade corrections lead to about
10% depolarization of the radiation.

We find that the cascade effects are of similar magnitude
for both Coulomb and Breit potential calculations. Hence,
only cascade corrected �apparent� results are presented for
the latter calculations. Our Breit potential calculations show
substantial difference from the Coulomb potential calcula-
tions and are in very good agreement with the experimental
results of Nakamura et al. �22� for Ti21+, Robbins et al. �24�
for Ar17+ and Fe25+ ions, and in particular with the line of
best fit to experimental data as presented by Robbins et al.
�24�. At low energies an account of channel coupling and in
particular coupling to the ionization continuum has only a
minor effect on the direct cross section and polarization;
however, it reduces the effect of cascading and brings the
direct and apparent cross sections closer together.

The difference between Coulomb potential and Breit po-
tential calculations is greater at larger energies which is con-
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FIG. 1. �Color online� Polarization of Lyman-�1 emission line
of Ar17+, Ti21+, and Fe25+. Present calculations are compared with
experimental data of Nakamura et al. �22� and Robbins et al. �24�.
Presented Coulomb potential calculations are for Ti21+ ion �results
for Ar17+ and Fe25+ ions are practically the same�. The two sets of
experimental results for Fe25+ pertain to the two experiments out-
lined in �24�.
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sistent with expected increasing effect of relativistic correc-
tions with the increase in incident electron energy. Similarly,
at larger energies we can see the change in polarization with
the change in nuclear charge �variation in polarization be-
tween Ar17+, Ti21+, and Fe25+ ions�. We have also performed
calculations using the Møller potential and found only minor
differences from Breit potential calculations at large incident
electron energies for these ions.

The effect of the Breit interaction and cascades on the
2p3/2 state integrated cross section is illustrated in Fig. 2 for
the Ti21+ ion. We find that cascading plays a relatively larger
role for cross sections compared to its effect on the line

polarization, especially at lower energies. However, the rela-
tivistic corrections to the Coulomb interaction cannot be dis-
tinguished for these intermediately charged ions. In Fig. 3 we
present direct magnetic sublevel cross sections for 2p3/2 state
calculated with the Coulomb and Breit potentials. Account of
Breit relativistic corrections leads to a slight increase in the
cross sections, with the cross section for the m=1 /2 sublevel
being affected more than for the m=3 /2 sublevel. It is this
difference that is emphasized in the calculation of the polar-
ization of Lyman-�1 emission line and makes measurements
of polarization a sensitive test of relativistic effects in
electron-ion scattering.

TABLE I. Cascade corrected �apparent� and direct polarization results for Lyman-�1 for Ar17+, Ti21+, and
Fe25+ ions compared to experimental measurements of Nakamura et al. �22� for Ti21+, and Robbins et al. �24�
for Ar17+ and Fe25+. The two sets of experimental results for Fe25+ pertain to the two experiments outlined in
�24�.

Energy
�keV� Coulomb Breit Experiment

Ar17+

30 App. +0.063 +0.027 −0.019
0.025

Dir. +0.070 +0.031

84 App. −0.051 −0.128 −0.099
0.045

Dir. −0.056 −0.144

Ti21+

10.6 App. +0.262 +0.250 +0.214
0.066

Dir. +0.296 +0.283

24.7 App. +0.143 +0.113 +0.085
0.081

Dir. +0.161 +0.127

49.6 App. +0.055 −0.0009 +0.050
0.082

Dir. +0.062 −0.0003

Fe25+

30 App. +0.165 +0.128 �a� +0.071
0.034 �b� +0.051
0.011

Dir. +0.186 +0.145

120 App. +0.0073 −0.102 �a� −0.236
0.109 �b� −0.217
0.045

Dir. +0.0095 −0.114
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FIG. 2. �Color online� Direct and apparent cross sections for
excitation of the 2p3/2 state of Ti21+. Present calculations are de-
scribed in text.
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FIG. 3. �Color online� magnetic sublevel direct cross sections
for excitation of the 2p3/2 state of Ti21+. Present calculations are
described in the text.
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Relativistic corrections to the Coulomb interaction be-
come more important as the charge of an ion increases. It is,
therefore, interesting to investigate the electron scattering
from hydrogenlike U91+ ion. The EBIT experiment of Marrs
et al. �20� concentrated on measurements of total ionization
cross section �see next section�. A new EBIT experiment at
GSI Darmstadt is forthcoming �37� and is expected to deter-
mine the Lyman-�1 line polarization.

In support of this experiment we have conducted a calcu-
lation of e-U91+ scattering. Direct and apparent cross sections
for excitation of the 2p3/2 state are presented in Fig. 4. We
find good agreement with previous calculations of 2s1/2,
2p1/2, and 2p3/2 direct cross sections by Moores and Pindzola
�11� and Fontes et al. �12� performed with Coulomb, Breit,
and Møller potentials. Account of Breit relativistic correc-
tions does not change the cross section substantially while
account of the Møller interaction leads to a much stronger
effect. Cascade corrections proved to be very large ranging
from about 50% at lower energies to 30% at larger energies.

In Fig. 5 we present our predictions for the polarization of
the Lyman-�1 emission line of U91+. As expected an account

of relativistic corrections leads to a large change in polariza-
tion. Calculations with the Coulomb potential lead to polar-
ization that varies little across the considered energy range
from one to six times the excitation threshold. Both Breit and
Møller relativistic corrections lead to polarization that
changes significantly more across the same energy range. At
low energies the Breit and Møller potential results converge
to the same polarization values, which is different to the
Coulomb potential. At large energies the Breit and Møller
potential results diverge with Møller potential results show-
ing much larger variation across the energy range. Cascading
leads to substantial depolarization of the radiation. Its effect
is much larger for the U91+ ion than for the lower charged
ions considered in this paper. Given such a large effect a
more accurate account of cascading via the collision-
radiative kinetic model �34,35� seems to be warranted. This
will be investigated in the future. We note, however, that
regardless of the accuracy the cascading is accounted for in
present work our calculations predict a clear distinction be-
tween calculations of Lyman-�1 emission line polarization
with Coulomb, Breit, and Møller potentials. The difference
between these calculations appears to be sufficiently large to
be observed in experiment.

B. Ionization cross section of U91+

In the RCCC method to obtain the total ionization cross
section we sum over all the excitation cross sections that
correspond to excitation of pseudostates above the ionization
threshold

�ioniz = �
f:0��f�E

� fi, �25�

where � f is the energy of the pseudostate and E is the total
energy of the system.

When the RCCC code is run in first-order mode the total
ionization cross section is instead obtained using

�ioniz
BO = �

f:0��f�E/2
� fi

BO, �26�

where the sum only extends up to E /2. This is required in
order to avoid double counting of pseudostates that represent
the continuum. This method seems to be inconsistent with
Eq. �25� employed in the full RCCC method; however, it has
been demonstrated �38� that � fi�� f�→0 for � f 	E /2 with an
increasing number of states, N. That is, � fi�� f� converges to a
step function as the number of states used in the calculation
increases and this is a consequence of interchannel coupling
in the RCCC method. The effect of double counting the
pseudostates in first-order total ionization cross section cal-
culations is demonstrated for the Coulomb interaction case in
Fig. 6, where it can be seen that the U91+ total ionization
cross section for the 1s electron is not in agreement with the
full RCCC results if double counting occurs, whereas when
double counting is avoided the first-order calculations are in
excellent agreement with the full RCCC calculations.

We have performed first-order BO total ionization cross-
section calculations for U91+ with �i� Coulomb and �ii�
Møller interactions included and we found excellent agree-
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ment with the corresponding results of Fontes et al. �18�, as
shown in Fig. 7. In the RCCC method the continuum is
modeled by pseudostates generated from an asymptotic
nuclear charge of Z−1. This differs from the calculations of
Fontes et al. �18� where the continuum states are generated
from a nuclear charge Z. However, for a highly charged tar-
get with large Z the difference is apparently minimal.

We have also found that the effects of distortion of the
target charge distribution �represented by the choice of U in
Eq. �11�� were negligible. This can be readily understood by
noting that the distorting potential U is only minor compared
to the U91+ Coulomb potential.

The results presented in Fig. 7 include the exchange of
projectile and target electrons. It has been highlighted by
Moores and Reed �15� and Fontes et al. �17� that the account
of the exchange of projectile and target electrons in the cal-
culations of the U91+ 1s total ionization cross section leads to

only minimal changes in the case of the Coulomb interac-
tion, but has a significant effect in the case of the Breit and
Møller interactions and is crucial in achieving agreement
with experiment of Marrs et al. �20�. We indeed found this to
be the case as illustrated in Fig. 8.

It is interesting to note that even though the account of the
exchange leads to only a minor change in the U91+ 1s total
ionization cross section for the Coulomb interaction, it does
not mean that the exchange scattering is negligible. This is
illustrated in Fig. 9 for the ionization spin asymmetries �39�.
Large values of the ionization spin asymmetries indicate the
importance of the exchange scattering not only for the Breit
and Møller potentials but also for the Coulomb potential.

V. CONCLUSION

The recently formulated relativistic convergent close-
coupling method has been extended to include the Breit and
Møller interactions. The method has been applied to calcula-
tion of the polarization of the Lyman-�1 line of Ti21+, Ar17+,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

100 200 300 400 500 600

cr
os

s
se

ct
io

n
(1

0-2
4

cm
2 )

electron energy (keV)

Coulomb BO

Coulomb full RCCC

Coulomb BO with double counting

FIG. 6. �Color online� U91+ total ionization cross section for the
1s electron calculated with the Coulomb interaction. Full close-
coupling �RCCC� results are compared to the first-order Born-
Oppenheimer �BO� results obtained with and without account for
double counting.

0.0

0.5

1.0

1.5

2.0

2.5

100 200 300 400 500 600

cr
os

s
se

ct
io

n
(1

0-2
4

cm
2 )

electron energy (keV)

Moller BO

Fontes et al.: Moller BO

Coulomb BO

Fontes et al.: Coulomb BO

Experiment: Marrs et al.

FIG. 7. �Color online� U91+ total ionization cross section for the
1s electron. Present results are compared with the first-order BO
calculations of Fontes et al. �18� and the experimental results of
Marrs et al. �20�.

0.0

0.5

1.0

1.5

2.0

2.5

100 200 300 400 500 600

cr
os

s
se

ct
io

n
(1

0-2
4

cm
2 )

electron energy (keV)

Moller BO (with exchange)

Moller Born (no exchange)

Coulomb BO (with exchange)

Coulomb Born (no exchange)

FIG. 8. �Color online� First-order U91+ total ionization cross-
section calculations for the 1s electron illustrating the effects of the
exchange of projectile and target electrons.

0.00

0.20

0.40

0.60

0.80

1.00

100 200 300 400 500 600

sp
in

as
ym

m
et

ry

electron energy (keV)

Coulomb BO

Moller BO

FIG. 9. �Color online� U91+ ionization spin asymmetries for the
1s electron.

RELATIVISTIC CONVERGENT CLOSE-COUPLING… PHYSICAL REVIEW A 80, 052708 �2009�

052708-7



and Fe25+ ions. We have shown that account of the Breit
relativistic correction to the Coulomb interaction resolves the
discrepancy between theory and EBIT experiments �22,24�.
Predictions for U91+ polarization of the Lyman-�1 line have
been presented. Large differences between calculations with
Coulomb, Breit, and Møller potentials have been found. We
have verified the accuracy of our e-U91+ scattering calcula-
tions that include Breit and Møller relativistic corrections by
finding good agreement with U91+ 1s ionization cross-section
measurements of Marrs et al. �20� and previous first-order
calculations.

With the current extension of the RCCC method we now
have a reliable technique for calculating electron scattering

on arbitrarily charged ions with an electronic configuration in
the first group of the Periodic Table. The reliability is inde-
pendent of the projectile energy or the transition considered.
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